Windows 6

Internals
Part 1

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation
One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2012 by David Solomon and Mark Russinovich

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2012933511
ISBN: 978-0-7356-4873-9

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty
/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave

Developmental Editor: Devon Musgrave

Project Editor: Carol Dillingham

Technical Reviewer: Christophe Nasarre; Technical Review services provided by Content Master, a member of
CM Group, Ltd.

Copy Editor: Roger LeBlanc

Indexer: Christina Yeager

Editorial Production: Waypoint Press

Cover: Twist Creative « Seattle

To our parents, who guided and inspired us to follow our dreams

Contents at a Glance

Windows Internals, Sixth Edition, Part 1

CHAPTER 1 Concepts and Tools 1
CHAPTER 2 System Architecture 33
CHAPTER 3 System Mechanisms 79
CHAPTER 4 Management Mechanisms 277
CHAPTER 5 Processes, Threads, and Jobs 359
CHAPTER 6 Security 487
CHAPTER 7 Networking 591

Windows Internals, Sixth Edition, Part 2 (available Fall 2012)

CHAPTER 8 1/0 System

CHAPTER 9 Storage Management
CHAPTER 10 Memory Management
CHAPTER 11 Cache Manager
CHAPTER12 File Systems

CHAPTER 13 Startup and Shutdown
CHAPTER 14 Crash Dump Analysis

Contents

Chapter 1

Chapter 2

INtroduction XVii
Concepts and Tools 1
Windows Operating System Versions, 1
Foundation Conceptsand Terms, 2
WiINdows APl ..o 2
Services, Functions, and Routines. 4
Processes, Threads, and Jobs.............. 5
Virtual Memory 15
Kernel Mode vs. UserMode., 17
Terminal Services and Multiple Sessions 20
Objectsand Handles. ... i 21
SECUNIEY oottt 22
Registry .. 23
UNiCode . o 24
Digging into Windows Internals. i 24
Performance Monitor i 25
Kernel Debugging ... 26
Windows Software Development Kit.......................... 31
Windows Driver Kito 31
Sysinternals TOOIS 32
CONCIUSION .« .ot 32
System Architecture 33
Requirements and Design Goals i, 33
Operating System Model. 34
Architecture OVEIrVIEWot 35
Portability ... 37
Symmetric Multiprocessing o i i i 38

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning resources for
you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

vii

viii

Contents

Chapter 3

Scalability. 40

Differences Between Client and Server Versions 41
Checked Build. ... oo 45
Key System Components. i 46
Environment Subsystems and Subsystem DLLs 48
NtdlLdll . 53
EXECULIVE . .o 54
Kernel. ... 57
Hardware Abstraction Layer.............. ... i, 60
Device DriVerS. . ..ot 63
SysStem ProcCesses 68
CONCIUSION .« oo 78
System Mechanisms 79
Trap Dispatchingo 79
Interrupt Dispatching 81
TIMer ProCcessingttt ettt 112
Exception Dispatching............ ... o i 123
System Service Dispatchingoo i 132
Object Manager ... 140
Executive Objects.o 143
Object Structure. 145
Synchronization. 176
High-IRQL Synchronization i .. 178
Low-IRQL Synchronization................c. i 183
System Worker Threads. ... 205
Windows Global Flags 207
Advanced Local Procedure Callo 209
ConnectionModel....... ..o i 210
Message Model 211
Asynchronous Operationiiiiiiiiiinnnn.. 213
Views, Regions, and Sections. 214
Attributes. 215
Blobs, Handles, and Resourcesot 215
SECUNY oot 216
Performance 217
Debuggingand Tracingoiuuiiiieeniiiiiieaann 218

WOWBA . 224
Wow64 Process Address Space Layout 224
System Calls. 225
Exception Dispatching. ... 225
User APC Dispatching 225
Console SUPPOrt. .o 225
User Callbacks. ... 226
File System Redirection. ... 226
Registry Redirection 227
I/O Control Requests.t 227
16-Bit Installer Applications. L. 228
PriNtiNg. . ..o 228
ReStrCtioNnst 228

User-Mode Debuggingoiiiin 229
Kernel Support ... 229
Native SUPPOrt. 230
Windows Subsystem Support ... 232

Image Loader. 232
Early Process Initialization 234
DLL Name Resolution and Redirection 235
Loaded Module Database il 238
Import Parsing 242
Post-Import Process Initialization............................ 243
SwitchBack. 244
APl SetS 245

Hypervisor (Hyper-V). 248
Partitions 249
Parent Partition. o 249
Child Partitions. 251
Hardware Emulation and Support, 254

Kernel Transaction Manager. 268

Hotpatch Support. 270

Kernel Patch Protection......... ... i 272

Code Integrityo 274

CONCIUSION . oot 276

Contents

ix

Chapter 4 Management Mechanisms 277

The Registry 277
Viewing and Changing the Registry.......................... 277
Registry Usageo 278
Registry Data Types. ...t 279
Registry Logical Structure. 280
Transactional Registry (TXR)t 287
Monitoring Registry Activity 289
Process Monitor Internals. oo i 289
Registry Internals......... .. 293

SBIVICES . . ot ettt 305
Service Applications. 305
The Service Control Manager ..., 321
Service Startup 323
Startup Errors ... 327
Accepting the Boot and Last Known Good.................... 328
Service Failures. o 330
Service Shutdown. o 331
Shared Service Processes ..ot .. 332
SEIVICE TaQS. « o vttt e e 335

Unified Background Process Managerccoovinun... 336
Initialization. 337
UBPM APl . 338
Provider Registration. 338
Consumer Registration o i i i 339
Task HOSt . ..o 341
Service Control Programs. 341

Windows Management Instrumentation........................... 342
Providers 344
The Common Information Model and the Managed
Object Format Language i 345
Class AsSOCIatIoONttt 349
WMI Implementation i 351
WMI SecuUrity. . ..o 353

Windows Diagnostic Infrastructure 354
WDI Instrumentation. ... i 354
Diagnostic Policy Service 354
Diagnostic Functionality 356

CONCIUSION .« . oot 357

Contents

Chapter 5

Processes, Threads, and Jobs 359
Process Internals 359
Data Structures. 359
Protected Processest 368
Flow Of CreateProcess. 369
Stage 1: Converting and Validating Parameters and Flags. 371
Stage 2: Opening the Image to Be Executed 373
Stage 3: Creating the Windows Executive Process
Object (PspAllocateProcess)c.ouueieeiiniine .. 376
Stage 4: Creating the Initial Thread and Its Stack and
Context. .. 381
Stage 5: Performing Windows Subsystem—Specific
Post-Initialization 383
Stage 6: Starting Execution of the Initial Thread 385
Stage 7: Performing Process Initialization in the Context
of the New Processo 386
Thread Internals 391
Data Structures. 391
BirthofaThread i 398
Examining Thread Activity. 398
Limitations on Protected Process Threads. 401
Worker Factories (Thread Pools) 403
Thread Scheduling 408
Overview of Windows Scheduling 408
Priority Levels 410
Thread States 416
Dispatcher Database i 421
QUaNTUM . .o 422
Priority BOOStS.o 430
Context Switching 448
Scheduling Scenarios.t 449
Idle Threads. e 453
Thread Selection. i 456
Multiprocessor Systems. 458
Thread Selection on Multiprocessor Systems.................. 467
Processor Selection o 468
Processor Share-Based Scheduling 470
Distributed Fair Share Scheduling........................ 471
CPURate Limits ..o 478

Contents

xi

xii

Contents

Chapter 6

Dynamic Processor Addition and Replacement 479

Job Objects 480
Job Limits. o 481
Job Sets ... o 482
CoNCIUSION . .o oo 485
Security 487
Security Ratings. . ..o 487
Trusted Computer System Evaluation Criteria. 487
The Common Criteria e 489
Security System Components.o i 490
Protecting Objects 494
Access Checks. 495
Security Identifiers. 497
Virtual Service AcCounts. 518
Security Descriptors and Access Control 522
The AuthZ APl . . 536
Account Rights and Privileges 538
AccountRights 540
Privileges 540
Super Privileges 546
Access Tokens of Processes and Threads 547
Security Auditing.o 548
Object Access Auditing. ... 549
Global Audit Policy 552
Advanced Audit Policy Settings. 554
LogoN . 555
Winlogon Initialization 556
User Logon Stepsot 558
Assured Authentication............... oo i 562
Biometric Framework for User Authentication................. 563
User Account Control and Virtualization 566
File System and Registry Virtualization 566
Elevation ... 573
Application Identification (AppID)........ ... 581
AppLocker .. 583
Software Restriction Policies.c i 589
CoNCIUSION .« . 590

Chapter 7 Networking 591

Windows Networking Architecture................, 591
The OSI Reference Model.......... i, 592
Windows Networking Components...............cooviin.... 594

Networking APIS . ..o 597
Windows Sockets........ .. 597
Winsock Kernel. 603
Remote Procedure Call 605
Web Access APls.o 610
Named Pipes and Mailslots 612
NetBIOS . .. 618
Other Networking APIs. 620

Multiple Redirector Support. ... 627
Multiple Provider Router i 627
Multiple UNC Provider 630
Surrogate Providers. 632
Redirector 633
Mini-Redirectors. 634
Server Message Block and Sub-Redirectors 635

Distributed File System Namespace ..., 637

Distributed File System Replication.................. 638

Offline Files o 639
Caching Modes.t 641
GhoOStS o 643
Data Security.o 643
Cache Structure ... 643

BranchCache 645
CachingModes. 647
BranchCache Optimized Application Retrieval:

SMB Sequence ... 651
BranchCache Optimized Application Retrieval:
HTTP Sequence. 653

Name Resolution. 655
Domain Name System. ... 655
Peer Name Resolution Protocol. 656

Location and Topology 658
Network Location Awarenessc.c.oviiiiinnnnnn... 658
Network Connectivity Status Indicator 659
Link-Layer Topology Discoveryc.coiiiiiiinnnn... 662

Contents

xiii

Xiv

Contents

Protocol DriVers. 663

Windows Filtering Platform 666
NDIS DIIVEIS. « .ttt ettt e e e e et e 672
Variations on the NDIS Miniport........... 677
Connection-Oriented NDIS 677
Remote NDIS. 680
QOS . 682
BiNding . ..o 684
Layered Network Services. 685
Remote ACCESS . ..ot 685
Active DireCtory . ..o 686
Network Load Balancing. 688
Network Access Protection 689
Direct ACCESS. . o oot 695
CONCIUSION .« . oo 696
IndeX ...civiiiiiiiii i it ittt 697

Windows Internals, Sixth Edition, Part 2 @vailabie Fall 2012)

Chapter 8

Chapter 9

Introduction

1/0 System

I/O System Components

Device Drivers

I/0 Processing

Kernel-Mode Driver Framework (KMDF)
User-Mode Driver Framework (UMDF)
The Plug and Play (PnP) Manager

The Power Manager

Conclusion

Storage Management
Storage Terminology

Disk Drivers

Volume Management
BitLocker Drive Encryption
Volume Shadow Copy Service
Conclusion

Chapter 10 Memory Management
Introduction to the Memory Manager
Services the Memory Manager Provides
Kernel-Mode Heaps (System Memory Pools)
Heap Manager
Virtual Address Space Layouts
Address Translation
Page Fault Handling
Stacks
Virtual Address Descriptors
NUMA
Section Objects
Driver Verifier
Page Frame Number Database
Physical Memory Limits
Working Sets
Proactive Memory Management (SuperFetch)
Conclusion

Chapter 11 Cache Manager
Key Features of the Cache Manager
Cache Virtual Memory Management
Cache Size
Cache Data Structures
File System Interfaces
Fast 1/0
Read Ahead and Write Behind
Conclusion

Chapter 12 File Systems
Windows File System Formats
File System Driver Architecture
Troubleshooting File System Problems
Common Log File System
NTFS Design Goals and Features
NTFS File System Driver
NTFS On-Disk Structure
NTFS Recovery Support

Contents XV

Encrypting File System Security
Conclusion

Chapter 13 Startup and Shutdown
Boot Process
Troubleshooting Boot and Startup Problems
Shutdown
Conclusion

Chapter 14 Crash Dump Analysis
Why Does Windows Crash?
The Blue Screen
Troubleshooting Crashes
Crash Dump Files
Windows Error Reporting
Online Crash Analysis
Basic Crash Dump Analysis
Using Crash Troubleshooting Tools
Advanced Crash Dump Analysis
Conclusion

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our books and learning resources for

you. To participate in a brief online survey, please visit:
-osoft.com/Iearning/booksu-

xvi Contents

Introduction

Windows Internals, Sixth Edition is intended for advanced computer professionals
(both developers and system administrators) who want to understand how the
core components of the Microsoft Windows 7 and Windows Server 2008 R2 operating
systems work internally. With this knowledge, developers can better comprehend the
rationale behind design choices when building applications specific to the Windows
platform. Such knowledge can also help developers debug complex problems. System
administrators can benefit from this information as well, because understanding how
the operating system works “under the covers” facilitates understanding the perfor-
mance behavior of the system and makes troubleshooting system problems much
easier when things go wrong. After reading this book, you should have a better
understanding of how Windows works and why it behaves as it does.

Structure of the Book

For the first time, Windows Internals has been divided into two parts. Updating the
book for each release of Windows takes considerable time so producing it in two parts
allows us to publish the first part earlier.

This book, Part 1, begins with two chapters that define key concepts, introduce the
tools used in the book, and describe the overall system architecture and components.
The next two chapters present key underlying system and management mechanisms.
Part 1 wraps up by covering three core components of the operating system: processes,
threads, and jobs; security; and networking.

Part 2, which will be available separately in fall 2012, covers the remaining core
subsystems: 1/0, storage, memory management, the cache manager, and file systems.
Part 2 concludes with a description of the startup and shutdown processes and a
description of crash-dump analysis.

Xvii

History of the Book

This is the sixth edition of a book that was originally called Inside Windows NT
(Microsoft Press, 1992), written by Helen Custer (prior to the initial release of Microsoft
Windows NT 3.1). Inside Windows NT was the first book ever published about Windows
NT and provided key insights into the architecture and design of the system. Inside
Windows NT, Second Edition (Microsoft Press, 1998) was written by David Solomon. It
updated the original book to cover Windows NT 4.0 and had a greatly increased level
of technical depth.

Inside Windows 2000, Third Edition (Microsoft Press, 2000) was authored by David
Solomon and Mark Russinovich. It added many new topics, such as startup and
shutdown, service internals, registry internals, file-system drivers, and networking. It
also covered kernel changes in Windows 2000, such as the Windows Driver Model
(WDM), Plug and Play, power management, Windows Management Instrumentation
(WMI), encryption, the job object, and Terminal Services. Windows Internals, Fourth
Edition was the Windows XP and Windows Server 2003 update and added more content
focused on helping IT professionals make use of their knowledge of Windows internals,
such as using key tools from Windows Sysinternals (www.microsoft.com/technet
/sysinternals) and analyzing crash dumps. Windows Internals, Fifth Edition was the
update for Windows Vista and Windows Server 2008. New content included the image
loader, user-mode debugging facility, and Hyper-V.

Sixth Edition Changes

This latest edition has been updated to cover the kernel changes made in Windows 7
and Windows Server 2008 R2. Hands-on experiments have been updated to reflect
changes in tools.

Hands-on Experiments

Even without access to the Windows source code, you can glean much about Windows
internals from tools such as the kernel debugger and tools from Sysinternals and
Winsider Seminars & Solutions. When a tool can be used to expose or demonstrate
some aspect of the internal behavior of Windows, the steps for trying the tool yourself
are listed in "EXPERIMENT" boxes. These appear throughout the book, and we encour-
age you to try these as you're reading—seeing visible proof of how Windows works
internally will make much more of an impression on you than just reading about it will.

xviii Introduction

Topics Not Covered

Windows is a large and complex operating system. This book doesn’t cover everything
relevant to Windows internals but instead focuses on the base system components. For
example, this book doesn't describe COM+, the Windows distributed object-oriented
programming infrastructure, or the Microsoft .NET Framework, the foundation of
managed code applications.

Because this is an internals book and not a user, programming, or system
administration book, it doesn’t describe how to use, program, or configure Windows.

A Warning and a Caveat

Because this book describes undocumented behavior of the internal architecture and
the operation of the Windows operating system (such as internal kernel structures and
functions), this content is subject to change between releases. (External interfaces, such
as the Windows API, are not subject to incompatible changes.)

By “subject to change,” we don't necessarily mean that details described in this
book will change between releases, but you can’t count on them not changing. Any
software that uses these undocumented interfaces might not work on future releases
of Windows. Even worse, software that runs in kernel mode (such as device drivers) and
uses these undocumented interfaces might experience a system crash when running on
a newer release of Windows.

Acknowledgments

First, thanks to Jamie Hanrahan and Brian Catlin of Azius, LLC for joining us on this
project—the book would not have been finished without their help. They did the bulk
of the updates on the “Security” and "Networking” chapters and contributed to the
update of the "Management Mechanisms” and "Processes and Threads” chapters. Azius
provides Windows-internals and device-driver training. See www.azius.com for more
information.

We want to recognize Alex lonescu, who for this edition is a full coauthor. This is a
reflection of Alex’s extensive work on the fifth edition, as well as his continuing work on
this edition.

Introduction Xix

XX

Thanks to Eric Traut and Jon DeVaan for continuing to allow David Solomon
access to the Windows source code for his work on this book as well as continued
development of his Windows Internals courses.

Three key reviewers were not acknowledged for their review and contributions
to the fifth edition: Arun Kishan, Landy Wang, and Aaron Margosis—thanks again to
them! And thanks again to Arun and Landy for their detailed review and helpful input
for this edition.

This book wouldn’t contain the depth of technical detail or the level of accuracy it
has without the review, input, and support of key members of the Microsoft Windows
development team. Therefore, we want to thank the following people, who provided
technical review and input to the book:

m Greg Cottingham

m Joe Hamburg

m Jeff Lambert

m Pavel Lebedynskiy
m Joseph East

m AdiOltean

m Alexey Pakhunov

m Valerie See

For the "Networking” chapter, a special thanks to Gianluigi Nusca and Tom Jolly,
who really went beyond the call of duty: Gianluigi for his extraordinary help with
the BranchCache material and the amount of suggestions (and many paragraphs of
material he wrote), and Tom Jolly not only for his own review and suggestions (which
were excellent), but for getting many other developers to assist with the review. Here
are all those who reviewed and contributed to the “Networking” chapter:

m Roopesh Battepati
= Molly Brown

m Greg Cottingham
m Dotan Elharrar

m Eric Hanson

= Tom Jolly

Introduction

® Manoj Kadam
m Greg Kramer

m David Kruse

= Jeff Lambert

m Darene Lewis

= Dan Lovinger

®m Gianluigi Nusca
® Amos Ortal

m |van Pashov

m Ganesh Prasad
= Paul Swan

m Shiva Kumar Thangapandi

Amos Ortal and Dotan Elharrar were extremely helpful on NAP, and Shiva Kumar
Thangapandi helped extensively with EAP.

The detailed checking Christophe Nasarre, overall technical reviewer, performed
contributed greatly to the technical accuracy and consistency in the book.

We would like to again thank lifak Guilfanov of Hex-Rays (www.hex-rays.com) for the
IDA Pro Advanced and Hex-Rays licenses they granted to Alex lonescu so that he could
speed up his reverse engineering of the Windows kernel.

Finally, the authors would like to thank the great staff at Microsoft Press who have
been behind turning this book into a reality. Devon Musgrave served double duty as
acquisitions editor and developmental editor, while Carol Dillingham oversaw the title
as its project editor. Editorial and production manager Steve Sagman, copy editor Roger
LeBlanc, proofreader Audrey Marr, and indexer Christina Yeager also contributed to the
quality of this book.

Last but not least, thanks to Ben Ryan, publisher of Microsoft Press, who continues
to believe in the importance of providing this level of detail about Windows to their
readers!

Introduction

xxi

Errata & Book Support

We've made every effort to ensure the accuracy of this book. Any errors that have
been reported since this book was published are listed on our Microsoft Press site at
oreilly.com:

http.//go.microsoft.com/FWLink/?Linkid=245675

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch

Let's keep the conversation going! We're on Twitter: http.//twitter.com/MicrosoftPress.

xxii Introduction

http://go.microsoft.com/FWLink/?Linkid=245675
mailto:mspinput@microsoft.com
http://go.microsoft.com/FWLink/?Linkid=245675

Concepts and Tools

n this chapter, we'll introduce the key Microsoft Windows operating system concepts and terms we'll

be using throughout this book, such as the Windows API, processes, threads, virtual memory, kernel
mode and user mode, objects, handles, security, and the registry. We'll also introduce the tools that
you can use to explore Windows internals, such as the kernel debugger, the Performance Monitor,
and key tools from Windows Sysinternals (www.microsoft.com/technet/sysinternals). In addition, we'll
explain how you can use the Windows Driver Kit (WDK) and the Windows Software Development Kit
(SDK) as resources for finding further information on Windows internals.

Be sure that you understand everything in this chapter—the remainder of the book is written
assuming that you do.

Windows Operating System Versions

This book covers the most recent version of the Microsoft Windows client and server operating
systems: Windows 7 (32-bit and 64-bit versions) and Windows Server 2008 R2 (64-bit version only).
Unless specifically stated, the text applies to all versions. As background information, Table 1-1 lists
the Windows product names, their internal version number, and their release date.

TABLE 1-1 Windows Operating System Releases

Product Name
Windows NT 3.1
Windows NT 3.5
Windows NT 3.51
Windows NT 4.0
Windows 2000
Windows XP
Windows Server 2003
Windows Vista
Windows Server 2008
Windows 7

Windows Server 2008 R2

Internal Version Number
31

3.5

3.51

4.0

5.0

5.1

5.2

6.0 (Build 6000)
6.0 (Build 6001)
6.1 (Build 7600)
6.1 (Build 7600)

Release Date
July 1993
September 1994
May 1995

July 1996
December 1999
August 2001
March 2003
January 2007
March 2008
October 2009

October 2009

Note The “7” in the "Windows 7" product name does not refer to the internal version
number, but is rather a generational index. In fact, to minimize application compatibility
issues, the version number for Windows 7 is actually 6.1, as shown in Table 1-1. This allows
applications checking for the major version number to continue behaving on Windows

7 as they did on Windows Vista. In fact, Windows 7 and Server 2008 R2 have identical
version/build numbers because they were built from the same Windows code base.

Foundation Concepts and Terms

2

In the course of this book, we'll be referring to some structures and concepts that might be unfamiliar
to some readers. In this section, we'll define the terms we'll be using throughout. You should become
familiar with them before proceeding to subsequent chapters.

Windows API

The Windows application programming interface (API) is the user-mode system programming
interface to the Windows operating system family. Prior to the introduction of 64-bit versions of
Windows, the programming interface to the 32-bit versions of the Windows operating systems was
called the Win32 API to distinguish it from the original 16-bit Windows API, which was the program-
ming interface to the original 16-bit versions of Windows. In this book, the term Windows API refers
to both the 32-bit and 64-bit programming interfaces to Windows.

Note The Windows APl is described in the Windows Software Development Kit (SDK)
documentation. (See the section “Windows Software Development Kit" later in this chap-
ter.) This documentation is available for free viewing online at www.msdn.microsoft.com. It
is also included with all subscription levels to the Microsoft Developer Network (MSDN),
Microsoft's support program for developers. For more information, see www.msdn.
microsoft.com. An excellent description of how to program the Windows base APl is in
the book Windows via C/C++, Fifth Edition by Jeffrey Richter and Christophe Nasarre
(Microsoft Press, 2007).

The Windows API consists of thousands of callable functions, which are divided into the following
major categories:

m Base Services
m Component Services

m User Interface Services

Windows Internals, Sixth Edition, Part 1

m Graphics and Multimedia Services
® Messaging and Collaboration
= Networking

m Web Services

This book focuses on the internals of the key base services, such as processes and threads, memory
management, 1/0O, and security.

What About .NET?

The Microsoft .NET Framework consists of a library of classes called the Framework Class
Library (FCL) and a Common Language Runtime (CLR) that provides a managed code execution
environment with features such as just-in-time compilation, type verification, garbage
collection, and code access security. By offering these features, the CLR provides a development
environment that improves programmer productivity and reduces common programming
errors. For an excellent description of the .NET Framework and its core architecture, see CLR via
C#, Third Edition by Jeffrey Richter (Microsoft Press, 2010).

The CLR is implemented as a classic COM server whose code resides in a standard user-mode
Windows DLL. In fact, all components of the .NET Framework are implemented as standard
user-mode Windows DLLs layered over unmanaged Windows API functions. (None of the
.NET Framework runs in kernel mode.) Figure 1-1 illustrates the relationship between these
components:

.NET Application
(Standard User-Mode EXEs)

User mode
(managed code)

Framework Class Library Assemblies
(Standard User-Mode DLLs)

CLR DLLs

User mode (COM server)
(unmanaged code)

| Windows APl DLLs |

Kernel mode | Windows Kernel |

FIGURE 1-1 Relationship between .NET Framework components

Concepts and Tools 3

History of the Win32 API

Interestingly, Win32 wasn't slated to be the original programming interface to what was then
called Windows NT. Because the Windows NT project started as a replacement for OS/2 ver-
sion 2, the primary programming interface was the 32-bit OS/2 Presentation Manager API. A
year into the project, however, Microsoft Windows 3.0 hit the market and took off. As a result,
Microsoft changed direction and made Windows NT the future replacement for the Windows
family of products as opposed to the replacement for OS/2. It was at this juncture that the need
to specify the Windows API arose—before this, in Windows 3.0, the API existed only as a 16-bit
interface.

Although the Windows APl would introduce many new functions that hadn't been available
on Windows 3.1, Microsoft decided to make the new APl compatible with the 16-bit Windows
API function names, semantics, and use of data types whenever possible to ease the burden of
porting existing 16-bit Windows applications to Windows NT. This explains why many function
names and interfaces might seem inconsistent: —this was required to ensure that the then new
Windows APl was compatible with the old 16-bit Windows API.

Services, Functions, and Routines

Several terms in the Windows user and programming documentation have different meanings in
different contexts. For example, the word service can refer to a callable routine in the operating
system, a device driver, or a server process. The following list describes what certain terms mean in
this book:

m Windows API functions Documented, callable subroutines in the Windows API. Examples
include CreateProcess, CreateFile, and GetMessage.

= Native system services (or system calls) The undocumented, underlying services in the
operating system that are callable from user mode. For example, NtCreateUserProcess is the
internal system service the Windows CreateProcess function calls to create a new process. For
a definition of system calls, see the section “System Service Dispatching” in Chapter 3, “System
Mechanisms.”

m Kernel support functions (or routines) Subroutines inside the Windows operating
system that can be called only from kernel mode (defined later in this chapter). For example,
ExAllocatePoolWithTag is the routine that device drivers call to allocate memory from the
Windows system heaps (called pools).

m Windows services Processes started by the Windows service control manager. For example,
the Task Scheduler service runs in a user-mode process that supports the at command (which

4 Windows Internals, Sixth Edition, Part 1

is similar to the UNIX commands at or cron). (Note: although the registry defines Windows
device drivers as “services,” they are not referred to as such in this book.)

DLLs (dynamic-link libraries) A set of callable subroutines linked together as a binary file
that can be dynamically loaded by applications that use the subroutines. Examples include
Msvcrt.dll (the C run-time library) and Kernel32.dll (one of the Windows API subsystem
libraries). Windows user-mode components and applications use DLLs extensively. The
advantage DLLs provide over static libraries is that applications can share DLLs, and Windows
ensures that there is only one in-memory copy of a DLL's code among the applications that are
referencing it. Note that nonexecutable .NET assemblies are compiled as DLLs but without any
exported subroutines. Instead, the CLR parses compiled metadata to access the corresponding
types and members.

Processes, Threads, and Jobs

Although programs and processes appear similar on the surface, they are fundamentally different.
A program is a static sequence of instructions, whereas a process is a container for a set of resources
used when executing the instance of the program. At the highest level of abstraction, a Windows
process comprises the following:

A private virtual address space, which is a set of virtual memory addresses that the process can
use

An executable program, which defines initial code and data and is mapped into the process’
virtual address space

A list of open handles to various system resources—such as semaphores, communication
ports, and files—that are accessible to all threads in the process

A security context called an access token that identifies the user, security groups, privileges,
User Account Control (UAC) virtualization state, session, and limited user account state
associated with the process

A unique identifier called a process ID (internally part of an identifier called a client ID)

At least one thread of execution (although an “empty” process is possible, it is not useful)

Each process also points to its parent or creator process. If the parent no longer exists, this
information is not updated. Therefore, it is possible for a process to refer to a nonexistent parent.
This is not a problem, because nothing relies on this information being kept current. In the case of
ProcessExplorer, the start time of the parent process is taken into account to avoid attaching a child
process based on a reused process ID. The following experiment illustrates this behavior.

Concepts and Tools 5

6

EXPERIMENT: Viewing the Process Tree

One unique attribute about a process that most tools don't display is the parent or creator
process ID. You can retrieve this value with the Performance Monitor (or programmatically) by
querying the Creating Process ID. The Tlist.exe tool (in the Debugging Tools for Windows) can
show the process tree by using the /t switch. Here's an example of output from tlist /t:

C:\>tlist /t
System Process (0)
System (4)
smss.exe (224)
csrss.exe (384)
csrss.exe (444)
conhost.exe (3076) OleMainThreadwWndName
winTogon.exe (496)
wininit.exe (504)
services.exe (580)
svchost.exe (696)
svchost.exe (796)
svchost.exe (912)
svchost.exe (948)
svchost.exe (988)
svchost.exe (244)
WUDFHost.exe (1008)
dwm.exe (2912) DWM Notification Window
btwdins.exe (268)
svchost.exe (1104)
svchost.exe (1192)
svchost.exe (1368)
svchost.exe (1400)
spoolsv.exe (1560)
svchost.exe (1860)
svchost.exe (1936)
svchost.exe (1124)
svchost.exe (1440)
svchost.exe (2276)
taskhost.exe (2816) Task Host Window
svchost.exe (892)
Tsass.exe (588)
Tsm.exe (596)
explorer.exe (2968) Program Manager
cmd.exe (1832) Administrator: C:\Windows\system32\cmd.exe - "c:\tlist.exe" /t
tlist.exe (2448)

The list indents each process to show its parent/child relationship. Processes whose parents
aren't alive are left-justified (as is Explorer.exe in the preceding example) because even if a
grandparent process exists, there's no way to find that relationship. Windows maintains only the
creator process ID, not a link back to the creator of the creator, and so forth.

Windows Internals, Sixth Edition, Part 1

To demonstrate the fact that Windows doesn’t keep track of more than just the parent
process ID, follow these steps:

1. Opena Command Prompt window.

2. Type title Parent (to change the window title to Parent).

3. Type start cmd (which starts a second command prompt).

4. Type title Child in the second command prompt.

5. Bring up Task Manager.

6. Type mspaint (which runs Microsoft Paint) in the second command prompt.
7. Go back to the second command prompt and type exit. (Notice that Paint remains.)
8. Switch to Task Manager.

9. Click on the Applications tab.

10. Right-click on the Parent task, and select Go To Process.

11. Right-click on this cmd.exe process, and select End Process Tree.

12. Click End Process Tree in the Task Manager confirmation message box.

The first command prompt window will disappear, but you should still see the Paint window
because it was the grandchild of the command prompt process you terminated; and because
the intermediate process (the parent of Paint) was terminated, there was no link between the
parent and the grandchild.

A number of tools for viewing (and modifying) processes and process information are available.
The following experiments illustrate the various views of process information you can obtain with
some of these tools. While many of these tools are included within Windows itself and within the
Debugging Tools for Windows and the Windows SDK, others are stand-alone tools from Sysinternals.
Many of these tools show overlapping subsets of the core process and thread information, some-
times identified by different names.

Probably the most widely used tool to examine process activity is Task Manager. (Because there
is no such thing as a “task” in the Windows kernel, the name of this tool, Task Manager, is a bit odd.)
The following experiment shows the difference between what Task Manager lists as applications
and processes.

Concepts and Tools

8

EXPERIMENT: Viewing Process Information with Task Manager

The built-in Windows Task Manager provides a quick list of the processes on the system. You
can start Task Manager in one of four ways: (1) press Ctrl+Shift+Esc, (2) right-click on the taskbar
and click Start Task Manager, (3) press Ctrl+Alt+Delete and click the Start Task Manager button,
or (4) start the executable Taskmgr.exe. Once Task Manager has started, click on the Processes
tab to see the list of processes. Notice that processes are identified by the name of the image

of which they are an instance. Unlike some objects in Windows, processes can’t be given global
names. To display additional details, choose Select Columns from the View menu and select
additional columns to be added, as shown here:

Select Process Page Columns =3

Select the columns that will appear on the Process page of the Task
Manager,

|:| Session 1D -
CPU Usage

CPU Time

[Memory - Waorking Set

[Memory - Peak Working Set
[Memory - Working Set Delka
Memory - Private Working Set
Memory - Comnmit Size

[Memory - Paged Pool

[Memory - Mon-paged Pool

[7] Page Faults

[] Page Fault Delta

Base Priority

Handles

Threads -

m

[Ok][Cancel]

Although the Task Manager Processes tab shows a list of processes, what the Applications
tab displays isn't as obvious. The Applications tab lists the top-level visible windows on all the
desktops in the interactive window station you are connected to. (By default, there is only one
interactive desktop—an application can create more by using the Windows CreateDesktop
function, as is done by the Sysinternals Desktops tool.) The Status column indicates whether
or not the thread that owns the window is in a window message wait state. “Running” means
the thread is waiting for windowing input; “Not Responding” means the thread isn't waiting
for windowing input (for example, the thread might be running or waiting for I/O or some
Windows synchronization object).

Windows Internals, Sixth Edition, Part 1

7% Windows Task Manager F=R|E=R|<=

File Options View Windows Help

#Applications |Pr0cesses I Services I Performance INetworklng IUsers |

=

Task Status
j.ntdef.h - Matepad Running
L05(C) Running

term32icmd. exe Running
Running

End Task Swikch To

Processes: 45 CPU Usage: 1% Physical Memory: 26%

On the Applications tab, you can match a task to the process that owns the thread that owns
the task window by right-clicking on the task name and choosing Go To Process as shown in the
previous tlist experiment.

Process Explorer, from Sysinternals, shows more details about processes and threads than any
other available tool, which is why you will see it used in a number of experiments throughout the
book. The following are some of the unique things that Process Explorer shows or enables:

m Process security token (such as lists of groups and privileges and the virtualization state)

m Highlighting to show changes in the process and thread list

m List of services inside service-hosting processes, including the display name and description
m Processes that are part of a job and job details

m Processes hosting .NET applications and .NET-specific details (such as the list of AppDomains,
loaded assemblies, and CLR performance counters)

m Start time for processes and threads
m Complete list of memory-mapped files (not just DLLs)
= Ability to suspend a process or a thread

m Ability to kill an individual thread

Concepts and Tools

10

Easy identification of which processes were consuming the most CPU time over a period
of time (The Performance Monitor can display process CPU utilization for a given set

of processes, but it won't automatically show processes created after the performance
monitoring session has started—only a manual trace in binary output format can do that.)

Process Explorer also provides easy access to information in one place, such as:

Process tree (with the ability to collapse parts of the tree)
Open handles in a process (including unnamed handles)
List of DLLs (and memory-mapped files) in a process
Thread activity within a process

User-mode and kernel-mode thread stacks (including the mapping of addresses to names
using the Dbghelp.dll that comes with the Debugging Tools for Windows)

More accurate CPU percentage using the thread cycle count (an even better representation of
precise CPU activity, as explained in Chapter 5, “Processes and Threads")

Integrity level

Memory manager details such as peak commit charge and kernel memory paged and
nonpaged pool limits (other tools show only current size)

An introductory experiment using Process Explorer follows.

EXPERIMENT: Viewing Process Details with Process Explorer

Download the latest version of Process Explorer from Sysinternals and run it. The first time you
run it, you will receive a message that symbols are not currently configured. If properly con-
figured, Process Explorer can access symbol information to display the symbolic name of the
thread start function and functions on a thread's call stack (available by double-clicking on a
process and clicking on the Threads tab). This is useful for identifying what threads are doing
within a process. To access symbols, you must have the Debugging Tools for Windows installed
(described later in this chapter). Then click on Options, choose Configure Symbols, and fill in the
path to the Dbghelp.dll in the Debugging Tools folder and a valid symbol path. For example, on
a 64-bit system this configuration is correct:

Configure Symbaols @

Process Explorer uses symbols to resolve function names when displaying thread start
addrezzes and thread stack locations on the Threads tab of a process' properties
dialog.

If you do not require that information you do not need to configure symbals.

Dbghelp.dil path:

C:\Program Files\Debugging Tools for ‘Windows [x64]vdbghelp.dll E]

Symbols path:

arvcchaymbols“http: //madl. microgoft. com/download/ spmbols E]
[(0] 3] [Cancel]

Windows Internals, Sixth Edition, Part 1

In the preceding example, the on-demand symbol server is being used to access symbols
and a copy of the symbol files is being stored on the local machine in the c:\symbols folder. For
more information on configuring the use of the symbol server, see http.//msdn.microsoft.com
/en-us/windows/hardware/gg462988.aspx.

When Process Explorer starts, it shows by default the process tree view. It has an optional
lower pane that can show open handles or mapped DLLs and memory-mapped files. (These are
explored in Chapter 3, “System Mechanisms” in Part 1 and Chapter 10, "Memory Management”
in Part 2.) It also shows tooltips for several kinds of hosting processes:

m The services inside a service-hosting process (Svchost.exe) if you hover your mouse over
the name

m The COM object tasks inside a Taskeng.exe process (started by the Task Scheduler)
m The target of a Rundll32.exe process (used for things such as Control Panel items)
m The COM object being hosted inside a Dllhost.exe process

m Internet Explorer tab processes

m Console host processes

2 Process Explorer - Sysinternals: www.sysinternals.com [dsolomon-PC\dsalomon] = | 5 S
Eile Options View Process Find Users Help
d @556 5 oc N T S—— N s
Process PID CPU Cycles Delta Description Cormpany Name ™
@7 svchostexe 1380 2,154,931 Host Process for Windows Services Microsoft Corporation
(=7 spoolsw.exe 1580 Spooler SubSystem App Microsoft Corporation
[m7 svchostexe 1608 1,759,526 Host Process for Windows Services Microsoft Corporation
(=7 svchostexe 1636 25,937 Host Process for Windows Services Microsoft Corporation
[AppletobileDeviceService.exe | 1712 Apple Mobile Device Service Apple nc.
(=1 mDNSResponder.exe 1748 Bonjour Service Apple Inc.
[mhatrox PDesk.Services.exe 1600 Service used to handle various PowerDesk tasks. Watrox Graphics Inc
[= 7 svchostexe 1880 Host Process for Windows Services Microsoft Corporation
(" WWLIDSYC.EXE 1936 204,929 Microsof®Windows Live ID Service Microsoft Corp.
@7 svchostexe 2228 Host Process for Windows Services Microsoft Corporation
[m7 svchostexe 2548 Host Process for Windows Services Microsoft Corporation
[taskhost exe 2960 Host Process for Windows Tasks Microsoft Corporation
[mSearchindexer.exe 2748 563,677 Microsoft Windows Search Indexer Microsoft Corporation
iPodService.exe 3240 974,089 iPodService Module (64-bif) Apple Inc.
[Twmpnetwk exe 3132 Wiinclowes Media Player Metwork Sharing Service Microsoft Corporation £
[evchostexe 3512 698,319 Host Process for Windows Services Microsoft Corporation
(w7 HPWA_Service exe 4408 98,400 HPRPA_Service Hewlett-Packard Company
@7 evchostexe 4548 Host Process for Windows Services Microsoft Corporation
[T hpepimiEx.exe 4666 hpepwrniex Module Hewlett-Packard Desvelopm L 4
[FOSPFEVCEXE 5536 hicrosoft Office Software Protection Platform Service Microsoft Corporation
I & n
[Ism.exe 608G Local Session Manager Service Microsoft Corporation
m winlogon. exe CAvwindows\System32\isass. exe Windows Logon Application Microsoft Corporation
E Laexplorerexe [Services: 11,984,308 Windows Explorer Microsoft Corporation
ipoint.exe CMG Key Isolation [Keylso] 258,824 IPoint exe Microsoft Corporation
_3__'} msnmsar.el Encrypting File System [EFS) [EFS] 5,907,661 Windows Live Messenger kicrosoft Corporation
Protected Storage [ProtectedStorage]
%mbotaskb Security Accounts Manager [SamSs] 60,227,397 RokhoForm TaskBar lcon Siber Systems "
CPU Usage: 14.72% Commit Charge: 18.46% Pracesses: §7 Physical Usage: 33.56%

Here are a few steps to walk you through some basic capabilities of Process Explorer:

1.
are highlighted in blue. (These colors can be configured.)

Concepts and Tools

Notice that processes hosting services are highlighted by default in pink. Your own processes

11

12

Hover your mouse pointer over the image name for processes, and notice the full path
displayed by the tooltip. As noted earlier, certain types of processes have additional details in
the tooltip.

Click on View, Select Columns from the Process Image tab, and add the image path.

Sort by clicking on the process column, and notice the tree view disappears. (You can either
display tree view or sort by any of the columns shown.) Click again to sort from Z to A. Then
click again, and the display returns to tree view.

Deselect View, Show Processes From All Users to show only your processes.

Go to Options, Difference Highlight Duration, and change the value to 5 seconds. Then
launch a new process (anything), and notice the new process highlighted in green for 5
seconds. Exit this new process, and notice the process is highlighted in red for 5 seconds
before disappearing from the display. This can be useful to see processes being created and
exiting on your system.

Finally, double-click on a process and explore the various tabs available from the process
properties display. (These will be referenced in various experiments throughout the book
where the information being shown is being explained.)

A thread is the entity within a process that Windows schedules for execution. Without it, the
process’ program can’t run. A thread includes the following essential components:

The contents of a set of CPU registers representing the state of the processor.

Two stacks—one for the thread to use while executing in kernel mode and one for executing
in user mode.

A private storage area called thread-local storage (TLS) for use by subsystems, run-time
libraries, and DLLs.

A unique identifier called a thread ID (part of an internal structure called a client ID—process

IDs and thread IDs are generated out of the same namespace, so they never overlap).

Threads sometimes have their own security context, or token, that is often used by multi-
threaded server applications that impersonate the security context of the clients that they
serve.

The volatile registers, stacks, and private storage area are called the thread’s context. Because
this information is different for each machine architecture that Windows runs on, this structure, by
necessity, is architecture-specific. The Windows GetThreadContext function provides access to this
architecture-specific information (called the CONTEXT block).

Windows Internals, Sixth Edition, Part 1

Note The threads of a 32-bit application running on a 64-bit version of Windows will
contain both 32-bit and 64-bit contexts, which Wow64 will use to switch the application
from running in 32-bit to 64-bit mode when required. These threads will have two user
stacks and two CONTEXT blocks, and the usual Windows API functions will return the
64-bit context instead. The Wow64GetThreadContext function, however, will return the
32-bit context. See Chapter 3 for more information on Wow64.

Fibers and User-Mode Scheduler Threads

Because switching execution from one thread to another involves the kernel scheduler, it can
be an expensive operation, especially if two threads are often switching between each other.
Windows implements two mechanisms for reducing this cost: fibers and user-mode scheduling
(UMS).

Fibers allow an application to schedule its own “threads” of execution rather than rely on
the priority-based scheduling mechanism built into Windows. Fibers are often called “light-
weight” threads, and in terms of scheduling, they're invisible to the kernel because they're
implemented in user mode in Kernel32.dll. To use fibers, a call is first made to the Windows
ConvertThreadToFiber function. This function converts the thread to a running fiber. Afterward,
the newly converted fiber can create additional fibers with the CreateFiber function. (Each fiber
can have its own set of fibers.) Unlike a thread, however, a fiber doesn’t begin execution until it's
manually selected through a call to the SwitchToFiber function. The new fiber runs until it exits
or until it calls SwitchToFiber, again selecting another fiber to run. For more information, see the
Windows SDK documentation on fiber functions.

UMS threads, which are available only on 64-bit versions of Windows, provide the same
basic advantages as fibers, without many of the disadvantages. UMS threads have their own
kernel thread state and are therefore visible to the kernel, which allows multiple UMS threads
to issue blocking system calls, share and contend on resources, and have per-thread state.
However, as long as two or more UMS threads only need to perform work in user mode, they
can periodically switch execution contexts (by yielding from one thread to another) without
involving the scheduler: the context switch is done in user mode. From the kernel’s perspective,
the same kernel thread is still running and nothing has changed. When a UMS thread performs
an operation that requires entering the kernel (such as a system call), it switches to its dedicated
kernel-mode thread (called a directed context switch). See Chapter 5 for more information on
UMS.

Although threads have their own execution context, every thread within a process shares the
process’ virtual address space (in addition to the rest of the resources belonging to the process),
meaning that all the threads in a process have full read-write access to the process virtual address
space. Threads cannot accidentally reference the address space of another process, however, unless
the other process makes available part of its private address space as a shared memory section (called

Concepts and Tools 13

14

a file mapping object in the Windows API) or unless one process has the right to open another process
to use cross-process memory functions such as ReadProcessMemory and WriteProcessMemory.

In addition to a private address space and one or more threads, each process has a security
context and a list of open handles to kernel objects such as files, shared memory sections, or one of
the synchronization objects such as mutexes, events, or semaphores, as illustrated in Figure 1-2.

Access token Virtual address descriptors (VADs)

Proces / . / / - / / - /
Handle table
I
[—[oved]
]

]

Thread> Thread>

FIGURE 1-2 A process and its resources

Thread

Access token

Each process’ security context is stored in an object called an access token. The process access
token contains the security identification and credentials for the process. By default, threads don't
have their own access token, but they can obtain one, thus allowing individual threads to impersonate
the security context of another process—including processes on a remote Windows system—with-
out affecting other threads in the process. (See Chapter 6, “Security,” for more details on process and
thread security.)

The virtual address descriptors (VADs) are data structures that the memory manager uses to keep
track of the virtual addresses the process is using. These data structures are described in more depth
in Chapter 10 in Part 2.

Windows provides an extension to the process model called a job. A job object’s main function is
to allow groups of processes to be managed and manipulated as a unit. A job object allows control
of certain attributes and provides limits for the process or processes associated with the job. It also
records basic accounting information for all processes associated with the job and for all processes
that were associated with the job but have since terminated. In some ways, the job object compen-
sates for the lack of a structured process tree in Windows—yet in many ways it is more powerful than
a UNIX-style process tree.

You'll find out much more about the internal structure of jobs, processes, and threads; the
mechanics of process and thread creation; and the thread-scheduling algorithms in Chapter 5.

Windows Internals, Sixth Edition, Part 1

Virtual Memory

Windows implements a virtual memory system based on a flat (linear) address space that provides
each process with the illusion of having its own large, private address space. Virtual memory pro-
vides a logical view of memory that might not correspond to its physical layout. At run time, the
memory manager, with assistance from hardware, translates, or maps, the virtual addresses into
physical addresses, where the data is actually stored. By controlling the protection and mapping,
the operating system can ensure that individual processes don't bump into one another or over-
write operating system data. Figure 1-3 illustrates three virtually contiguous pages mapped to three
discontiguous pages in physical memory.

Virtual memory

Physical memory

FIGURE 1-3 Mapping virtual memory to physical memory

Because most systems have much less physical memory than the total virtual memory in use by
the running processes, the memory manager transfers, or pages, some of the memory contents to
disk. Paging data to disk frees physical memory so that it can be used for other processes or for the
operating system itself. When a thread accesses a virtual address that has been paged to disk, the
virtual memory manager loads the information back into memory from disk. Applications don't have
to be altered in any way to take advantage of paging because hardware support enables the memory
manager to page without the knowledge or assistance of processes or threads.

The size of the virtual address space varies for each hardware platform. On 32-bit x86 systems,
the total virtual address space has a theoretical maximum of 4 GB. By default, Windows allocates
half this address space (the lower half of the 4-GB virtual address space, from 0x00000000 through
Ox7FFFFFFF) to processes for their unique private storage and uses the other half (the upper half,
addresses 0x80000000 through OxFFFFFFFF) for its own protected operating system memory
utilization. The mappings of the lower half change to reflect the virtual address space of the currently
executing process, but the mappings of the upper half always consist of the operating system'’s virtual
memory. Windows supports boot-time options (the increaseuserva qualifier in the Boot Configu-
ration Database, described in Chapter 13, “Startup and Shutdown,” in Part 2) that give processes
running specially marked programs (the large address space aware flag must be set in the header
of the executable image) the ability to use up to 3 GB of private address space (leaving 1 GB for the

Concepts and Tools 15

16

operating system). This option allows applications such as database servers to keep larger portions of
a database in the process address space, thus reducing the need to map subset views of the database.
Figure 1-4 shows the two typical virtual address space layouts supported by 32-bit Windows. (The
increaseuserva option allows anywhere from 2 to 3 GB to be used by marked applications.)

Default

2 GB User
process space

3 GB User space

3 GB User
process space

2 GB System
space

1 GB System
space

FIGURE 1-4 Typical address space layouts for 32-bit Windows

Although 3 GB is better than 2 GB, it's still not enough virtual address space to map very large
(multigigabyte) databases. To address this need on 32-bit systems, Windows provides a mechanism
called Address Windowing Extension (AWE), which allows a 32-bit application to allocate up to 64 GB
of physical memory and then map views, or windows, into its 2-GB virtual address space. Although
using AWE puts the burden of managing mappings of virtual to physical memory on the programmer,
it does address the need of being able to directly access more physical memory than can be mapped
at any one time in a 32-bit process address space.

64-bit Windows provides a much larger address space for processes: 7152 GB on IA-64 systems
and 8192 GB on x64 systems. Figure 1-5 shows a simplified view of the 64-bit system address space
layouts. (For a detailed description, see Chapter 10 in Part 2.) Note that these sizes do not represent
the architectural limits for these platforms. Sixty-four bits of address space is over 17 billion GB, but
current 64-bit hardware limits this to smaller values. And Windows implementation limits in the
current versions of 64-bit Windows further reduce this to 8192 GB (8 TB).

x64

8192 GB
(8 TB) User
process space

I1A-64

7152 GB
(7 TB) User
process space

8192 GB
System space

7152 GB
System space

FIGURE 1-5 Address space layouts for 64-bit Windows

Details of the implementation of the memory manager, including how address translation works
and how Windows manages physical memory, are described in Chapter 10 in Part 2.

Windows Internals, Sixth Edition, Part 1

Kernel Mode vs. User Mode

To protect user applications from accessing and/or modifying critical operating system data, Windows
uses two processor access modes (even if the processor on which Windows is running supports more
than two): user mode and kernel mode. User application code runs in user mode, whereas operating
system code (such as system services and device drivers) runs in kernel mode. Kernel mode refers to

a mode of execution in a processor that grants access to all system memory and all CPU instructions.
By providing the operating system software with a higher privilege level than the application software
has, the processor provides a necessary foundation for operating system designers to ensure that a
misbehaving application can’t disrupt the stability of the system as a whole.

Note The architectures of the x86 and x64 processors define four privilege levels (or rings)
to protect system code and data from being overwritten either inadvertently or maliciously
by code of lesser privilege. Windows uses privilege level 0 (or ring 0) for kernel mode and
privilege level 3 (or ring 3) for user mode. The reason Windows uses only two levels is that
some hardware architectures that were supported in the past (such as Compaq Alpha and
Silicon Graphics MIPS) implemented only two privilege levels.

Although each Windows process has its own private memory space, the kernel-mode operating
system and device driver code share a single virtual address space. Each page in virtual memory is
tagged to indicate what access mode the processor must be in to read and/or write the page. Pages
in system space can be accessed only from kernel mode, whereas all pages in the user address space
are accessible from user mode. Read-only pages (such as those that contain static data) are not
writable from any mode. Additionally, on processors that support no-execute memory protection,
Windows marks pages containing data as nonexecutable, thus preventing inadvertent or malicious
code execution in data areas.

32-bit Windows doesn't provide any protection to private read/write system memory being used
by components running in kernel mode. In other words, once in kernel mode, operating system and
device driver code has complete access to system space memory and can bypass Windows security to
access objects. Because the bulk of the Windows operating system code runs in kernel mode, it is vital
that components that run in kernel mode be carefully designed and tested to ensure that they don't
violate system security or cause system instability.

This lack of protection also emphasizes the need to take care when loading a third-party device
driver, because once in kernel mode the software has complete access to all operating system data.
This weakness was one of the reasons behind the driver-signing mechanism introduced in Windows,
which warns (and, if configured as such, blocks) the user if an attempt is made to add an unsigned
Plug and Play driver. (See Chapter 8, “I/O System,” in Part 2 for more information on driver signing.)
Also, a mechanism called Driver Verifier helps device driver writers to find bugs (such as buffer
overruns or memory leaks) that can cause security or reliability issues. Driver Verifier is explained in
Chapter 10 in Part 2.

On 64-bit versions of Windows, the Kernel Mode Code Signing (KMCS) policy dictates that any
64-bit device drivers (not just Plug and Play) must be signed with a cryptographic key assigned by

Concepts and Tools 17

18

one of the major code certification authorities. The user cannot explicitly force the installation of

an unsigned driver, even as an administrator, but, as a one-time exception, this restriction can be
disabled manually at boot time by pressing F8 and choosing the advanced boot option Disable Driver
Signature Enforcement. This causes a watermark on the desktop wallpaper and certain digital rights
management (DRM) features to be disabled.

As you'll see in Chapter 2, “System Architecture,” user applications switch from user mode to kernel
mode when they make a system service call. For example, a Windows ReadFile function eventually
needs to call the internal Windows routine that actually handles reading data from a file. That routine,
because it accesses internal system data structures, must run in kernel mode. The transition from user
mode to kernel mode is accomplished by the use of a special processor instruction that causes the
processor to switch to kernel mode and enter the system service dispatching code in the kernel which
calls the appropriate internal function in Ntoskrnl.exe or Win32k.sys. Before returning control to the
user thread, the processor mode is switched back to user mode. In this way, the operating system
protects itself and its data from perusal and modification by user processes.

Note A transition from user mode to kernel mode (and back) does not affect thread
scheduling per se—a mode transition is not a context switch. Further details on system
service dispatching are included in Chapter 3.

Thus, it's normal for a user thread to spend part of its time executing in user mode and part in
kernel mode. In fact, because the bulk of the graphics and windowing system also runs in kernel
mode, graphics-intensive applications spend more of their time in kernel mode than in user mode.
An easy way to test this is to run a graphics-intensive application such as Microsoft Paint or Microsoft
Chess Titans and watch the time split between user mode and kernel mode using one of the perfor-
mance counters listed in Table 1-2. More advanced applications can use newer technologies such as
Direct2D and compositing, which perform bulk computations in user mode and send only the raw
surface data to the kernel, reducing the time spent transitioning between user and kernel modes.

TABLE 1-2 Mode-Related Performance Counters

Object: Counter Function

Processor: % Privileged Time Percentage of time that an individual CPU (or all CPUs) has run in kernel mode
during a specified interval

Processor: % User Time Percentage of time that an individual CPU (or all CPUs) has run in user mode
during a specified interval

Process: % Privileged Time Percentage of time that the threads in a process have run in kernel mode during
a specified interval

Process: % User Time Percentage of time that the threads in a process have run in user mode during a
specified interval

Thread: % Privileged Time Percentage of time that a thread has run in kernel mode during a specified
interval

Thread: % User Time Percentage of time that a thread has run in user mode during a specified
interval

Windows Internals, Sixth Edition, Part 1

EXPERIMENT: Kernel Mode vs. User Mode

You can use the Performance Monitor to see how much time your system spends executing in
kernel mode vs. in user mode. Follow these steps:

1.

Run the Performance Monitor by opening the Start menu and selecting All Programs
/Administrative Tools/Performance Monitor. Select the Performance Monitor node under
Performance/Monitoring Tools on the left-side tree.

Click the Add button (+) on the toolbar.

Expand the Processor counter section, click the % Privileged Time counter and, while
holding down the Ctrl key, click the % User Time counter.

Click Add, and then click OK.

Open a command prompt, and do a directory scan of your C drive over the network by
typing dir \\%computername%\c$ /s.

r@) Performance Monitor [E=SEE=S)
(%) File Action View Window Help HE

= | HE 2=l

) performance Ere-&X 22000 0ME

a [Monitoring Taals

I8 Performance Monitor
> [Data Callectar Sets
> L Reports

100

L]
L4139 PM L42:1LPM L42:41PM L4138 PM
Gt ——— Average| - Minimum | e [T I —
Duration L40
Shaw Calar Scale Counter Instance Parent Object Computer
¥ Lo % Privileged Time _Total == Processor "WDSOLOMON-PC
v Lo % User Time _Total == Processor "WDSOLOMON-PC

When you're finished, just close the tool.

Concepts and Tools

19

20

You can also quickly see this by using Task Manager. Just click the Performance tab, and then
select Show Kernel Times from the View menu. The CPU usage bar will show total CPU usage in
green and kernel-mode time in red.

To see how the Performance Monitor itself uses kernel time and user time, run it again, but
add the individual Process counters % User Time and % Privileged Time for every process in the
system:

1. Ifit's not already running, run the Performance Monitor again. (If it is already running, start
with a blank display by right-clicking in the graph area and selecting Remove All Counters.)

2. Click the Add button (+) on the toolbar.

3. In the available counters area, expand the Process section.

4. Select the % Privileged Time and % User Time counters.

5. Select a few processes in the Instance box (such as mmc, csrss, and Idle).
6. Click Add, and then click OK.

7. Move the mouse rapidly back and forth.

8. Press Ctrl+H to turn on highlighting mode. This highlights the currently selected counter in
black.

9. Scroll through the counters at the bottom of the display to identify the processes whose
threads were running when you moved the mouse, and note whether they were running in
user mode or kernel mode.

You should see the Performance Monitor process (by looking in the Instance column for the
mmc process) kernel-mode and user-mode time go up when you move the mouse because it
is executing application code in user mode and calling Windows functions that run in kernel
mode. You'll also notice kernel-mode thread activity in a process named csrss when you move
the mouse. This activity occurs because the Windows subsystem’s kernel-mode raw input
thread, which handles keyboard and mouse input, is attached to this process. (See Chapter 2 for
more information about system threads.) Finally, the process named Idle that you see spending
nearly 100 percent of its time in kernel mode isn't really a process—it's a fake process used to
account for idle CPU cycles. As you can observe from the mode in which the threads in the Idle
process run, when Windows has nothing to do, it does it in kernel mode.

Terminal Services and Multiple Sessions

Terminal Services refers to the support in Windows for multiple interactive user sessions on a single
system. With Windows Terminal Services, a remote user can establish a session on another machine,
log in, and run applications on the server. The server transmits the graphical user interface to the

Windows Internals, Sixth Edition, Part 1

client (as well as other configurable resources such as audio and clipboard), and the client transmits
the user’s input back to the server. (Similar to the X Window System, Windows permits running indi-
vidual applications on a server system with the display remoted to the client instead of remoting the
entire desktop.)

The first session is considered the services session, or session zero, and contains system service
hosting processes (explained in further detail in Chapter 4, “Management Mechanisms”). The first
login session at the physical console of the machine is session one, and additional sessions can be
created through the use of the remote desktop connection program (Mstsc.exe) or through the use
of fast user switching (described later).

Windows client editions permits a single remote user to connect to the machine, but if someone
is logged in at the console, the workstation is locked (that is, someone can be using the system either
locally or remotely, but not at the same time). Windows editions that include Windows Media Center
allow one interactive session and up to four Windows Media Center Extender sessions.

Windows server systems support two simultaneous remote connections (to facilitate remote
management—for example, use of management tools that require being logged in to the machine
being managed) and more than two remote sessions if it's appropriately licensed and configured as a
terminal server.

All Windows client editions support multiple sessions created locally through a feature called fast
user switching that can be used one at a time. When a user chooses to disconnect her session instead
of log off (for example, by clicking Start and choosing Switch User from the Shutdown submenu or by
holding down the Windows key and pressing L and then clicking the Switch User button), the current
session (that is, the processes running in that session and all the sessionwide data structures that
describe the session) remains active in the system and the system returns to the main logon screen. If
a new user logs in, a new session is created.

For applications that want to be aware of running in a terminal server session, there are a set
of Windows APIs for programmatically detecting that as well as for controlling various aspects of
Terminal Services. (See the Windows SDK and the Remote Desktop Services API for details.)

Chapter 2 describes briefly how sessions are created and has some experiments showing how to
view session information with various tools, including the kernel debugger. The "Object Manager”
section in Chapter 3 describes how the system namespace for objects is instantiated on a per-session
basis and how applications that need to be aware of other instances of themselves on the same
system can accomplish that. Finally, Chapter 10 in Part 2 covers how the memory manager sets up
and manages sessionwide data.

Objects and Handles

In the Windows operating system, a kernel object is a single, run-time instance of a statically defined
object type. An object type comprises a system-defined data type, functions that operate on instances
of the data type, and a set of object attributes. If you write Windows applications, you might encoun-
ter process, thread, file, and event objects, to name just a few examples. These objects are based on

Concepts and Tools 21

22

lower-level objects that Windows creates and manages. In Windows, a process is an instance of the
process object type, a file is an instance of the file object type, and so on.

An object attribute is a field of data in an object that partially defines the object’s state. An object
of type process, for example, would have attributes that include the process ID, a base scheduling
priority, and a pointer to an access token object. Object methods, the means for manipulating objects,
usually read or change the object attributes. For example, the open method for a process would
accept a process identifier as input and return a pointer to the object as output.

Note Although there is a parameter named ObjectAttributes that a caller supplies when
creating an object using the kernel object manager APIs, that parameter shouldn't be
confused with the more general meaning of the term as used in this book.

The most fundamental difference between an object and an ordinary data structure is that the
internal structure of an object is opaque. You must call an object service to get data out of an object
or to put data into it. You can't directly read or change data inside an object. This difference separates
the underlying implementation of the object from code that merely uses it, a technique that allows
object implementations to be changed easily over time.

Objects, through the help of a kernel component called the object manager, provide a convenient
means for accomplishing the following four important operating system tasks:

®m Providing human-readable names for system resources
m Sharing resources and data among processes
m Protecting resources from unauthorized access

m Reference tracking, which allows the system to know when an object is no longer in use so
that it can be automatically deallocated

Not all data structures in the Windows operating system are objects. Only data that needs to be
shared, protected, named, or made visible to user-mode programs (via system services) is placed in
objects. Structures used by only one component of the operating system to implement internal func-
tions are not objects. Objects and handles (references to an instance of an object) are discussed in
more detail in Chapter 3.

Security

Windows was designed from the start to be secure and to meet the requirements of various formal
government and industry security ratings, such as the Common Criteria for Information Technology
Security Evaluation (CCITSE) specification. Achieving a government-approved security rating allows an
operating system to compete in that arena. Of course, many of these capabilities are advantageous
features for any multiuser system.

The core security capabilities of Windows include discretionary (need-to-know) and mandatory
integrity protection for all shareable system objects (such as files, directories, processes, threads, and

Windows Internals, Sixth Edition, Part 1

so forth), security auditing (for accountability of subjects, or users and the actions they initiate), user
authentication at logon, and the prevention of one user from accessing uninitialized resources (such
as free memory or disk space) that another user has deallocated.

Windows has three forms of access control over objects. The first form—discretionary access
control—is the protection mechanism that most people think of when they think of operating system
security. It's the method by which owners of objects (such as files or printers) grant or deny access
to others. When users log in, they are given a set of security credentials, or a security context. When
they attempt to access objects, their security context is compared to the access control list on the
object they are trying to access to determine whether they have permission to perform the requested
operation.

Privileged access control is necessary for those times when discretionary access control isn't
enough. It's a method of ensuring that someone can get to protected objects if the owner isn't
available. For example, if an employee leaves a company, the administrator needs a way to gain access
to files that might have been accessible only to that employee. In that case, under Windows, the
administrator can take ownership of the file so that he can manage its rights as necessary.

Finally, mandatory integrity control is required when an additional level of security control is
required to protect objects that are being accessed from within the same user account. It's used both
to isolate Protected Mode Internet Explorer from a user’s configuration and to protect objects created
by an elevated administrator account from access by a nonelevated administrator account. (See
Chapter 6 for more information on User Account Control—UAC.)

Security pervades the interface of the Windows API. The Windows subsystem implements
object-based security in the same way the operating system does; the Windows subsystem protects
shared Windows objects from unauthorized access by placing Windows security descriptors on them.
The first time an application tries to access a shared object, the Windows subsystem verifies the appli-
cation’s right to do so. If the security check succeeds, the Windows subsystem allows the application
to proceed.

For a comprehensive description of Windows security, see Chapter 6.

Registry

If you've worked at all with Windows operating systems, you've probably heard about or looked at
the registry. You can't talk much about Windows internals without referring to the registry because
it's the system database that contains the information required to boot and configure the system,
systemwide software settings that control the operation of Windows, the security database, and
per-user configuration settings (such as which screen saver to use).

In addition, the registry is a window into in-memory volatile data, such as the current hardware
state of the system (what device drivers are loaded, the resources they are using, and so on) as well as
the Windows performance counters. The performance counters, which aren't actually “in” the registry,
are accessed through the registry functions. See Chapter 4 for more on how performance counter
information is accessed from the registry.

Concepts and Tools 23

Although many Windows users and administrators will never need to look directly into the registry
(because you can view or change most configuration settings with standard administrative utilities),
it is still a useful source of Windows internals information because it contains many settings that
affect system performance and behavior. (If you decide to directly change registry settings, you must
exercise extreme caution; any changes might adversely affect system performance or, worse, cause
the system to fail to boot successfully.) You'll find references to individual registry keys through-
out this book as they pertain to the component being described. Most registry keys referred to in
this book are under the systemwide configuration, HKEY_LOCAL_MACHINE, which we'll abbreviate
throughout as HKLM.

For further information on the registry and its internal structure, see Chapter 4.

Unicode

Windows differs from most other operating systems in that most internal text strings are stored and
processed as 16-bit-wide Unicode characters. Unicode is an international character set standard that
defines unique 16-bit values for most of the world’s known character sets.

Because many applications deal with 8-bit (single-byte) ANSI character strings, many Windows
functions that accept string parameters have two entry points: a Unicode (wide, 16-bit) version and
an ANSI (narrow, 8-bit) version. If you call the narrow version of a Windows function, there is a slight
performance impact as input string parameters are converted to Unicode before being processed
by the system and output parameters are converted from Unicode to ANSI before being returned to
the application. Thus, if you have an older service or piece of code that you need to run on Windows
but this code is written using ANSI character text strings, Windows will convert the ANSI characters
into Unicode for its own use. However, Windows never converts the data inside files—it's up to the
application to decide whether to store data as Unicode or as ANSI.

Regardless of language, all versions of Windows contain the same functions. Instead of having
separate language versions, Windows has a single worldwide binary so that a single installation can
support multiple languages (by adding various language packs). Applications can also take advan-
tage of Windows functions that allow single worldwide application binaries that can support multiple
languages.

For more information about Unicode, see www.unicode.org as well as the programming
documentation in the MSDN Library.

Digging into Windows Internals

24

Although much of the information in this book is based on reading the Windows source code and
talking to the developers, you don't have to take everything on faith. Many details about the internals
of Windows can be exposed and demonstrated by using a variety of available tools, such as those that
come with Windows and the Windows debugging tools. These tool packages are briefly described
later in this section.

Windows Internals, Sixth Edition, Part 1

To encourage your exploration of Windows internals, we've included “Experiment” sidebars
throughout the book that describe steps you can take to examine a particular aspect of Windows
internal behavior. (You already saw a few of these sections earlier in this chapter) We encourage you
to try these experiments so that you can see in action many of the internals topics described in this

book.

Table 1-3 shows a list of the principal tools used in this book and where they come from.

TABLE 1-3 Tools for Viewing Windows Internals

Tool

Image Name

Origin

Startup Programs Viewer AUTORUNS Sysinternals

Access Check ACCESSCHK Sysinternals

Dependency Walker DEPENDS www.dependencywalker.com
Global Flags GFLAGS Debugging tools

Handle Viewer HANDLE Sysinternals

Kernel debuggers WINDBG, KD Debugging tools, Windows SDK
Object Viewer WINOBJ Sysinternals

Performance Monitor

PERFMON.MSC

Windows built-in tool

Pool Monitor POOLMON Windows Driver Kit
Process Explorer PROCEXP Sysinternals

Process Monitor PROCMON Sysinternals

Task (Process) List TLIST Debugging tools
Task Manager TASKMGR Windows built-in tool

Performance Monitor

We'll refer to the Performance Monitor found in the Administrative Tools folder on the Start menu
(or via Control Panel) throughout this book; specifically, we'll focus on the Performance Monitor and
Resource Monitor. The Performance Monitor has three functions: system monitoring, viewing perfor-
mance counter logs, and setting alerts (by using data collector sets, which also contain performance
counter logs and trace and configuration data). For simplicity, when we refer to the Performance
Monitor, we are referring to the System Monitor function within the tool.

The Performance Monitor provides more information about how your system is operating than
any other single utility. It includes hundreds of base and extensible counters for various objects.
For each major topic described in this book, a table of the relevant Windows performance counters
is included.

The Performance Monitor contains a brief description for each counter. To see the descriptions,
select a counter in the Add Counters window and select the Show Description check box.

Concepts and Tools 25

26

Although all the low-level system monitoring we'll do in this book can be done with the
Performance Monitor, Windows also includes a Resource Monitor utility (accessible from the start
menu or from the Task Manager Performance tab) that shows four primary system resources: CPU,
Disk, Network, and Memory. In their basic states, these resources are displayed with the same level
of information that you would find in Task Manager. However, they also provide sections that can be
expanded for more information.

When expanded, the CPU tab displays information about per-process CPU usage, just like Task
Manager. However, it adds a column for average CPU usage, which can give you a better idea of
which processes are most active. The CPU tab also includes a separate display of services and their
associated CPU usage and average. Each service hosting process is identified by the service group
it is hosting. As with Process Explorer, selecting a process (by clicking its associated check box) will
display a list of named handles opened by the process, as well as a list of modules (such as DLLs) that
are loaded in the process address space. The Search Handles box can also be used to search for which
processes have opened a handle to a given named resource.

The Memory section displays much of the same information that one can obtain with Task
Manager, but it is organized for the entire system. A physical memory bar graph displays the current
organization of physical memory into either hardware reserved, in use, modified, standby, and free
memory. See Chapter 10 in Part 2 for the exact meaning of these terms.

The Disk section, on the other hand, displays per-file information for I/Os in a way that makes it
easy to identify the most accessed, written to, or read from files on the system. These results can be
further filtered down by process.

The Networking section displays the active network connections and which processes own them,
as well as how much data is going through them. This information makes it possible to see back-
ground network activity that might be hard to detect otherwise. In addition, the TCP connections
that are active on the system are shown, organized by process, with data such as the remote and local
port and address, and packet latency. Finally, a list of listening ports is displayed by process, allowing
an administrator to see which services (or applications) are currently waiting for connections on a
given port. The protocol and firewall policy for each port and process is also shown.

Note that all of the Windows performance counters are accessible programmatically. The section
"HKEY_PERFORMANCE_DATA" in Chapter 4 has a brief description of the components involved in
retrieving performance counters through the Windows API.

Kernel Debugging

Kernel debugging means examining internal kernel data structures and/or stepping through functions
in the kernel. It is a useful way to investigate Windows internals because you can display internal
system information not available through any other tools and get a clearer idea of code flows within
the kernel.

Windows Internals, Sixth Edition, Part 1

Before describing the various ways you can debug the kernel, let’s examine a set of files that you'll
need in order to perform any type of kernel debugging.

Symbols for Kernel Debugging

Symbol files contain the names of functions and variables and the layout and format of data
structures. They are generated by the linker and used by debuggers to reference and display these
names during a debug session. This information is not usually stored in the binary image because it is
not needed to execute the code. This means that binaries are smaller and faster. However, this means
that when debugging, you must make sure that the debugger can access the symbol files that are
associated with the images you are referencing during a debugging session.

To use any of the kernel debugging tools to examine internal Windows kernel data structures (such
as the process list, thread blocks, loaded driver list, memory usage information, and so on), you must
have the correct symbol files for at least the kernel image, Ntoskrnl.exe. (The section “Architecture
Overview” in Chapter 2 explains more about this file.) Symbol table files must match the version of
the image they were taken from. For example, if you install a Windows Service Pack or hot fix that
updates the kernel, you must obtain the matching, updated symbol files.

While it is possible to download and install symbols for various versions of Windows, updated
symbols for hot fixes are not always available. The easiest solution to obtain the correct version of
symbols for debugging is to use the Microsoft on-demand symbol server by using a special syntax for
the symbol path that you specify in the debugger. For example, the following symbol path causes the
debugging tools to load required symbols from the Internet symbol server and keep a local copy in
the c:\symbols folder:

srv*c:\symbols*http://msd].microsoft.com/download/symbols

For detailed instructions on how to use the symbol server, see the debugging tools help file or the
Web page http://msdn.microsoft.com/en-us/windows/hardware/gg462988.aspx.

Debugging Tools for Windows

The Debugging Tools for Windows package contains advanced debugging tools used in this book
to explore Windows internals. The latest version is included as part of the Windows Software
Development Kit (SDK). These tools can be used to debug user-mode processes as well as the kernel.
(See the following sidebar.)

Note The Debugging Tools for Windows are updated frequently and released
independently of Windows operating system versions, so check often for new versions.

Concepts and Tools 27

28

User-Mode Debugging

The debugging tools can also be used to attach to a user-mode process and examine and/or
change process memory. There are two options when attaching to a process:

Invasive Unless specified otherwise, when you attach to a running process, the
DebugActiveProcess Windows function is used to establish a connection between the
debugger and the debugee. This permits examining and/or changing process memory,
setting breakpoints, and performing other debugging functions. Windows allows you to
stop debugging without killing the target process, as long as the debugger is detached,
not killed.

Noninvasive With this option, the debugger simply opens the process with the
OpenProcess function. It does not attach to the process as a debugger. This allows you to
examine and/or change memory in the target process, but you cannot set breakpoints.

You can also open user-mode process dump files with the debugging tools. User-mode

dump files are explained in Chapter 3 in the section on exception dispatching.

There are two debuggers that can be used for kernel debugging: a command-line version (Kd.exe)
and a graphical user interface (GUI) version (Windbg.exe). Both provide the same set of commands,
so which one you choose is a matter of personal preference. You can perform three types of kernel
debugging with these tools:

Open a crash dump file created as a result of a Windows system crash. (See Chapter 14, “Crash
Dump Analysis,” in Part 2 for more information on kernel crash dumps.)

Connect to a live, running system and examine the system state (or set breakpoints if you're
debugging device driver code). This operation requires two computers—a target and a host.
The target is the system being debugged, and the host is the system running the debugger.
The target system can be connected to the host via a null modem cable, an IEEE 1394 cable,
or a USB 2.0 debugging cable. The target system must be booted in debugging mode (either
by pressing F8 during the boot process and selecting Debugging Mode or by configuring
the system to boot in debugging mode using Becdedit or Msconfig.exe). You can also connect
through a named pipe, which is useful when debugging through a virtual machine product
such as Hyper-V, Virtual PC, or VMWare, by exposing the guest operating system'’s serial port
as a named pipe device.

Windows systems also allow you to connect to the local system and examine the system state.
This is called local kernel debugging. To initiate local kernel debugging with WinDbg, open the
File menu, choose Kernel Debug, click on the Local tab, and then click OK. The target system
must be booted in debugging mode. An example output screen is shown in Figure 1-6. Some
kernel debugger commands do not work when used in local kernel debugging mode (such as
creating a memory dump with the .dump command—however, this can be done with LiveKd,
described later in this section).

Windows Internals, Sixth Edition, Part 1

5:_[Local kernel - WinDbg:6.11.0001.404 AMDG4 ;IEIEI

File Edit Wew Debug Window Help

B e EER ==
Command - Local kernel - WinDbg:6.11.0001.404 AMDG4 [>_ [z

Connected to Windows 7 7600 u64 target at (Tue Dec B8 12:50:3%9.503 2009 (GMT-5)),
gymbol search path is: srv*C:iisymbols*http://msdl.microsoft.com/download/synbols
Executable search path is:

Windows 7 Kernel Version 7600 MP (2 procs) Free x64

FProduct: Server, suite: Enterprise TerminalServer SingleUserTs

Built by: 7600.16385.amd64fre.win? rtm.090713-1255

Machine Name:

Kernel base = 0xfffffa00"01853000 PsLoadedModulelList = OxfffffB800°01a%0e50

Debug sessicn time: Tus Dec 8 12:50:39.675 2009 (GMT-5)

gystem Uptime: 0 days 17:11:50.457

| -
Ilkd> ||

| Ln@, Col 0 |Sys0:<Mone> |Proc000:0 |Thrd 000:0 | ASH | OVE | CAPS | RLM
FIGURE 1-6 Local kernel debugging

Once connected in kernel debugging mode, you can use one of the many debugger extension
commands (commands that begin with “!") to display the contents of internal data structures such
as threads, processes, 1/0 request packets, and memory management information. Throughout this
book, the relevant kernel debugger commands and output are included as they apply to each topic
being discussed. An excellent companion reference is the Debugger.chm help file, contained in the
WinDbg installation folder, which documents all the kernel debugger functionality and extensions. In
addition, the dt (display type) command can format over 1000 kernel structures because the kernel
symbol files for Windows contain type information that the debugger can use to format structures.

EXPERIMENT: Displaying Type Information for Kernel Structures

To display the list of kernel structures whose type information is included in the kernel symbols,
type dt nt!_* in the kernel debugger. A sample partial output is shown here:

Tkd> dt nt!_*
nt!_LIST_ENTRY
nt!_LIST_ENTRY
nt!_IMAGE_NT_HEADERS
nt!_IMAGE_FILE_HEADER
nt!_IMAGE_OPTIONAL_HEADER
nt!_IMAGE_NT_HEADERS
nt!_LARGE_INTEGER

You can also use the dt command to search for specific structures by using its wildcard
lookup capability. For example, if you were looking for the structure name for an interrupt
object, type dt nt!_*interrupt*:

Tkd> dt nt!_*interrupt*
nt!_KINTERRUPT
nt!_KINTERRUPT_MODE

nt!_KINTERRUPT_POLARITY
nt!_UNEXPECTED_INTERRUPT

Concepts and Tools 29

Then you can use dt to format a specific structure as shown next:

Tkd> dt nt!_kinterrupt
nt!_KINTERRUPT

+0x000 Type : Int2B

+0x002 Size : Int2B

+0x008 InterruptListEntry : _LIST_ENTRY

+0x018 ServiceRoutine : Ptr64 unsigned char
+0x020 MessageServiceRoutine : Ptr64 unsigned char
+0x028 MessageIndex : Uint4B

+0x030 ServiceContext : Ptr64 Void

+0x038 SpinLock : Uint8B

+0x040 TickCount : Uint4B

+0x048 Actuallock : Ptr64 Uint8B

+0x050 DispatchAddress : Ptr64 void
+0x058 Vector : Uint4B

+0x05c Irql : UChar

+0x05d SynchronizeIrql : UChar

+0x05e FloatingSave : UChar

+0x05f Connected : UChar

+0x060 Number : Uint4B

+0x064 ShareVector : UChar

+0x065 Pad [3] Char

+0x068 Mode _KINTERRUPT_MODE
+0x06c Polarity : _KINTERRUPT_POLARITY
+0x070 ServiceCount : Uint4B

+0x074 DispatchCount : Uint4B

+0x078 Rsvdl : Uint8B

+0x080 TrapFrame : Ptr64 _KTRAP_FRAME
+0x088 Reserved : Ptr64 Void

+0x090 DispatchCode [4] Uint4B

Note that dt does not show substructures (structures within structures) by default. To recurse
through substructures, use the —r switch. For example, using this switch to display the kernel
interrupt object shows the format of the _LIST_ENTRY structure stored at the InterruptListEntry

30

field:

Tkd> dt nt!_kinterrupt -r
nt!_KINTERRUPT

+0x000 Type

+0x002 Size

+0x008 InterruptListEntry :

+0x000 Flink
+0x000 Flink
+0x008 Bl1ink

+0x008 B1ink
+0x000 Flink
+0x008 Bl1ink

: Int2B
: Int2B

_LIST_ENTRY
: Ptr64 _LIST_ENTRY
: Ptr64 _LIST_ENTRY
: Ptr64 _LIST_ENTRY
: Ptr64 _LIST_ENTRY
: Ptr64 _LIST_ENTRY
: Ptr64 _LIST_ENTRY

Windows Internals, Sixth Edition, Part 1

The Debugging Tools for Windows help file also explains how to set up and use the kernel
debuggers. Additional details on using the kernel debuggers that are aimed primarily at device driver
writers can be found in the Windows Driver Kit documentation.

LiveKd Tool

LiveKd is a free tool from Sysinternals that allows you to use the standard Microsoft kernel debuggers
just described to examine the running system without booting the system in debugging mode. This
approach might be useful when kernel-level troubleshooting is required on a machine that wasn't
booted in debugging mode—certain issues might be hard to reproduce reliably, so a reboot with the
debug option enabled might not readily exhibit the error.

You run LiveKd just as you would WinDbg or Kd. LiveKd passes any command-line options you
specify to the debugger you select. By default, LiveKd runs the command-line kernel debugger (Kd).
To have it run WinDbg, specify the —w switch. To see the help files for LiveKd switches, specify the —?
switch.

LiveKd presents a simulated crash dump file to the debugger, so you can perform any operations
in LiveKd that are supported on a crash dump. Because LiveKd is relying on physical memory to back
the simulated dump, the kernel debugger might run into situations in which data structures are in the
middle of being changed by the system and are inconsistent. Each time the debugger is launched,
it starts with a fresh view of the system state. If you want to refresh the snapshot, quit the debugger
(with the g command), and LiveKd will ask you whether you want to start it again. If the debugger
enters a loop in printing output, press Ctrl+C to interrupt the output and quit. If it hangs, press
Ctrl+Break, which will terminate the debugger process. LiveKd will then ask you whether you want to
run the debugger again.

Windows Software Development Kit

The Windows Software Development Kit (SDK) is available as part of the MSDN subscription program
or can be downloaded for free from msdn.microsoft.com. Besides the Debugging Tools, it contains
the documentation, C header files, and libraries necessary to compile and link Windows applications.
(Although Microsoft Visual C++ comes with a copy of these header files, the versions contained in
the Windows SDK always match the latest version of the Windows operating systems, whereas the
version that comes with Visual C++ might be an older version that was current when Visual C++ was
released.) From an internals perspective, items of interest in the Windows SDK include the Windows
API header files (\Program Files\Microsoft SDKs\Windows\v7.0A\Include). A few of these tools are also
shipped as sample source code in both the Windows SDK and the MSDN Library.

Windows Driver Kit

The Windows Driver Kit (WDK) is also available through the MSDN subscription program, and just
like the Windows SDK, it is available for free download. The Windows Driver Kit documentation is
included in the MSDN Library.

Concepts and Tools 31

Although the WDK is aimed at device driver developers, it is an abundant source of Windows
internals information. For example, while Chapter 8 in Part 2 describes the 1/0 system architecture,
driver model, and basic device driver data structures, it does not describe the individual kernel
support functions in detail. The WDK documentation contains a comprehensive description of all
the Windows kernel support functions and mechanisms used by device drivers in both a tutorial and
reference form.

Besides including the documentation, the WDK contains header files (in particular, ntddk.h, ntifs.h,
and wdm.h) that define key internal data structures and constants as well as interfaces to many
internal system routines. These files are useful when exploring Windows internal data structures with
the kernel debugger because although the general layout and content of these structures are shown
in this book, detailed field-level descriptions (such as size and data types) are not. A number of these
data structures (such as object dispatcher headers, wait blocks, events, mutants, semaphores, and so
on) are, however, fully described in the WDK.

So if you want to dig into the 1/0 system and driver model beyond what is presented in this book,
read the WDK documentation (especially the Kernel-Mode Driver Architecture Design Guide and
Reference manuals). You might also find useful Programming the Microsoft Windows Driver Model,
Second Edition by Walter Oney (Microsoft Press, 2002) and Developing Drivers with the Windows
Driver Foundation by Penny Orwick and Guy Smith (Microsoft Press, 2007).

Sysinternals Tools

Many experiments in this book use freeware tools that you can download from Sysinternals. Mark
Russinovich, coauthor of this book, wrote most of these tools. The most popular tools include Process
Explorer and Process Monitor. Note that many of these utilities involve the installation and execution
of kernel-mode device drivers and thus require (elevated) administrator privileges, though they can
run with limited functionality and output in a standard (or nonelevated) user account.

Since the Sysinternals tools are updated frequently, it is best to make sure you have the latest
version. To be notified of tool updates, you can follow the Sysinternals Site Blog (which has an
RSS feed).

For a description of all the tools, a description of how to use them, and case studies of
problems solved, see Windows Sysinternals Administrator’s Reference (Microsoft Press, 2011) by
Mark Russinovich and Aaron Margosis.

For questions and discussions on the tools, use the Sysinternals Forums.

Conclusion

32

In this chapter, you've been introduced to the key Windows technical concepts and terms that will be
used throughout the book. You've also had a glimpse of the many useful tools available for digging
into Windows internals. Now we're ready to begin our exploration of the internal design of the
system, beginning with an overall view of the system architecture and its key components.

Windows Internals, Sixth Edition, Part 1

System Architecture

N ow that we've covered the terms, concepts, and tools you need to be familiar with, we're ready
to start our exploration of the internal design goals and structure of the Microsoft Windows
operating system. This chapter explains the overall architecture of the system—the key components,
how they interact with each other, and the context in which they run. To provide a framework for
understanding the internals of Windows, let’s first review the requirements and goals that shaped the
original design and specification of the system.

Requirements and Design Goals

The following requirements drove the specification of Windows NT back in 1989:
m Provide a true 32-bit, preemptive, reentrant, virtual memory operating system
® Run on multiple hardware architectures and platforms
®m Run and scale well on symmetric multiprocessing systems
m Be a great distributed computing platform, both as a network client and as a server
® Run most existing 16-bit MS-DOS and Microsoft Windows 3.1 applications
m Meet government requirements for POSIX 1003.1 compliance
m Meet government and industry requirements for operating system security

m Be easily adaptable to the global market by supporting Unicode

To guide the thousands of decisions that had to be made to create a system that met these
requirements, the Windows NT design team adopted the following design goals at the beginning of
the project:

m Extensibility The code must be written to comfortably grow and change as market
requirements change.

m Portability The system must be able to run on multiple hardware architectures and must be
able to move with relative ease to new ones as market demands dictate.

33

= Reliability and robustness The system should protect itself from both internal malfunction
and external tampering. Applications should not be able to harm the operating system or
other applications.

= Compatibility Although Windows NT should extend existing technology, its user interface
and APIs should be compatible with older versions of Windows and with MS-DOS. It should
also interoperate well with other systems, such as UNIX, OS/2, and NetWare.

m Performance Within the constraints of the other design goals, the system should be as fast
and responsive as possible on each hardware platform.

As we explore the details of the internal structure and operation of Windows, you'll see how these
original design goals and market requirements were woven successfully into the construction of the
system. But before we start that exploration, let's examine the overall design model for Windows and
compare it with other modern operating systems.

Operating System Model

34

In most multiuser operating systems, applications are separated from the operating system itself—
the operating system kernel code runs in a privileged processor mode (referred to as kernel mode in
this book), with access to system data and to the hardware; application code runs in a nonprivileged
processor mode (called user mode), with a limited set of interfaces available, limited access to system
data, and no direct access to hardware. When a user-mode program calls a system service, the pro-
cessor executes a special instruction that switches the calling thread to kernel mode. When the system
service completes, the operating system switches the thread context back to user mode and allows
the caller to continue.

Windows is similar to most UNIX systems in that it's a monolithic operating system in the sense
that the bulk of the operating system and device driver code shares the same kernel-mode protected
memory space. This means that any operating system component or device driver can potentially
corrupt data being used by other operating system components. However, Windows does imple-
ment some kernel protection mechanisms, such as PatchGuard and Kernel Mode Code Signing (both
described in Chapter 3, “System Mechanisms”), which help in the mitigation and prevention of issues
related to the shared kernel-mode address space.

All these operating system components are, of course, fully protected from errant applications
because applications don't have direct access to the code and data of the privileged part of the
operating system (although they can quickly call other kernel services). This protection is one of the
reasons that Windows has the reputation for being both robust and stable as an application server
and as a workstation platform, yet fast and nimble from the perspective of core operating system
services, such as virtual memory management, file I/O, networking, and file and print sharing.

Windows Internals, Sixth Edition, Part 1

The kernel-mode components of Windows also embody basic object-oriented design principles.
For example, in general they don't reach into one another’s data structures to access information
maintained by individual components. Instead, they use formal interfaces to pass parameters and
access and/or modify data structures.

Despite its pervasive use of objects to represent shared system resources, Windows is not an
object-oriented system in the strict sense. Most of the operating system code is written in C for
portability. The C programming language doesn’t directly support object-oriented constructs such as
dynamic binding of data types, polymorphic functions, or class inheritance. Therefore, the C-based
implementation of objects in Windows borrows from, but doesn’t depend on, features of particular
object-oriented languages.

Architecture Overview

With this brief overview of the design goals and packaging of Windows, let's take a look at the key
system components that make up its architecture. A simplified version of this architecture is shown
in Figure 2-1. Keep in mind that this diagram is basic—it doesn’t show everything. (For example, the
networking components and the various types of device driver layering are not shown.)

fg;:)eor?t Service L‘Jser' Environment
processes processes applications subsystems
Subsystem DLLs
User mode
Kernel mode
Executive Windowing
Kernel Device drivers and graphics

Hardware abstraction layer (HAL)

FIGURE 2-1 Simplified Windows architecture

In Figure 2-1, first notice the line dividing the user-mode and kernel-mode parts of the Windows
operating system. The boxes above the line represent user-mode processes, and the components
below the line are kernel-mode operating system services. As mentioned in Chapter 1, “Concepts
and Tools,” user-mode threads execute in a protected process address space (although while they
are executing in kernel mode, they have access to system space). Thus, system support processes,
service processes, user applications, and environment subsystems each have their own private process
address space.

System Architecture 35

36

The four basic types of user-mode processes are described as follows:

m Fixed (or hardwired) system support processes, such as the logon process and the Session
Manager, that are not Windows services. (That is, they are not started by the service control
manager. Chapter 4, "Management and Mechanisms,” describes services in detail.)

m Service processes that host Windows services, such as the Task Scheduler and Print Spooler
services. Services generally have the requirement that they run independently of user logons.
Many Windows server applications, such as Microsoft SQL Server and Microsoft Exchange
Server, also include components that run as services.

m User applications, which can be one of the following types: Windows 32-bit or 64-bit, Windows
3.1 16-bit, MS-DOS 16-bit, or POSIX 32-bit or 64-bit. Note that 16-bit applications can be run
only on 32-bit Windows.

m Environment subsystem server processes, which implement part of the support for the
operating system environment, or personality, presented to the user and programmer.
Windows NT originally shipped with three environment subsystems: Windows, POSIX, and
0S/2. However, the POSIX and OS/2 subsystems last shipped with Windows 2000. The Ultimate
and Enterprise editions of Windows client as well as all of the server versions include support
for an enhanced POSIX subsystem called Subsystem for Unix-based Applications (SUA).

In Figure 2-1, notice the "Subsystem DLLs" box below the “Service processes” and “User
applications” boxes. Under Windows, user applications don't call the native Windows operating
system services directly; rather, they go through one or more subsystem dynamic-link libraries (DLLs).
The role of the subsystem DLLs is to translate a documented function into the appropriate internal
(and generally undocumented) native system service calls. This translation might or might not involve
sending a message to the environment subsystem process that is serving the user application.

The kernel-mode components of Windows include the following:

m The Windows executive contains the base operating system services, such as memory
management, process and thread management, security, /O, networking, and interprocess
communication.

m The Windows kernel consists of low-level operating system functions, such as thread
scheduling, interrupt and exception dispatching, and multiprocessor synchronization. It also
provides a set of routines and basic objects that the rest of the executive uses to implement
higher-level constructs.

m Device drivers include both hardware device drivers, which translate user I/0O function calls
into specific hardware device I/O requests, as well as nonhardware device drivers such as file
system and network drivers.

m The hardware abstraction layer (HAL) is a layer of code that isolates the kernel, the device
drivers, and the rest of the Windows executive from platform-specific hardware differences
(such as differences between motherboards).

Windows Internals, Sixth Edition, Part 1

m The windowing and graphics system implements the graphical user interface (GUI) functions
(better known as the Windows USER and GDI functions), such as dealing with windows, user
interface controls, and drawing.

Table 2-1 lists the file names of the core Windows operating system components. (You'll need
to know these file names because we'll be referring to some system files by name.) Each of these
components is covered in greater detail both later in this chapter and in the chapters that follow.

TABLE 2-1 Core Windows System Files

File Name Components
Ntoskrnl.exe Executive and kernel
Ntkrnlpa.exe (32-bit systems only) Executive and kernel, with support for Physical Address Extension (PAE), which

allows 32-bit systems to address up to 64 GB of physical memory and to mark
memory as nonexecutable (see the section "No Execute Page Prevention” in
Chapter 10, “"Memory Management,” in Part 2)

Hal.dll Hardware abstraction layer

Win32k.sys Kernel-mode part of the Windows subsystem

Ntdll.dll Internal support functions and system service dispatch stubs to executive
functions

Kernel32.dll, Advapi32.dll, Core Windows subsystem DLLs

User32.dll, Gdi32.dll

Before we dig into the details of these system components, though, let's examine some basics
about the Windows kernel design, starting with how Windows achieves portability across multiple
hardware architectures.

Portability

Windows was designed to run on a variety of hardware architectures. The initial release of Windows
NT supported the x86 and MIPS architectures. Support for the Digital Equipment Corporation (which
was bought by Compagq, which later merged with Hewlett-Packard) Alpha AXP was added shortly
thereafter. (Although Alpha AXP was a 64-bit processor, Windows NT ran in 32-bit mode. During the
development of Windows 2000, a native 64-bit version was running on Alpha AXP, but this was never
released.) Support for a fourth processor architecture, the Motorola PowerPC, was added in Windows
NT 3.51. Because of changing market demands, however, support for the MIPS and PowerPC
architectures was dropped before development began on Windows 2000. Later, Compaq withdrew
support for the Alpha AXP architecture, resulting in Windows 2000 being supported only on the

x86 architecture. Windows XP and Windows Server 2003 added support for three 64-bit processor
families: the Intel Itanium I1A-64 family, the AMD64 family, and the Intel 64-bit Extension Technology
(EM64T) for x86 (which is compatible with the AMD64 architecture, although there are slight differ-
ences in instructions supported). The latter two processor families are called 64-bit extended systems
and in this book are referred to as x64. (How Windows runs 32-bit applications on 64-bit Windows is
explained in Chapter 3.)

System Architecture 37

38

Windows achieves portability across hardware architectures and platforms in two primary ways:

m Windows has a layered design, with low-level portions of the system that are processor-
architecture-specific or platform-specific isolated into separate modules so that upper layers
of the system can be shielded from the differences between architectures and among hard-
ware platforms. The two key components that provide operating system portability are the
kernel (contained in Ntoskrnl.exe) and the hardware abstraction layer (or HAL, contained in
Hal.dll). Both these components are described in more detail later in this chapter. Functions
that are architecture-specific (such as thread context switching and trap dispatching) are im-
plemented in the kernel. Functions that can differ among systems within the same architecture
(for example, different motherboards) are implemented in the HAL. The only other component
with a significant amount of architecture-specific code is the memory manager, but even that
is a small amount compared to the system as a whole.

m The vast majority of Windows is written in C, with some portions in C++. Assembly language is
used only for those parts of the operating system that need to communicate directly with sys-
tem hardware (such as the interrupt trap handler) or that are extremely performance-sensitive
(such as context switching). Assembly language code exists not only in the kernel and the
HAL but also in a few other places within the core operating system (such as the routines that
implement interlocked instructions as well as one module in the local procedure call facility), in
the kernel-mode part of the Windows subsystem, and even in some user-mode libraries, such
as the process startup code in Ntdll.dll (a system library explained later in this chapter).

Symmetric Multiprocessing

Multitasking is the operating system technique for sharing a single processor among multiple threads
of execution. When a computer has more than one processor, however, it can execute multiple
threads simultaneously. Thus, whereas a multitasking operating system only appears to execute
multiple threads at the same time, a multiprocessing operating system actually does it, executing one
thread on each of its processors.

As mentioned at the beginning of this chapter, one of the key design goals for Windows was that it
had to run well on multiprocessor computer systems. Windows is a symmetric multiprocessing (SMP)
operating system. There is no master processor—the operating system as well as user threads can be
scheduled to run on any processor. Also, all the processors share just one memory space. This model
contrasts with asymmetric multiprocessing (ASMP), in which the operating system typically selects one
processor to execute operating system kernel code while other processors run only user code. The
differences in the two multiprocessing models are illustrated in Figure 2-2.

Windows also supports three modern types of multiprocessor systems: multicore, Hyper-Threading
enabled, and NUMA (non-uniform memory architecture). These are briefly mentioned in the following
paragraphs. (For a complete, detailed description of the scheduling support for these systems, see the
thread scheduling section in Chapter 5, "Processes and Threads".)

Windows Internals, Sixth Edition, Part 1

Symmetric Asymmetric

Processor A \ Processor B Processor A ‘ \ Processor B

Operating User User
system thread thread
User User Operating User
thread thread system thread
User Operating User
thread system thread

>
1/0 devices 1/0 devices

FIGURE 2-2 Symmetric vs. asymmetric multiprocessing

Hyper-Threading is a technology introduced by Intel that provides two logical processors for each
physical core. Each logical processor has its own CPU state, but the execution engine and onboard
cache are shared. This permits one logical CPU to make progress while the other logical CPU is stalled
(such as after a cache miss or branch misprediction). The scheduling algorithms are enhanced to make
optimal use of Hyper-Threading-enabled machines, such as by scheduling threads on an idle physical
processor versus choosing an idle logical processor on a physical processor whose other logical
processors are busy. For more details on thread scheduling, see Chapter 5.

In NUMA systems, processors are grouped in smaller units called nodes. Each node has its own
processors and memory and is connected to the larger system through a cache-coherent intercon-
nect bus. Windows on a NUMA system still runs as an SMP system, in that all processors have access
to all memory—it's just that node-local memory is faster to reference than memory attached to other
nodes. The system attempts to improve performance by scheduling threads on processors that are
in the same node as the memory being used. It attempts to satisfy memory-allocation requests from
within the node, but it will allocate memory from other nodes if necessary.

Naturally, Windows also natively supports multicore systems—because these systems have real
physical cores (simply on the same package), the original SMP code in Windows treats them as
discrete processors, except for certain accounting and identification tasks (such as licensing, described
shortly) that distinguish between cores on the same processor and cores on different sockets.

System Architecture 39

40

Windows was not originally designed with a specific processor number limit in mind, other than
the licensing policies that differentiate the various Windows editions. However, for convenience and
efficiency, Windows does keep track of processors (total number, idle, busy, and other such details)
in a bitmask (sometimes called an daffinity mask) that is the same number of bits as the native data
type of the machine (32-bit or 64-bit), which allows the processor to manipulate bits directly within a
register. Due to this fact, Windows systems were originally limited to the number of CPUs in a native
word, because the affinity mask couldn't arbitrarily be increased. To maintain compatibility, as well as
support larger processor systems, Windows implements a higher-order construct called a processor
group. The processor group is a set of processors that can all be defined by a single affinity bitmask,
and the kernel as well as the applications can choose which group they refer to during affinity
updates. Compatible applications can query the number of supported groups (currently limited to 4)
and then enumerate the bitmask for each group. Meanwhile, legacy applications continue to function
by seeing only their current group. More information on how exactly Windows assigns processors to
groups (which is also related to NUMA) is detailed in Chapter 5.

As mentioned, the actual number of supported licensed processors depends on the edition of
Windows being used. (See Table 2-2 later in this chapter.)) This number is stored in the system license
policy file (\Windows\ServiceProfiles\NetworkService\AppData\Roaming\Microsoft
\SoftwareProtectionPlatform\tokens.dat) as a policy value called “Kernel-RegisteredProcessors.”
(Keep in mind that tampering with that data is a violation of the software license, and modifying
licensing policies to allow the use of more processors involves more than just changing this value.)

Scalability

One of the key issues with multiprocessor systems is scalability. To run correctly on an SMP system,
operating system code must adhere to strict guidelines and rules. Resource contention and other
performance issues are more complicated in multiprocessing systems than in uniprocessor systems
and must be accounted for in the system’s design. Windows incorporates several features that are
crucial to its success as a multiprocessor operating system:

m The ability to run operating system code on any available processor and on multiple
processors at the same time

= Multiple threads of execution within a single process, each of which can execute
simultaneously on different processors

m Fine-grained synchronization within the kernel (such as spinlocks, queued spinlocks, and
pushlocks, described in Chapter 3) as well as within device drivers and server processes, which
allows more components to run concurrently on multiple processors

®m Programming mechanisms such as I/O completion ports (described in Chapter 8, "I/O System,”
in Part 2) that facilitate the efficient implementation of multithreaded server processes that
can scale well on multiprocessor systems

Windows Internals, Sixth Edition, Part 1

The scalability of the Windows kernel has evolved over time. For example, Windows Server 2003
introduced per-CPU scheduling queues, which permit thread scheduling decisions to occur in parallel
on multiple processors. Windows 7 and Windows Server 2008 R2 eliminated global locking on the
scheduling database. This step-wise improvement of the granularity of locking has also occurred in
other areas, such as the memory manager. Further details on multiprocessor synchronization can be
found in Chapter 3.

Differences Between Client and Server Versions

Windows ships in both client and server retail packages. As of this writing, there are six client
versions of Windows 7: Windows 7 Home Basic, Windows 7 Home Premium, Windows 7 Professional,
Windows 7 Ultimate, Windows 7 Enterprise, and Windows 7 Starter.

There are seven different versions of Windows Server 2008 R2: Windows Server 2008 R2
Foundation, Windows Server 2008 R2 Standard, Windows Server 2008 R2 Enterprise, Windows Server
2008 R2 Datacenter, Windows Web Server 2008 R2, Windows HPC Server 2008 R2, and Windows
Server 2008 R2 for Itanium-Based Systems (which is the last release of Windows to support the Intel
Itanium processor).

Additionally, there are “N" versions of the client that do not include Windows Media Player. Finally,
the Standard, Enterprise, and Datacenter editions of Windows Server 2008 R2 also include “with
Hyper-V" editions, which include Hyper-V. (Hyper-V virtualization is discussed in Chapter 3.)

These versions differ by
m The number of processors supported (in terms of sockets, not cores or threads)

m The amount of physical memory supported (actually highest physical address usable for
RAM—see Chapter 10 in Part 2 for more information on physical memory limits)

m The number of concurrent network connections supported (For example, a maximum of 10
concurrent connections are allowed to the file and print services in the client version.)

m Support for Media Center
m Support for Multi-Touch, Aero, and Desktop Compositing

m Support for features such as BitLocker, VHD Booting, AppLocker, Windows XP Compatibility
Mode, and more than 100 other configurable licensing policy values

m Layered services that come with Windows Server editions that don’t come with the client
editions (for example, directory services and clustering)

Table 2-2 lists the differences in memory and processor support for Windows 7 and Windows
Server 2008 R2. For a detailed comparison chart of the different editions of Windows Server 2008 R2,
see www.microsoft.com/windowsserver2008/en/us/r2-compare-specs.aspx.

System Architecture 41

TABLE 2-2 Differences Between Windows 7 and Windows Server 2008 R2

Physical
Number Physical Number Memory
of Sockets Memory of Sockets Supported Physical Memory
Supported Supported Supported (Itanium Supported
(32-Bit Edition) | (32-Bit Edition) | (64-Bit Edition) | Editions) (x64 Editions)
Windows 7 Starter |1 2 GB Not available Not available 2GB
Windows 7 Home 1 4 GB 1 Not available 8 GB
Basic
Windows 7 Home |1 4GB 1 Not available 16 GB
Premium
Windows 7 2 4GB 2 Not available 192 GB
Professional
Windows 7 2 4GB 2 Not available 192 GB
Enterprise
Windows 7 2 4 GB 2 Not available 192 GB
Ultimate
Windows Not available Not available 1 Not available 8 GB
Server 2008 R2
Foundation
Windows Web Not available Not available 4 Not available 32 GB
Server 2008 R2
Windows Server Not available Not available 4 Not available 32 GB
2008 R2 Standard
Windows HPC Not available Not available 4 Not available 128 GB
Server 2008 R2
Windows Server Not available Not available 8 Not available 2048 GB
2008 R2 Enterprise
Windows Not available Not available 64 Not available 2048 GB
Server 2008 R2
Datacenter
Windows Server Not available Not available 64 2048 GB Not available
2008 R2 for
Itanium-Based
Systems

Although there are several client and server retail packages of the Windows operating system, they
share a common set of core system files, including the kernel image, Ntoskrnl.exe (and the PAE ver-
sion, Ntkrnlpa.exe); the HAL libraries; the device drivers; and the base system utilities and DLLs. These
files are identical for all editions of Windows 7 and Windows Server 2008 R2.

With so many different editions of Windows and each having the same kernel image, how does the
system know which edition is booted? By querying the registry values ProductType and ProductSuite
under the HKLM\SYSTEM\CurrentControlSet\Control\ProductOptions key. ProductType is used to
distinguish whether the system is a client system or a server system (of any flavor). These values are

Windows Internals, Sixth Edition, Part 1

loaded into the registry based on the licensing policy file described earlier. The valid values are listed
in Table 2-3. This can be queried from the user-mode GetVersionEx function or from a device driver
using the kernel-mode support function Rt/GetVersion.

TABLE 2-3 ProductType Registry Values

Edition of Windows Value of ProductType
Windows client WinNT

Windows server (domain controller) ‘ LanmanNT

Windows server (server only) ‘ ServerNT

A different registry value, ProductPolicy, contains a cached copy of the data inside the tokens.dat
file, which differentiates between the editions of Windows and the features that they enable.

If user programs need to determine which edition of Windows is running, they can call the
Windows VerifyVersioninfo function, documented in the Windows Software Development Kit (SDK).
Device drivers can call the kernel-mode function Rt/VerifyVersioninfo, documented in the WDK.

So if the core files are essentially the same for the client and server versions, how do the systems
differ in operation? In short, server systems are optimized by default for system throughput as high-
performance application servers, whereas the client version (although it has server capabilities) is
optimized for response time for interactive desktop use. For example, based on the product type,
several resource allocation decisions are made differently at system boot time, such as the size and
number of operating system heaps (or pools), the number of internal system worker threads, and the
size of the system data cache. Also, run-time policy decisions, such as the way the memory manager
trades off system and process memory demands, differ between the server and client editions. Even
some thread scheduling details have different default behavior in the two families (the default length
of the time slice, or thread quantum—see Chapter 5 for details). Where there are significant opera-
tional differences in the two products, these are highlighted in the pertinent chapters throughout the
rest of this book. Unless otherwise noted, everything in this book applies to both the client and server
versions.

EXPERIMENT: Determining Features Enabled by Licensing Policy

As mentioned earlier, Windows supports more than 100 different features that can be enabled
through the software licensing mechanism. These policy settings determine the various differ-
ences not only between a client and server installation, but also between each edition (or SKU)
of the operating system, such as BitLocker support (available on Windows server as well as the
Ultimate and Enterprise editions of Windows client). You can use the SIPolicy tool available from
Winsider Seminars & Solutions (www.winsiderss.com/tools/slpolicy.htm) to display these policy
values on your machine.

System Architecture 43

Policy settings are organized by a facility, which represents the owner module for which the
policy applies. You can display a list of all facilities on your system by running Slpolicy.exe with
the —f switch:

C:\>S1Policy.exe -f

STPolicy v1.05 - Show Software Licensing Policies
Copyright (C) 2008-2011 Winsider Seminars & Solutions Inc.
www.winsiderss.com

Software Licensing Facilities:

Kernel

Licensing and Activation
Core

DWM

SMB

I1S

You can then add the name of any facility after the switch to display the policy value for that
facility. For example, to look at the limitations on CPUs and available memory, use the Kernel
facility. Here's the expected output on a machine running Windows 7 Ultimate:

C:\>STPolicy.exe -f Kernel

STPoTlicy v1.05 - Show Software Licensing Policies
Copyright (C) 2008-2011 Winsider Seminars & Solutions Inc.
www.winsiderss.com

Kernel

Processor Limit: 2

Maximum Memory Allowed (x86): 4096

Maximum Memory Allowed (x64): 196608
Maximum Memory Allowed (IA64): 196608
Maximum Physical Page: 4096

Addition of Physical Memory Allowed: No
Addition of Physical Memory Allowed, if virtualized: Yes
Product Information: 1

Dynamic Partitioning Supported: No

Virtual Dynamic Partitioning Supported: No
Memory Mirroring Supported: No

Native VHD Boot Supported: Yes

Bad Memory List Persistance Supported: No
Number of MUI Languages Allowed: 1000

List of Allowed Languages: EMPTY

List of Disallowed Languages: EMPTY

MUI Language SKU:

Expiration Date: 0

44 Windows Internals, Sixth Edition, Part 1

Checked Build

There is a special debug version of Windows called the checked build (available only with an MSDN
Operating Systems subscription). It is a recompilation of the Windows source code with a compile-
time flag defined called "DBG" (to cause compile-time, conditional debugging and tracing code to
be included). Also, to make it easier to understand the machine code, the post-processing of the
Windows binaries to optimize code layout for faster execution is not performed. (See the section
“Debugging Performance-Optimized Code” in the Debugging Tools for Windows help file.)

The checked build is provided primarily to aid device driver developers because it performs more
stringent error checking on kernel-mode functions called by device drivers or other system code.
For example, if a driver (or some other piece of kernel-mode code) makes an invalid call to a system
function that is checking parameters (such as acquiring a spinlock at the wrong interrupt level), the
system will stop execution when the problem is detected rather than allow some data structure to be
corrupted and the system to possibly crash at a later time.

EXPERIMENT: Determining If You Are Running the Checked Build

There is no built-in tool to display whether you are running the checked build or the retail build
(called the free build). However, this information is available through the "Debug” property of
the Windows Management Instrumentation (WMI) Win32_OperatingSystem class. The following
sample Microsoft Visual Basic script displays this property:

strComputer =
Set objwWMIService = GetObject("winmgmts:" _

& "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")
Set colOperatingSystems = objWMIService.ExecQuery _

("SELECT * FROM Win32_OperatingSystem")

For Each objOperatingSystem in colOperatingSystems

Wscript.Echo "Caption: " & objOperatingSystem.Caption

Wscript.Echo "Debug: " & objOperatingSystem.Debug

Wscript.Echo "Version: " & objOperatingSystem.Version
Next

To try this, type in the preceding script and save it as file. The following is the output from
running the script:
C:\>cscript osversion.vbs

Microsoft (R) Windows Script Host Version 5.8
Copyright (C) Microsoft Corporation. A1l rights reserved.

Caption: Microsoft Windows Server 2008 R2 Enterprise
Debug: False
Version: 6.1.7600

This system is not running the checked build, because the Debug flag shown here says False.

Much of the additional code in the checked-build binaries is a result of using the ASSERT and/or
NT_ASSERT macros, which are defined in the WDK header file Wdm.h and documented in the WDK
documentation. These macros test a condition (such as the validity of a data structure or parameter),

System Architecture

and if the expression evaluates to FALSE, the macros call the kernel-mode function Rt/Assert, which
calls DbgPrintEx to send the text of the debug message to a debug message buffer. If a kernel debug-
ger is attached, this message is displayed automatically followed by a prompt asking the user what

to do about the assertion failure (breakpoint, ignore, terminate process, or terminate thread). If the
system wasn't booted with the kernel debugger (using the debug option in the Boot Configuration
Database—BCD) and no kernel debugger is currently attached, failure of an ASSERT test will bug-
check the system. For a list of ASSERT checks made by some of the kernel support routines, see the
section "Checked Build ASSERTs" in the WDK documentation.

The checked build is also useful for system administrators because of the additional detailed
informational tracing that can be enabled for certain components. (For detailed instructions, see the
Microsoft Knowledge Base Article number 314743, titled HOWTO: Enable Verbose Debug Tracing in
Various Drivers and Subsystems.) This information output is sent to an internal debug message buffer
using the DbgPrintEx function referred to earlier. To view the debug messages, you can either attach a
kernel debugger to the target system (which requires booting the target system in debugging mode),
use the !dbgprint command while performing local kernel debugging, or use the Dbgview.exe tool
from Sysinternals (www.microsoft.com/technet/sysinternals).

You don't have to install the entire checked build to take advantage of the debug version of the
operating system. You can just copy the checked version of the kernel image (Ntoskrnl.exe) and
the appropriate HAL (Hal.dll) to a normal retail installation. The advantage of this approach is that
device drivers and other kernel code get the rigorous checking of the checked build without having
to run the slower debug versions of all components in the system. For detailed instructions on how
to do this, see the section “Installing Just the Checked Operating System and HAL" in the WDK
documentation.

Finally, the checked build can also be useful for testing user-mode code only because the timing of
the system is different. (This is because of the additional checking taking place within the kernel and
the fact that the components are compiled without optimizations.) Often, multithreaded synchroni-
zation bugs are related to specific timing conditions. By running your tests on a system running the
checked build (or at least the checked kernel and HAL), the fact that the timing of the whole system is
different might cause latent timing bugs to surface that do not occur on a normal retail system.

Key System Components

46

Now that we've looked at the high-level architecture of Windows, let’s delve deeper into the internal
structure and the role each key operating system component plays. Figure 2-3 is a more detailed and
complete diagram of the core Windows system architecture and components than was shown earlier
in the chapter (in Figure 2-1). Note that it still does not show all components (networking in particular,
which is explained in Chapter 7, “Networking.”

The following sections elaborate on each major element of this diagram. Chapter 3 explains the
primary control mechanisms the system uses (such as the object manager, interrupts, and so forth).
Chapter 13, “Startup and Shutdown,” in Part 2 describes the process of starting and shutting down

Windows Internals, Sixth Edition, Part 1

Windows, and Chapter 4 details management mechanisms such as the registry, service processes,
and Windows Management Instrumentation. Other chapters explore in even more detail the internal
structure and operation of key areas such as processes and threads, memory management, security,
the I/0 manager, storage management, the cache manager, the Windows file system (NTFS), and

networking.

System Processes

Session
manager

Local session . o .
Services Applications Environment

manager
- Subsystems
Service control
manager E——
Local Security ervice host |Windows|
Authority
- Print spooler User
| Winlogon application SUA
Wininit 1 Windows DLLs Subsystem DLLs Windows DLLs |
Windows DLLs
| NTDLLDLL |
User mode
Kernel mode
System
threads
System Service Dispatcher
(Kernel mode callable interfaces)
Windows
ma'r/]ao o p) o | USER
Xl3-.]130]36 |33yl 3=z|3-|32| 55| e
_ Q Q [T, oo’ O L = o F oA 3
Device 33 28 | 2% |3z8| 23 23 3c |2e8
and file ez |98 |92 |g33]|93 g |laeg |[TE2
. & & 2o |s3<| 8L g« L= 3 o | | Graphics
ystem 2 S A !
drivers =, drivers
Kernel
Hardware abstraction layer (HAL)

Hardware interfaces (buses, 1/0 devices, interrupts,
interval timers, DMA, memory cache control, etc.)

FIGURE 2-3 Windows architecture

System Architecture

48

Environment Subsystems and Subsystem DLLs

The role of an environment subsystem is to expose some subset of the base Windows executive
system services to application programs. Each subsystem can provide access to different subsets of
the native services in Windows. That means that some things can be done from an application built
on one subsystem that can't be done by an application built on another subsystem. For example, a
Windows application can't use the SUA fork function.

Each executable image (.exe) is bound to one and only one subsystem. When an image is run, the
process creation code examines the subsystem type code in the image header so that it can notify the
proper subsystem of the new process. This type code is specified with the /SUBSYSTEM qualifier of the
link command in Microsoft Visual C++.

As mentioned earlier, user applications don't call Windows system services directly. Instead, they
go through one or more subsystem DLLs. These libraries export the documented interface that the
programs linked to that subsystem can call. For example, the Windows subsystem DLLs (such as
Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) implement the Windows API functions. The SUA
subsystem DLL (Psxdll.dll) implements the SUA API functions.

EXPERIMENT: Viewing the Image Subsystem Type

You can see the image subsystem type by using the Dependency Walker tool (Depends.exe)
(available at www.dependencywalker.com). For example, notice the image types for two different
Windows images, Notepad.exe (the simple text editor) and Cmd.exe (the Windows command

prompt):

B Dependency Walker - [notepad.exe] (== ==
B File Edit View Options Profile Window Help AEE
FH B R el HE Sy EEBED N

A [Module [File Time Stamp | Link Time Stamp__| File Size | &ttr. | Link Checksum | Real Checksum | CPU | Subsystem | «

O [msveRTOLL @

[l NOTEPAD EXE 01/ 0 15,040 A 3 000 P

O | WTDLLDLL 01/ 32 | L203792(A Consale

O | oLE3zbLL 01/19/2008 12 01/19/2008 12312 | 1,315,328 | & DODL46AAD | 000146880 |86 | Console

0 | oLEAUT:2DLL 01/19/2008 12362 | 01/19/2008 1231 563,200 | & D:0008FA63 | 0:0008FA63 [x86 [Consale 2
3

O i 1

Far Help, press F1

B Dependency Walker - [cmd exe] (== ==
B File Edit View Options Profile Window Help AEE
FE B R el HE Sy EEBED N
A [Module [File Tirne Stamp [Link Tirne Stamp | File Size | Attr. | Link Checksurn | Real Checksum | CPU__ [Subsystem | =
01/18/2008 12:33a | 01/13/2008 12:27] 1:000C3161 K|
01/19/ [34p 310976 &] 1001015 A8F 5 3
KERMEL32.DLL 01/19/2008 12:34a | 01/13/2008 12:31a] B000EGCE1
O |msverToL 01/19/2008 12:355 | 01/19/2008 12:30 580,449 | DODDAFBAE | DODDAFBAE |x86 | GUI

NTDLL.DLL 01/19/2008 12:38a | 01/19/2008 12:325 | 1203792 | & 0:00135D86 0:00135D86 %86 Console
< i 1

Far Help, press F1

This shows that Notepad is a GUI program, while Cmd is a console, or character-based,
program. And although this implies there are two different subsystems for GUI and character-
based programs, there is just one Windows subsystem, and GUI programs can have consoles,
just like console programs can display GUIs.

Windows Internals, Sixth Edition, Part 1

When an application calls a function in a subsystem DLL, one of three things can occur:

m The function is entirely implemented in user mode inside the subsystem DLL. In other words,
no message is sent to the environment subsystem process, and no Windows executive system
services are called. The function is performed in user mode, and the results are returned
to the caller. Examples of such functions include GetCurrentProcess (which always returns
-1, a value that is defined to refer to the current process in all process-related functions)
and GetCurrentProcessid. (The process ID doesn't change for a running process, so this ID is
retrieved from a cached location, thus avoiding the need to call into the kernel.)

m The function requires one or more calls to the Windows executive. For example, the Windows
ReadFile and WriteFile functions involve calling the underlying internal (and undocumented)
Windows 1/0O system services NtReadFile and NtWriteFile, respectively.

m The function requires some work to be done in the environment subsystem process. (The
environment subsystem processes, running in user mode, are responsible for maintaining the
state of the client applications running under their control.) In this case, a client/server request
is made to the environment subsystem via a message sent to the subsystem to perform some
operation. The subsystem DLL then waits for a reply before returning to the caller.

Some functions can be a combination of the second and third items just listed, such as the
Windows CreateProcess and CreateThread functions.

Subsystem Startup

Subsystems are started by the Session Manager (Smss.exe) process. The subsystem startup
information is stored under the registry key HKLM\SYSTEM\CurrentControlSet\Control
\Session Manager\SubSystems. Figure 2-4 shows the values under this key.

o Registry Editor == EeE|==]

File Edit View Favorites Help

ServiceCurent [Name Type Data
ServiceGrouparder BiDefoult)} REG_SZ mnmmstve
o i::::ph':::;r 8|Debug REG_BXPAND_SZ
Y b AmpCormpatCathe Blkmode REG_EXPAND_SZ \SystemRoot\System32wind2k.sys
Configuration Manager 28 Optional REG_MULTLSZ Posix
DOS Devices Bpesix REG_XPAND_SZ %SystemRootHsystem32ipsos.exe
L) Emironment ¥|Required REGMULTLSZ Debug Windows
{1l Executive 3B)Windows REG_EXPAND_SZ %SystemRostsystem32icstss.exe ObjectDirectory="Windows SharedSection=1024,12...
FileRenameOperations
/O Systemn
Ll kemnel
L)) KnownDLLs

[

Memory Management
Power
Quota Systern

4. SubSysterns

i L CRss

sl wR
SNMP -
ComputeHKEY_LOCAL_MACHINE\SYSTEMMC unrentControlSetyC

9

FIGURE 2-4 Registry Editor showing Windows startup information

The Required value lists the subsystems that load when the system boots. The value has two
strings: Windows and Debug. The Windows value contains the file specification of the Windows
subsystem, Csrss.exe, which stands for Client/Server Run-Time Subsystem. Debug is blank (because
it's used for internal testing) and therefore does nothing. The Optional value indicates that the

System Architecture 49

50

SUA subsystem will be started on demand. The registry value Kmode contains the file name of the
kernel-mode portion of the Windows subsystem, Win32k.sys (explained later in this chapter).

Let's take a closer look at each of the environment subsystems.

Windows Subsystem

Although Windows was designed to support multiple, independent environment subsystems, from
a practical perspective, having each subsystem implement all the code to handle windowing and
display I/O would result in a large amount of duplication of system functions that, ultimately, would
negatively affect both system size and performance. Because Windows was the primary subsystem,
the Windows designers decided to locate these basic functions there and have the other subsystems
call on the Windows subsystem to perform display 1/0. Thus, the SUA subsystem calls services in the
Windows subsystem to perform display 1/O.

As a result of this design decision, the Windows subsystem is a required component for any
Windows system, even on server systems with no interactive users logged in. Because of this, the
process is marked as a critical process (which means if for any reason it exits, the system crashes).

The Windows subsystem consists of the following major components:

m For each session, an instance of the environment subsystem process (Csrss.exe) loads three
DLLs (Basesrv.dll, Winsrv.dll, and Csrsrv.dll) that contain support for the following:

e Creating and deleting processes and threads

e Portions of the support for 16-bit virtual DOS machine (VDM) processes (32-bit Windows
only)

e Side-by-Side (SxS)/Fusion and manifest support

e Other miscellaneous functions—such as GetTempFile, DefineDosDevice, ExitWindowsEx, and
several natural language support functions

m A kernel-mode device driver (Win32k.sys) that contains the following:

e The window manager, which controls window displays; manages screen output; collects
input from keyboard, mouse, and other devices; and passes user messages to applications.

e The Graphics Device Interface (GDI), which is a library of functions for graphics
output devices. It includes functions for line, text, and figure drawing and for graphics
manipulation.

e Wrappers for DirectX support that is implemented in another kernel driver (Dxgkrnl.sys).

m The console host process (Conhost.exe), which provides support for console (character cell)
applications.

m Subsystem DLLs (such as Kernel32.dll, Advapi32.dll, User32.dll, and Gdi32.dll) that translate
documented Windows API functions into the appropriate and mostly undocumented
kernel-mode system service calls in Ntoskrnl.exe and Win32k.sys.

Windows Internals, Sixth Edition, Part 1

m Graphics device drivers for hardware-dependent graphics display drivers, printer drivers, and
video miniport drivers.

Note As part of a refactoring effort in the Windows architecture called MinWin, the
subsystem DLLs are now generally composed of specific libraries that implement AP/
Sets, which are then linked together into the subsystem DLL and resolved using a special
redirection scheme. More information on this refactoring is available in Chapter 5 in the
“Image Loader” section.

Applications call the standard USER functions to create user interface controls, such as windows
and buttons, on the display. The window manager communicates these requests to the GDI, which
passes them to the graphics device drivers, where they are formatted for the display device. A display
driver is paired with a video miniport driver to complete video display support.

The GDI provides a set of standard two-dimensional functions that let applications communicate
with graphics devices without knowing anything about the devices. GDI functions mediate between
applications and graphics devices such as display drivers and printer drivers. The GDI interprets appli-
cation requests for graphic output and sends the requests to graphics display drivers. It also provides
a standard interface for applications to use varying graphics output devices. This interface enables
application code to be independent of the hardware devices and their drivers. The GDI tailors its mes-
sages to the capabilities of the device, often dividing the request into manageable parts. For example,
some devices can understand directions to draw an ellipse; others require the GDI to interpret the
command as a series of pixels placed at certain coordinates. For more information about the graphics
and video driver architecture, see the "Design Guide” section of the “Display (Adapters and Monitors)”
chapter in the Windows Driver Kit.

Because much of the subsystem—in particular, display I/O functionality—runs in kernel mode, only
a few Windows functions result in sending a message to the Windows subsystem process: process
and thread creation and termination, network drive letter mapping, and creation of temporary files.
In general, a running Windows application won't be causing many, if any, context switches to the
Windows subsystem process.

Console Window Host

In the original Windows subsystem design, the subsystem process (Csrss.exe) was responsible
for the managing of console windows and each console application (such as Cmd.exe, the
command prompt) communicated with Csrss. Windows now uses a separate process, the
console window host (Conhost.exe), for each console window on the system. (A single console
window can be shared by multiple console applications, such as when you launch a command
prompt from the command prompt. By default, the second command prompt shares the
console window of the first.)

System Architecture 51

52

Whenever a console application registers itself with the Csrss instance running in the current
session, Csrss creates a new instance of Conhost using the client process’ security token instead
of Csrss’ System token. It then maps a shared memory section that is used to allow all Conhosts
to share part of their memory with Csrss for efficient buffer handling (because these threads do
not live within Csrss anymore) and creates a named Asynchronous Local Procedure Call (ALPC)
port in the \RPC Control object directory. (For more information on ALPC, see Chapter 3.) The
name of the port is of the format console-PID-Ipc-handle, where PID is the process ID of the
Conhost process. It then registers its PID with the kernel process structure associated with
the user application, which can then query this information to open the newly created ALPC
port. This process also creates a mapping of a shared section memory object between the
command-line application and its Conhost so that the two can share data. Finally, a wait event
is created in the session 0 BaseNamedObjects directory (named ConsoleEvent-PID) so that
the command-line application and the Conhost can notify each other of new buffer data. The
following figure shows a Conhost process with handles open to its ALPC port and event.

L Process Explorer - Sysinternals: www.sysinternals.com [dselomen-PCidsclomen] [=B éj
File Options View Process Find Handle Users Help
d =00 xad NN N S N S
Process FID CPU Oycles Delta Description Cormparry Mame [l
B &I System Idle Process 0 8540 6,745.201,140 [
Bl Interrupts nfa 1.03 Hardhware Intermupts
5DPCs nfa 137 Deterred Procedure Calls
5 System 4 103 132,222,470
B[smss.exe avh Windows Session Manager Microsoft Corporation
[psxss.exe 480 SUA Subsystem Server Microsoft Corporation
[csras.exa 420 586.454 Client Server Buntime Process Microsoft Corparation
E [cerss.exe 508 66,605,279 Client Server Runtime Process Microsoft Corporation
B8 conhostexe 2280 Console Window Host Microsoft Corporation -
Type ° MName ILI
Desktop \Default
Directory WKnownDlls
Directory \Sessions\YBaseMNamedObjects
Ewent ‘\BaseMamedObjects\ConsoleEvent-0x00000000000008ES il
Cit A b finel "
CPU Usage: 14.75% Commit Charge: 24.88% Processes: 109 Physical Usage: 38.08%

Because the Conhost is running with the user’s credentials (which also implies the user’s
privilege level), as well as in a process associated with the console application itself, the User
Interface Privilege Isolation (UIPI, described in Chapter 6, “Security”) security mechanism
covers console processes. In addition, CPU-bound console applications can be identified
with their supporting console host process (which a user can kill if needed). As a side effect,
because Conhost processes now run outside the special enclave of the Csrss subsystem, console
applications (whose windows are actually owned by Conhost) can be fully themed, load third-
party DLLs, and run with full windowing capabilities.

Windows Internals, Sixth Edition, Part 1

Subsystem for Unix-based Applications

The Subsystem for UNIX-based Applications (SUA) enables compiling and running custom
UNIX-based applications on a computer running Windows Server or the Enterprise or Ultimate
editions of Windows client. SUA provides nearly 2000 UNIX functions and 300 UNIX-like tools and
utilities. (See http://technet.microsoft.com/en-us/library/cc771470.aspx for more information on SUA.)
For more information on how Windows handles running SUA applications, see the section “Flow of
CreateProcess” in Chapter 5.

Original POSIX Subsystem

POSIX, an acronym loosely defined as “a portable operating system interface based on UNIX,”
refers to a collection of international standards for UNIX-style operating system interfaces. The
POSIX standards encourage vendors implementing UNIX-style interfaces to make them com-
patible so that programmers can move their applications easily from one system to another.

Windows initially implemented only one of the many POSIX standards, POSIX.1, formally
known as ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003.1-1990. This standard was included
primarily to meet U.S. government procurement requirements set in the mid-to-late 1980s that
mandated POSIX.1 compliance as specified in Federal Information Processing Standard (FIPS)
151-2, developed by the National Institute of Standards and Technology. Windows NT 3.5, 3.51,
and 4 were formally tested and certified according to FIPS 151-2.

Because POSIX.1 compliance was a mandatory goal for Windows, the operating system
was designed to ensure that the required base system support was present to allow for the
implementation of a POSIX.1 subsystem (such as the fork function, which is implemented in the
Windows executive, and the support for hard file links in the Windows file system).

Ntdll.dli

NtdlIl.dll is a special system support library primarily for the use of subsystem DLLs. It contains two
types of functions:

m System service dispatch stubs to Windows executive system services
m Internal support functions used by subsystems, subsystem DLLs, and other native images

The first group of functions provides the interface to the Windows executive system services
that can be called from user mode. There are more than 400 such functions, such as NtCreateFile,
NtSetEvent, and so on. As noted earlier, most of the capabilities of these functions are accessible
through the Windows API. (A number are not, however, and are for use only within the operating
system.)

System Architecture 53

For each of these functions, Ntdll contains an entry point with the same name. The code inside
the function contains the architecture-specific instruction that causes a transition into kernel mode
to invoke the system service dispatcher (explained in more detail in Chapter 3), which, after verify-
ing some parameters, calls the actual kernel-mode system service that contains the real code inside
Ntoskrnl.exe.

Ntdll also contains many support functions, such as the image loader (functions that start with Ldr),
the heap manager, and Windows subsystem process communication functions (functions that start
with Csr). Ntdll also includes general run-time library routines (functions that start with Rt/), support
for user-mode debugging (functions that start with DbgUi), and Event Tracing for Windows (functions
starting in Etw), and the user-mode asynchronous procedure call (APC) dispatcher and exception
dispatcher. (APCs and exceptions are explained in Chapter 3.) Finally, you'll find a small subset of the
C Run-Time (CRT) routines in Ntdll, limited to those routines that are part of the string and standard
libraries (such as memcpy, strcpy, itoa, and so on).

Executive

The Windows executive is the upper layer of Ntoskrnl.exe. (The kernel is the lower layer.) The
executive includes the following types of functions:

m Functions that are exported and callable from user mode. These functions are called
system services and are exported via Ntdll. Most of the services are accessible through the
Windows API or the APIs of another environment subsystem. A few services, however, aren't
available through any documented subsystem function. (Examples include ALPC and vari-
ous query functions such as NtQueryinformationProcess, specialized functions such as
NtCreatePagingFile, and so on.)

m Device driver functions that are called through the use of the DeviceloControl function. This
provides a general interface from user mode to kernel mode to call functions in device drivers
that are not associated with a read or write.

®m Functions that can be called only from kernel mode that are exported and are documented in
the WDK.

m Functions that are exported and callable from kernel mode but are not documented in the
WDK (such as the functions called by the boot video driver, which start with Inbv).

m Functions that are defined as global symbols but are not exported. These include internal
support functions called within Ntoskrnl, such as those that start with lop (internal 1/0
manager support functions) or Mi (internal memory management support functions).

m Functions that are internal to a module that are not defined as global symbols.

The executive contains the following major components, each of which is covered in detail in a
subsequent chapter of this book:

m The configuration manager (explained in Chapter 4) is responsible for implementing and
managing the system registry.

54 Windows Internals, Sixth Edition, Part 1

The process manager (explained in Chapter 5) creates and terminates processes and threads.
The underlying support for processes and threads is implemented in the Windows kernel; the
executive adds additional semantics and functions to these lower-level objects.

The security reference monitor (or SRM, described in Chapter 6) enforces security policies
on the local computer. It guards operating system resources, performing run-time object
protection and auditing.

The I/0 manager (explained in Chapter 8 in Part 2) implements device-independent /O and is
responsible for dispatching to the appropriate device drivers for further processing.

The Plug and Play (PnP) manager (explained in Chapter 8 in Part 2) determines which drivers
are required to support a particular device and loads those drivers. It retrieves the hardware
resource requirements for each device during enumeration. Based on the resource require-
ments of each device, the PnP manager assigns the appropriate hardware resources such as
I/O ports, IRQs, DMA channels, and memory locations. It is also responsible for sending proper
event notification for device changes (addition or removal of a device) on the system.

The power manager (explained in Chapter 8 in Part 2) coordinates power events and generates
power management /O notifications to device drivers. When the system is idle, the power
manager can be configured to reduce power consumption by putting the CPU to sleep.
Changes in power consumption by individual devices are handled by device drivers but are
coordinated by the power manager.

The Windows Driver Model Windows Management Instrumentation routines (explained in
Chapter 4) enable device drivers to publish performance and configuration information and
receive commands from the user-mode WMI service. Consumers of WMI information can be
on the local machine or remote across the network.

The cache manager (explained in Chapter 11, “Cache Manager,” in Part 2) improves the
performance of file-based I/O by causing recently referenced disk data to reside in main
memory for quick access (and by deferring disk writes by holding the updates in memory for
a short time before sending them to the disk). As you'll see, it does this by using the memory
manager’s support for mapped files.

The memory manager (explained in Chapter 10 in Part 2) implements virtual memory, a
memory management scheme that provides a large, private address space for each pro-
cess that can exceed available physical memory. The memory manager also provides the
underlying support for the cache manager.

The logical prefetcher and Superfetch (explained in Chapter 10 in Part 2) accelerate system and
process startup by optimizing the loading of data referenced during the startup of the system
or a process.

System Architecture 55

In addition, the executive contains four main groups of support functions that are used by the
executive components just listed. About a third of these support functions are documented in the
WDK because device drivers also use them. These are the four categories of support functions:

m The object manager, which creates, manages, and deletes Windows executive objects and
abstract data types that are used to represent operating system resources such as processes,
threads, and the various synchronization objects. The object manager is explained in
Chapter 3.

m The Advanced LPC facility (ALPC, explained in Chapter 3) passes messages between a client
process and a server process on the same computer. Among other things, ALPC is used as a
local transport for remote procedure call (RPC), an industry-standard communication facility
for client and server processes across a network.

®m A broad set of common run-time library functions, such as string processing, arithmetic
operations, data type conversion, and security structure processing.

m Executive support routines, such as system memory allocation (paged and nonpaged
pool), interlocked memory access, as well as three special types of synchronization objects:
resources, fast mutexes, and pushlocks.

The executive also contains a variety of other infrastructure routines, some of which we will
mention only briefly throughout the book:

m The kernel debugger library, which allows debugging of the kernel from a debugger
supporting KD, a portable protocol supported over a variety of transports (such as USB and
IEEE 1394) and implemented by WinDbg and the Kd.exe utilities.

m The user-mode debugging framework, which is responsible for sending events to the
user-mode debugging API and allowing breakpoints and stepping through code to work, as
well as for changing contexts of running threads.

m The kernel transaction manager, which provides a common, two-phase commit mechanism to
resource managers, such as the transactional registry (TxR) and transactional NTFS (TxF).

m The hypervisor library, part of the Hyper-V stack in Windows Server 2008, provides kernel
support for the virtual machine environment and optimizes certain parts of the code when the
system knows it's running in a client partition (virtual environment).

m The errata manager provides workarounds for nonstandard or noncompliant hardware
devices.

m The Driver Verifier implements optional integrity checks of kernel-mode drivers and code.

m Event Tracing for Windows provides helper routines for systemwide event tracing for
kernel-mode and user-mode components.

m The Windows diagnostic infrastructure enables intelligent tracing of system activity based on
diagnostic scenarios.

56 Windows Internals, Sixth Edition, Part 1

m The Windows hardware error architecture support routines provide a common framework for
reporting hardware errors.

m The file-system runtime library provides common support routines for file system drivers.

Kernel

The kernel consists of a set of functions in Ntoskrnl.exe that provides fundamental mechanisms (such
as thread scheduling and synchronization services) used by the executive components, as well as
low-level hardware architecture—dependent support (such as interrupt and exception dispatching)
that is different on each processor architecture. The kernel code is written primarily in C, with
assembly code reserved for those tasks that require access to specialized processor instructions and
registers not easily accessible from C.

Like the various executive support functions mentioned in the preceding section, a number of
functions in the kernel are documented in the WDK (and can be found by searching for functions
beginning with Ke) because they are needed to implement device drivers.

Kernel Objects

The kernel provides a low-level base of well-defined, predictable operating system primitives and
mechanisms that allow higher-level components of the executive to do what they need to do. The
kernel separates itself from the rest of the executive by implementing operating system mechanisms
and avoiding policy making. It leaves nearly all policy decisions to the executive, with the exception of
thread scheduling and dispatching, which the kernel implements.

Outside the kernel, the executive represents threads and other shareable resources as objects.
These objects require some policy overhead, such as object handles to manipulate them, security
checks to protect them, and resource quotas to be deducted when they are created. This overhead is
eliminated in the kernel, which implements a set of simpler objects, called kernel objects, that help the
kernel control central processing and support the creation of executive objects. Most executive-level
objects encapsulate one or more kernel objects, incorporating their kernel-defined attributes.

One set of kernel objects, called control objects, establishes semantics for controlling various
operating system functions. This set includes the APC object, the deferred procedure call (DPC) object,
and several objects the I/0 manager uses, such as the interrupt object.

Another set of kernel objects, known as dispatcher objects, incorporates synchronization
capabilities that alter or affect thread scheduling. The dispatcher objects include the kernel thread,
mutex (called mutant internally), event, kernel event pair, sesmaphore, timer, and waitable timer. The
executive uses kernel functions to create instances of kernel objects, to manipulate them, and to
construct the more complex objects it provides to user mode. Objects are explained in more detail in
Chapter 3, and processes and threads are described in Chapter 5.

System Architecture 57

~a

il
==

58

Kernel Processor Control Region and Control Block (KPCR and KPRCB)

The kernel uses a data structure called the processor control region, or KPCR, to store
processor-specific data. The KPCR contains basic information such as the processor’s interrupt
dispatch table (IDT), task-state segment (TSS), and global descriptor table (GDT). It also includes the
interrupt controller state, which it shares with other modules, such as the ACPI driver and the HAL. To
provide easy access to the KPCR, the kernel stores a pointer to it in the fs register on 32-bit Windows
and in the gs register on an x64 Windows system. On |A64 systems, the KPCR is always located at
0xe0000000ffff0000.

The KPCR also contains an embedded data structure called the kernel processor control block
(KPRCB). Unlike the KPCR, which is documented for third-party drivers and other internal Windows
kernel components, the KPRCB is a private structure used only by the kernel code in Ntoskrnl.exe. It
contains scheduling information such as the current, next, and idle threads scheduled for execution
on the processor; the dispatcher database for the processor (which includes the ready queues for each
priority level); the DPC queue; CPU vendor and identifier information (model, stepping, speed, feature
bits); CPU and NUMA topology (node information, cores per package, logical processors per core, and
so on); cache sizes; time accounting information (such as the DPC and interrupt time); and more. The
KPRCB also contains all the statistics for the processor, such as I/O statistics, cache manager statistics
(see Chapter 11, "Cache Manager,” in Part 2 for a description of these), DPC statistics, and memory
manager statistics. (See Chapter 10 in Part 2 for more information.) Finally, the KPRCB is sometimes
used to store cache-aligned, per-processor structures to optimize memory access, especially on
NUMA systems. For example, the nonpaged and paged-pool system look-aside lists are stored in
the KPRCB.

EXPERIMENT: Viewing the KPCR and KPRCB

You can view the contents of the KPCR and KPRCB by using the !pcr and !prcb kernel debugger
commands. If you don't include flags, the debugger will display information for CPU 0 by de-
fault; otherwise, you can specify a CPU by adding its number after the command (for example,
Ipcr 2). The following example shows what the output of the /pcr and !prcb commands looks
like. If the system had pending DPCs, those would also be shown.

Tkd> !pcr

KPCR for Processor 0 at 81d09800:

Major 1 Minor 1
NtTib.ExceptionList: 9b31lca3c
NtTib.StackBase: 00000000
NtTib.StackLimit: 00000000
NtTib.SubSystemTib: 80150000
NtTib.Version: 1c47209e
NtTib.UserPointer: 00000001
NtTib.SelfTib: 7ffde000

SelfPcr: 81d09800
Prcb: 81d09920
Irgl: 00000002

IRR: 00000000
IDR: ffffffff

Windows Internals, Sixth Edition, Part 1

InterruptMode: 00000000
IDT: 82fb8400
GDT: 82fb8000
TSS: 80150000

CurrentThread: 86d317e8
NextThread: 00000000
IdleThread: 81d0d640

DpcQueue:

Tkd> !prcb
PRCB for Processor 0 at 81d09920:
Current IRQL -- O
Threads-- Current 86d317e8 Next 00000000 Idle 81d0d640
Number 0 SetMember 1
Interrupt Count -- 294cccel
Times -- Dpc 0002a87f Interrupt 00010b87
Kernel 026270al User 00140e5e

You can use the dt command to directly dump the _KPCR and _KPRCB data structures
because both debugger commands give you the address of the structure (shown in bold for
clarity in the previous output). For example, if you wanted to determine the speed of the
processor, you could look at the MHz field with the following command:

Tkd> dt nt!_KPRCB 81d09920 MHz

+0x3c4 MHz : Oxbb4
Tkd> ? bb4
Evaluate expression: 2996 = 00000bb4

On this machine, the processor was running at about 3 GHz.

Hardware Support

The other major job of the kernel is to abstract or isolate the executive and device drivers from
variations between the hardware architectures supported by Windows. This job includes han-
dling variations in functions such as interrupt handling, exception dispatching, and multiprocessor
synchronization.

Even for these hardware-related functions, the design of the kernel attempts to maximize the
amount of common code. The kernel supports a set of interfaces that are portable and semantically
identical across architectures. Most of the code that implements these portable interfaces is also
identical across architectures.

Some of these interfaces are implemented differently on different architectures or are partially
implemented with architecture-specific code. These architecturally independent interfaces can
be called on any machine, and the semantics of the interface will be the same whether or not the
code varies by architecture. Some kernel interfaces (such as spinlock routines, which are described

System Architecture

59

60

in Chapter 3) are actually implemented in the HAL (described in the next section) because their
implementation can vary for systems within the same architecture family.

The kernel also contains a small amount of code with x86-specific interfaces needed to support
old MS-DOS programs. These x86 interfaces aren’t portable in the sense that they can't be called on a
machine based on any other architecture; they won't be present. This x86-specific code, for example,
supports calls to manipulate global descriptor tables (GDTs) and local descriptor tables (LDTs), which
are hardware features of the x86.

Other examples of architecture-specific code in the kernel include the interfaces to provide
translation buffer and CPU cache support. This support requires different code for the different
architectures because of the way caches are implemented.

Another example is context switching. Although at a high level the same algorithm is used for
thread selection and context switching (the context of the previous thread is saved, the context of
the new thread is loaded, and the new thread is started), there are architectural differences among
the implementations on different processors. Because the context is described by the processor state
(registers and so on), what is saved and loaded varies depending on the architecture.

Hardware Abstraction Layer

As mentioned at the beginning of this chapter, one of the crucial elements of the Windows design is
its portability across a variety of hardware platforms. The hardware abstraction layer (HAL) is a key
part of making this portability possible. The HAL is a loadable kernel-mode module (Hal.dll) that
provides the low-level interface to the hardware platform on which Windows is running. It hides
hardware-dependent details such as I/O interfaces, interrupt controllers, and multiprocessor commu-
nication mechanisms—any functions that are both architecture-specific and machine-dependent.

So rather than access hardware directly, Windows internal components as well as user-written
device drivers maintain portability by calling the HAL routines when they need platform-dependent
information. For this reason, the HAL routines are documented in the WDK. To find out more about
the HAL and its use by device drivers, refer to the WDK.

Although several HALs are included (as shown in Table 2-4), Windows has the ability to detect at
boot-up time which HAL should be used, eliminating the problem that existed on earlier versions of
Windows when attempting to boot a Windows installation on a different kind of system.

TABLE 2-4 List of x86 HALs

HAL File Name Systems Supported

Halacpi.dll Advanced Configuration and Power Interface (ACPI) PCs. Implies uniprocessor-only machine,
without APIC support (the presence of either one would make the system use the HAL below
instead).

Halmacpi.dll Advanced Programmable Interrupt Controller (APIC) PCs with an ACPI. The existence of an
APIC implies SMP support.

Windows Internals, Sixth Edition, Part 1

Note On x64 machines, there is only one HAL image, called Hal.dll. This results from all
x64 machines having the same motherboard configuration, because the processors require
ACPI and APIC support. Therefore, there is no need to support machines without ACPI or
with a standard PIC.

EXPERIMENT: Determining Which HAL You're Running

You can determine which version of the HAL you're running by using WinDbg and opening a
local kernel debugging session. Be sure you have the symbols loaded by entering .reload, and
then typing Im vm hal. For example, the following output is from a system running the ACPI
HAL:

Tkd> Tm vm hal

start end module name

fffff800'0181b000 fffff800'01864000 hal
Loaded symbol image file: halmacpi.dll
Image path: halmacpi.dll
Image name: halmacpi.dl11

(deferred)

Timestamp: Mon Jul 13 21:27:36 2009 (4A5BDF08)
CheckSum: 0004BD36
ImageSize: 00049000

File version:
Product version:
File flags:

File 0S:

File type:

File date:
Translations:
CompanyName:
ProductName:
InternalName:

OriginalFilename:

ProductVersion:
FileVersion:
FileDescription:
LegalCopyright:

6.1.7600.16385

6.1.7600.16385

0 (Mask 3F)

40004 NT Win32

2.0 D11

00000000.00000000

0409.04b0

Microsoft Corporation

Microsoft® Windows® Operating System
haTmacpi.dll

halmacpi.dll

6.1.7600.16385

6.1.7600.16385 (win7_rtm.090713-1255)
Hardware Abstraction Layer DLL

© Microsoft Corporation. All rights reserved.

EXPERIMENT: Viewing NTOSKRNL and HAL Image Dependencies

You can view the relationship of the kernel and HAL images by examining their export and
import tables using the Dependency Walker tool (Depends.exe). To examine an image in the
Dependency Walker, select Open from the File menu to open the desired image file.

System Architecture

61

Here is a sample of output you can see by viewing the dependencies of Ntoskrnl using

this tool:

B2 Dependency Walker - [ntoskrnl.exe] = EoR| ==
B2 File Edit Wiew Options Profile Window Help _ &=
== BY el | B e =L
- O NTOSKRHLEXE i [ordinal * [Hint | Functian [Entry Point

- PSHED.DLL
HaL.DLL
BOOTVID.DLL
KDCOM.DLL 1 UlJ C
CLFS.3YS E Ordinal Hint Function Entry Pc
CLDLL] 110:0001)| 90 (0<0054) | ExAcquireFastiutexnsafe 10008
= 2(0=0002) 93 (0x0 05D} | ExAcquireRundownProtection 0=0008
= 3(0=0003) 94 (0:0 05 E) | ExAcquireRundownProtectionCachefware 0=0007
= 4000043 95 (0D 05F) | ExbcquireRundownProtectionCachefwareEx 00007
[} S{0:0005)| 96 (0x0 060) | ExAcquireRundownProtectionfx 00007 _
— R EOUO{ e R d A s e e e e . e
| Module File Time Starmp Link Tirme Starmp File Size Adtr. Link Checksum Real Checksum CPU Subsystern
1 | BOOTVID.DLL | 01/19/2008 12:41a | 017192008 12:27a 24120 A 0x00006DEY 0x00006DES xB Mative
O | cLoL 01/19/2008 12:43a [01719/2008 12:31a 614,968 | A 0x0008EB80 0x0009EBED xB Mative
O | cLrssvs 01/19/2008 12:42a | 01718/2008 10:28p 247,352 | & 0x00045EFD 0x00045E7D xB6 Native
O [HaLoLL 01/19/2008 12:42a | 01/18/2009 10:27p 177,208 | A m0003859F 0x0003659F xB6 Native
O |Kpcom.DLL 01/19/2008 12:415 | 011972008 12:31a 19,512 | A x000103E9 0000103E9 xB6 Mative
O | NTOSKRNLEXE | 01/19/2008 12:435 | 01¢18/2008 10:30p 3548728 A 00036243 CE 0003648 CE xB6 [Mative
@ [PSHED.DLL 01/19/2008 12:425 | 01/19/2008 12:31a 51,766] A k00 013A45 (00013448 xB6 [Mative
« m r
For Help, press F1

Notice that Ntoskrnl is linked against the HAL, which is in turn linked against Ntoskrnl. (They
both use functions in each other)) Ntoskrnl is also linked to the following binaries:

m Pshed.dll, the Platform-Specific Hardware Error Driver. PSHED provides an abstraction of
the hardware error reporting facilities of the underlying platform by hiding the details
of a platform’s error-handling mechanisms from the operating system and exposing a
consistent interface to the Windows operating system.

m On 32-bit systems only, Bootvid.dll, the Boot Video Driver. Bootvid provides support
for the VGA commands required to display boot text and the boot logo during startup.
On x64 systems, this library is built into the kernel to avoid conflicts with Kernel Patch
Protection (KPP). (See Chapter 3 for more information on KPP and PatchGuard.)

m Kdcom.dll, the Kernel Debugger Protocol (KD) Communications Library.
m Cidll, the code integrity library. (See Chapter 3 for more information on code integrity.)

m Clfs.sys, the common logging file system driver, used by, among other things, the Kernel
Transaction Manager (KTM). (See Chapter 3 for more information on the KTM.)

For a detailed description of the information displayed by this tool, see the Dependency
Walker help file (Depends.hlp).

62 Windows Internals, Sixth Edition, Part 1

Device Drivers

Although device drivers are explained in detail in Chapter 8 in Part 2, this section provides a brief
overview of the types of drivers and explains how to list the drivers installed and loaded on your
system.

Device drivers are loadable kernel-mode modules (typically ending in .sys) that interface between
the 1/0 manager and the relevant hardware. They run in kernel mode in one of three contexts:

® |n the context of the user thread that initiated an 1/0O function
m In the context of a kernel-mode system thread

m Asaresult of an interrupt (and therefore not in the context of any particular process or
thread—whichever process or thread was current when the interrupt occurred)

As stated in the preceding section, device drivers in Windows don’t manipulate hardware directly,
but rather they call functions in the HAL to interface with the hardware. Drivers are typically written
in C (sometimes C++) and therefore, with proper use of HAL routines, can be source-code portable
across the CPU architectures supported by Windows and binary portable within an architecture
family.

There are several types of device drivers:

m Hardware device drivers manipulate hardware (using the HAL) to write output to or retrieve
input from a physical device or network. There are many types of hardware device drivers,
such as bus drivers, human interface drivers, mass storage drivers, and so on.

m File system drivers are Windows drivers that accept file-oriented I/O requests and translate
them into 1/O requests bound for a particular device.

m File system filter drivers, such as those that perform disk mirroring and encryption, intercept
I/Os, and perform some added-value processing before passing the 1/O to the next layer.

m Network redirectors and servers are file system drivers that transmit file system 1/O requests to
a machine on the network and receive such requests, respectively.

®m Protocol drivers implement a networking protocol such as TCP/IP, NetBEUI, and IPX/SPX.

m Kernel streaming filter drivers are chained together to perform signal processing on data
streams, such as recording or displaying audio and video.

Because installing a device driver is the only way to add user-written kernel-mode code to the
system, some programmers have written device drivers simply as a way to access internal operating
system functions or data structures that are not accessible from user mode (but that are documented
and supported in the WDK). For example, many of the utilities from Sysinternals combine a Windows
GUI application and a device driver that is used to gather internal system state and call kernel-mode-
only accessible functions not available from the user-mode Windows API.

System Architecture 63

64

Windows Driver Model (WDM)

Windows 2000 added support for Plug and Play, Power Options, and an extension to the Windows
NT driver model called the Windows Driver Model (WDM). Windows 2000 and later can run legacy
Windows NT 4 drivers, but because these don't support Plug and Play and Power Options, systems
running these drivers will have reduced capabilities in these two areas.

From the WDM perspective, there are three kinds of drivers:

m A bus driver services a bus controller, adapter, bridge, or any device that has child devices. Bus
drivers are required drivers, and Microsoft generally provides them; each type of bus (such as
PCl, PCMCIA, and USB) on a system has one bus driver. Third parties can write bus drivers to
provide support for new buses, such as VMEbus, Multibus, and Futurebus.

m A function driver is the main device driver and provides the operational interface for its device.
It is a required driver unless the device is used raw (an implementation in which 1/O is done by
the bus driver and any bus filter drivers, such as SCSI PassThru). A function driver is by defini-
tion the driver that knows the most about a particular device, and it is usually the only driver
that accesses device-specific registers.

m A filter driver is used to add functionality to a device (or existing driver) or to modify 1/0
requests or responses from other drivers (and is often used to fix hardware that provides
incorrect information about its hardware resource requirements). Filter drivers are optional
and can exist in any number, placed above or below a function driver and above a bus driver.
Usually, system original equipment manufacturers (OEMs) or independent hardware vendors
(IHVs) supply filter drivers.

In the WDM driver environment, no single driver controls all aspects of a device: a bus driver
is concerned with reporting the devices on its bus to the PnP manager, while a function driver
manipulates the device.

In most cases, lower-level filter drivers modify the behavior of device hardware. For example, if
a device reports to its bus driver that it requires 4 /O ports when it actually requires 16 1/O ports,
a lower-level, device-specific function filter driver could intercept the list of hardware resources
reported by the bus driver to the PnP manager and update the count of /O ports.

Upper-level filter drivers usually provide added-value features for a device. For example, an
upper-level device filter driver for a keyboard can enforce additional security checks.

Interrupt processing is explained in Chapter 3. Further details about the I/O manager, WDM, Plug
and Play, and Power Options are included in Chapter 8 in Part 2.

Windows Driver Foundation

The Windows Driver Foundation (WDF) simplifies Windows driver development by providing two
frameworks: the Kernel-Mode Driver Framework (KMDF) and the User-Mode Driver Framework
(UMDF). Developers can use KMDF to write drivers for Windows 2000 SP4 and later, while UMDF
supports Windows XP and later.

Windows Internals, Sixth Edition, Part 1

KMDF provides a simple interface to WDM and hides its complexity from the driver writer without
modifying the underlying bus/function/filter model. KMDF drivers respond to events that they can
register and call into the KMDF library to perform work that isn't specific to the hardware they are
managing, such as generic power management or synchronization. (Previously, each driver had to
implement this on its own.) In some cases, more than 200 lines of WDM code can be replaced by a
single KMDF function call.

UMDF enables certain classes of drivers (mostly USB-based or other high-latency protocol
buses)—such as those for video cameras, MP3 players, cell phones, PDAs, and printers—to be
implemented as user-mode drivers. UMDF runs each user-mode driver in what is essentially a user-
mode service, and it uses ALPC to communicate to a kernel-mode wrapper driver that provides actual
access to hardware. If a UMDF driver crashes, the process dies and usually restarts, so the system
doesn’t become unstable—the device simply becomes unavailable while the service hosting the
driver restarts. Finally, UMDF drivers are written in C++ using COM-like classes and semantics, further
lowering the bar for programmers to write device drivers.

EXPERIMENT: Viewing the Installed Device Drivers

You can list the installed drivers by running Msinfo32. (To launch this, click Start and then type
Msinfo32 and then press Enter.) Under System Summary, expand Software Environment and
open System Drivers. Here's an example output of the list of installed drivers:

& System Infarmation [F=={roE (==
File Edit ‘iew Help
System Summary MNarme Description File Type =
#-Harchware Resources aq Microsoft ACPI Driver ciywind) Y Kernel Driver B
H omponents adp I adpda chwindows\systermn3Xdrivers\adpIdodsys Kernel Driver
- Software Environment adpahdi adpahdi chwindows\system3Adriversiadpahd.sys Kernel Driver
—EEEIEET adpulédm adpuledm chwindows\systermn3Zdriversiadpule0m.sys Kernel Driver
- Signed Drivers adpu3az0 adpu3zo chwindows\system32ydrivers\adpu320.sys Kernel Driver
E:\:{?ngm Variables afd Ancilliary Function D... chwindows\systern32vdriversiafd.sys Kernel Driver
- Network Connections agpa40 Intel AGP Bus Filter chwindows\system3Adrivers\agp440.sys Kernel Driver
- Running Tasks aicT 8 Ella:553 chwindows\systermn32driversidjsvs.sys Kernel Driver
- Loaded Modules alide aliide chwindows\systema2driversialiide.sys Kernel Driver
- Services amdagp AMD AGP Bus Filter ... chwindows\systern32vdriversiamdagp.sys Kernel Driver
- Program Groups amdide amdide chwindows\system3Adriversiamdide sys Kernel Driver
- Startup Programs amdlk? AMD K7 Processor .. chwindows'\system32idriversiamdk?.sys Kernel Driver
- OLE Registration amdka AMD K& Processor ... chwindows\system3ydriversiamdks.sys Kernel Driver
~\Windows Error Reporting || arc arc chwindows\system3Zdriversiarc.sys Kernel Driver
P e — - B U S N | Pt g
[718earch selected category only ["] search category names only

This window displays the list of device drivers defined in the registry, their type, and their
state (Running or Stopped). Device drivers and Windows service processes are both defined in
the same place: HKLM\SYSTEM\CurrentControlSet\Services. However, they are distinguished
by a type code—for example, type 1 is a kernel-mode device driver. (For a complete list of the
information stored in the registry for device drivers, see Table 4-7 in Chapter 4.)

Alternatively, you can list the currently loaded device drivers by selecting the System process
in Process Explorer and opening the DLL view.

System Architecture 65

Peering into Undocumented Interfaces

Examining the names of the exported or global symbols in key system images (such as
Ntoskrnl.exe, Hal.dll, or Ntdll.dll) can be enlightening—you can get an idea of the kinds of
things Windows can do versus what happens to be documented and supported today. Of
course, just because you know the names of these functions doesn't mean that you can or
should call them—the interfaces are undocumented and are subject to change. We suggest
that you look at these functions purely to gain more insight into the kinds of internal functions
Windows performs, not to bypass supported interfaces.

For example, looking at the list of functions in Ntdll.dIl gives you the list of all the system
services that Windows provides to user-mode subsystem DLLs versus the subset that each
subsystem exposes. Although many of these functions map clearly to documented and
supported Windows functions, several are not exposed via the Windows API. (See the article
“Inside the Native API” from Sysinternals.)

Conversely, it's also interesting to examine the imports of Windows subsystem DLLs (such as
Kernel32.dll or Advapi32.dil) and which functions they call in Ntdll.

Another interesting image to dump is Ntoskrnl.exe—although many of the exported
routines that kernel-mode device drivers use are documented in the Windows Driver Kit, quite a
few are not. You might also find it interesting to take a look at the import table for Ntoskrnl and
the HAL; this table shows the list of functions in the HAL that Ntoskrnl uses and vice versa.

Table 2-5 lists most of the commonly used function name prefixes for the executive
components. Each of these major executive components also uses a variation of the prefix to
denote internal functions—either the first letter of the prefix followed by an i (for internal) or
the full prefix followed by a p (for private). For example, Ki represents internal kernel functions,
and Psp refers to internal process support functions.

TABLE 2-5 Commonly Used Prefixes

Prefix Component

Alpc Advanced Local Inter-Process Communication
Cc Common Cache

Cm Configuration manager

Dbgk Debugging Framework for User-Mode

Em Errata Manager

Etw Event Tracing for Windows

Ex Executive support routines

FsRtl File system driver run-time library

66 Windows Internals, Sixth Edition, Part 1

Prefix Component

Hvl Hypervisor Library

lo 1/0 manager

Kd Kernel Debugger

Ke Kernel

Lsa Local Security Authority

Mm Memory manager

Nt NT system services (most of which are exported as Windows functions)

Ob Object manager

Pf Prefetcher

Po Power manager

Pp PnP manager

Ps Process support

Rtl Run-time library

Se Security

Sm Store Manager

Tm Transaction Manager

Vf Verifier

Wdi Windows Diagnostic Infrastructure

Whea Windows Hardware Error Architecture

Wmi Windows Management Instrumentation

Zw Mirror entry point for system services (beginning with Nt) that sets previous
access mode to kernel, which eliminates parameter validation, because Nt
system services validate parameters only if previous access mode is user

You can decipher the names of these exported functions more easily if you understand the
naming convention for Windows system routines. The general format is

<Prefix><Operation><Object>

In this format, Prefix is the internal component that exports the routine, Operation tells what
is being done to the object or resource, and Object identifies what is being operated on.

For example, ExAllocatePoolWithTag is the executive support routine to allocate from a
paged or nonpaged pool. KelnitializeThread is the routine that allocates and sets up a kernel
thread object.

System Architecture

67

68

System Processes

The following system processes appear on every Windows system. (Two of these—Idle and System—
are not full processes because they are not running a user-mode executable.)

m [dle process (contains one thread per CPU to account for idle CPU time)

m System process (contains the majority of the kernel-mode system threads)

m Session manager (Smss.exe)

m Local session manager (Lsm.exe)

® Windows subsystem (Csrss.exe)

m Session O initialization (Wininit.exe)

= Logon process (Winlogon.exe)

m Service control manager (Services.exe) and the child service processes it creates (such as the
system-supplied generic service-host process, Svchost.exe)

m Local security authentication server (Lsass.exe)

To understand the relationship of these processes, it is helpful to view the process “tree"—that is,
the parent/child relationship between processes. Seeing which process created each process helps
to understand where each process comes from. Figure 2-5 is a screen snapshot of the process tree
viewed after taking a Process Monitor boot trace. Using Process Monitor allows you to see processes
that have since exited (indicated by the muted icon).

5 Process Tree - win7-boot2. PML [F=R e ===
[Onlly shows processes still running at end of current trace
Timelines cover displayed events only
Frocess Description Image Fal *
D
(8] Spstem 4] System
£ 5] smss.eve (324) windows Session Manager Cwindoy
& autochk exe [336) uto Check Uity Cwindoy
£ 5 smss.eve 460) windows Session Manager Cwindoy
W carss.ene [454) Client Server Runtime Fracess C\Window
) &) wininit v (500) windows StatUp Application Cwindoy
1] services.exe (540) Services and Controller app Cwindoy
1] swohost exe [816) Host Procsss for Windaws Services C:4window
1] sass.eve (548) Local Secuity Authoriy Frocess € \window
1 lsm.exe (556) Local Session Manager Service T ¥window
1] pwss.exe (560) SUA Subsystem Server Cwindoy
25 smss.eve [568) windows Session Manager Cwindor
] csrss.ene (576) Client Server Runtime Fracess Cwindow
g8 winlogon exe (716) windows Logon Application Cwindaw ~
¥ i v
Description:
Company:
Path: 1de
Command:
User:
PID:] Started: 12/3/2010 5:31:17 PM
[GaToEvent | [Include Process | [Include subtres |

FIGURE 2-5 Initial system process tree

Windows Internals, Sixth Edition, Part 1

The next sections explain the key system processes shown in Figure 2-5. Although these sections
briefly indicate the order of process startup, Chapter 13 in Part 2 contains a detailed description of
the steps involved in booting and starting Windows.

System Idle Process

The first process listed in Figure 2-5 is the system idle process. As we'll explain in Chapter 5, processes
are identified by their image name. However, this process (as well as the process named System)

isn't running a real user-mode image (in that there is no “System Idle Process.exe” in the \Windows
directory). In addition, the name shown for this process differs from utility to utility (because of
implementation details). Table 2-6 lists several of the names given to the Idle process (process ID 0).
The Idle process is explained in detail in Chapter 5.

TABLE 2-6 Names for Process ID 0 in Various Utilities

Utility Name for Process ID 0
Task Manager System Idle Process
Process Status (Pstat.exe) Idle Process

Process Explorer (Procexp.exe) System Idle Process
Task List (Tasklist.exe) System Idle Process
Tlist (Tlist.exe) System Process

Now let’s look at system threads and the purpose of each of the system processes that are running
real images.

System Process and System Threads

The System process (process ID 4) is the home for a special kind of thread that runs only in kernel
mode: a kernel-mode system thread. System threads have all the attributes and contexts of regular
user-mode threads (such as a hardware context, priority, and so on) but are different in that they run
only in kernel-mode executing code loaded in system space, whether that is in Ntoskrnl.exe or in any
other loaded device driver. In addition, system threads don’t have a user process address space and
hence must allocate any dynamic storage from operating system memory heaps, such as a paged or
nonpaged pool.

System threads are created by the PsCreateSystemThread function (documented in the WDK),
which can be called only from kernel mode. Windows, as well as various device drivers, create system
threads during system initialization to perform operations that require thread context, such as issuing
and waiting for 1/Os or other objects or polling a device. For example, the memory manager uses
system threads to implement such functions as writing dirty pages to the page file or mapped files,
swapping processes in and out of memory, and so forth. The kernel creates a system thread called
the balance set manager that wakes up once per second to possibly initiate various scheduling and
memory management related events. The cache manager also uses system threads to implement

System Architecture 69

70

both read-ahead and write-behind I/Os. The file server device driver (Srv2.sys) uses system threads
to respond to network I/O requests for file data on disk partitions shared to the network. Even the
floppy driver has a system thread to poll the floppy device. (Polling is more efficient in this case
because an interrupt-driven floppy driver consumes a large amount of system resources.) Fur-
ther information on specific system threads is included in the chapters in which the component is
described.

By default, system threads are owned by the System process, but a device driver can create a
system thread in any process. For example, the Windows subsystem device driver (Win32k.sys) creates
a system thread inside the Canonical Display Driver (Cdd.dll) part of the Windows subsystem process
(Csrss.exe) so that it can easily access data in the user-mode address space of that process.

When you're troubleshooting or going through a system analysis, it's useful to be able to map the
execution of individual system threads back to the driver or even to the subroutine that contains the
code. For example, on a heavily loaded file server, the System process will likely be consuming con-
siderable CPU time. But the knowledge that when the System process is running that “some system
thread” is running isn't enough to determine which device driver or operating system component is
running.

So if threads in the System process are running, first determine which ones are running (for
example, with the Performance Monitor tool). Once you find the thread (or threads) that is running,
look up in which driver the system thread began execution (which at least tells you which driver
likely created the thread) or examine the call stack (or at least the current address) of the thread in
question, which would indicate where the thread is currently executing.

Both of these techniques are illustrated in the following experiment.

EXPERIMENT: Mapping a System Thread to a Device Driver

In this experiment, we'll see how to map CPU activity in the System process to the responsible
system thread (and the driver it falls in) generating the activity. This is important because when
the System process is running, you must go to the thread granularity to really understand
what's going on. For this experiment, we will generate system thread activity by generating
file server activity on your machine. (The file server driver, Srv2.sys, creates system threads to
handle inbound requests for file 1/0. See Chapter 7 for more information on this component.)

1. Openacommand prompt.

2. Do adirectory listing of your entire C drive using a network path to access your C
drive. For example, if your computer name is COMPUTER1, type dir \\computerl\c$
/s (The /s switch lists all subdirectories.)

3. Run Process Explorer, and double-click on the System process.

Windows Internals, Sixth Edition, Part 1

4. Click on the Threads tab.

5. Sort by the CSwitch Delta (context switch delta) column. You should see one or more
threads in Srv2.sys running, such as the following:

n.] Systern:4 Properties EI
| Image I Performance I Performance Graph | Threads |TCPHP | Security | Enviranment I Stringsl
TID CPU CSwitch Delta | Start Address Il
56 357 srv2.sys!SrvProcWorkerThread
108 101 ntkrnlpa.exe!KeSwapProcessOrStack £
8 79 ntkrnlpa.exe!Phase 1nitialization i
3740 34 stwri.sys+0x9443a
44 27 ntkrnlpa.exe!ExpWorkerThread
104 26 ntkrnlpa.exe!KeBalanceSetManager
43 17 ntkrnlpa.exe!ExpWorkerThread
40 14 ntkrnlpa.exe!ExpWorkerThread
3884 11 ntkrnipa.exe!PfTLoggingWarker
232 11 Ntfs.sys!TxfPrivateThreadworkerR.outine
78 & ntkrnlpa.exe!ExpWorkerThread
112 4 ntkrnipa.exe! CcQueuelazyWriteScanThread
580 3 dugkrnl.sys!VidSchiWorkerThread
a0 3 ntkrnlpa.exe!ExpWorkerThreadBalanceManager
2208 3 btwaudio.sys+0x3226
3116 3 btwavdt.sys+0x 1653
128 3 ntkrnlpa.exe!EtwpLogger
132 3 ntkrnlpa.exe!EtwpLogger
136 3 ntkrnlpa.exe!EtwpLogger
140 3 ntkrnlpa.exe!EtwpLogger
643 1 ntkrnlpa.exe!Etwplogger -
Thread ID: 56 Stack] [Module
Start Time: 345:34PM 27/01/2008
State: Wait:WrQueue Base Priority: 12
Kernel Time: 0:01: 56,595 Dynamic Priority: 13
User Time: 0:00:00,000 10 Priority: nfa
Context Switches: 3,679,972 Memory Priority: nja
Suspend
[OF;] ’ Cancel]

If you see a system thread running and you are not sure what the driver is, click
the Module button, which will bring up the file properties. Clicking the Module
button while highlighting the thread in the Srv2.sys previously shown results in the
following display.

System Architecture

72

o shwdisys Properties (=5

| General I Security| Details | Previous Yersions

Property Walue
Description
File tion Sm

Type System File
File wersion 6.0.6001.15000

Product name Microzoft® Windows® Operating Spstern
Product version 6.0.6001.18000

Copyright 2 Microzoft Corporation. All rights resery...
Size 141 KB

Date modified 1/18/2008 10:29 PM

Language Englizh [United States]

Bemove Properties and Personal nformation

Session Manager (Smss)

The session manager (%SystemRoot%\System32\Smss.exe) is the first user-mode process created in
the system. The kernel-mode system thread that performs the final phase of the initialization of the
executive and kernel creates this process.

When Smss starts, it checks whether it is the first instance (the master Smss) or an instance of itself
that the master Smss launched to create a session. (If command-line arguments are present, it is the
latter.) By creating multiple instances of itself during boot-up and Terminal Services session creation,
Smss can create multiple sessions at the same time (at maximum, four concurrent sessions, plus one
more for each extra CPU beyond one). This ability enhances logon performance on Terminal Server
systems where multiple users connect at the same time. Once a session finishes initializing, the copy
of Smss terminates. As a result, only the initial Smss.exe process remains active. (For a description of
Terminal Services, see the section “Terminal Services and Multiple Sessions” in Chapter 1.)

The master Smss performs the following one-time initialization steps:

1. Marks the process and the initial thread as critical. (If a process or thread marked critical exits
for any reason, Windows crashes. See Chapter 5 for more information.)

2. Increases the process base priority to 11.

3. If the system supports hot processor add, enables automatic processor affinity updates so
that if new processors are added new sessions will take advantage of the new processors.
(For more information about dynamic processor additions, see Chapter 5.)

Windows Internals, Sixth Edition, Part 1

10.

11.

12

13.

14.

15.

16.

17.

Creates named pipes and mailslots used for communication between Smss, Csrss, and Lsm
(described in upcoming paragraphs).

Creates ALPC port to receive commands.

Creates systemwide environment variables as defined in HKLM\SYSTEM\CurrentControlSet
\Control\Session Manager\Environment.

Creates symbolic links for devices defined in HKLM\SYSTEM\CurrentControlSet\Control
\Session Manager\DOS Devices under the \Global?? directory in the Object Manager
namespace.

Creates root \Sessions directory in the Object Manager namespace.

Runs the programs in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager
\BootExecute. (The default is Autochk.exe, which performs a check disk.)

Processes pending file renames as specified in HKLM\SYSTEM\CurrentControlSet\Control
\Session Manager\PendingFileRenameOperations.

Initializes paging file(s).
Initializes the rest of the registry (HKLM Software, SAM, and Security hives).

Runs the programs in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager
\SetupExecute.

Opens known DLLs (HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs)
and maps them as permanent sections (mapped files).

Creates a thread to respond to session create requests.
Creates the Smss to initialize session 0 (noninteractive session).

Creates the Smss to initialize session 1 (interactive session).

Once these steps have been completed, Smss waits forever on the handle to the session 0 instance
of Csrss.exe. Because Csrss is marked as a critical process (see Chapter 5), if Csrss exits, this wait will
never complete because the system will crash.

A session startup instance of Smss does the following:

1.

Calls NtSetSystemInformation with a request to set up kernel-mode session data structures.
This in turn calls the internal memory manager function MmSessionCreate, which sets up the
session virtual address space that will contain the session paged pool and the per-session data
structures allocated by the kernel-mode part of the Windows subsystem (Win32k.sys) and
other session-space device drivers. (See Chapter 10 in Part 2 for more details.)

Creates the subsystem process(es) for the session (by default, the Windows subsystem
Csrss.exe).

Creates an instance of Winlogon (interactive sessions) or Wininit (for session 0). See the
upcoming paragraphs for more information on these two processes.

System Architecture 73

74

Then this intermediate Smss process exits (leaving the subsystem processes and Winlogon or
Wininit as parent-less processes).

Windows Initialization Process (Wininit.exe)

The Wininit.exe process performs the following system initialization functions:

m Marks itself critical so that if it exits prematurely and the system is booted in debugging mode,
it will break into the debugger (if not, the system will crash).

m [nitializes the user-mode scheduling infrastructure.
m Creates the %windir%\temp folder.

m Creates a window station (Winsta0) and two desktops (Winlogon and Default) for processes to
run on in session 0.

m Creates Services.exe (Service Control Manager or SCM). See upcoming paragraphs for a brief
description or Chapter 4 for more details.

m Starts Lsass.exe (Local Security Authentication Subsystem Server). See Chapter 6 for more
information on Lsass.

m Starts Lsm.exe (Local Session Manager). See the upcoming “Local Session Manager (Lsm.exe),”
section for a brief description.

m Waits forever for system shutdown.

Service Control Manager (SCM)

Recall from earlier in the chapter that “services” on Windows can refer either to a server process or to
a device driver. This section deals with services that are user-mode processes. Services are like UNIX
“daemon processes” or VMS “detached processes” in that they can be configured to start automati-
cally at system boot time without requiring an interactive logon. They can also be started manually
(such as by running the Services administrative tool or by calling the Windows StartService function).
Typically, services do not interact with the logged-on user, although there are special conditions when
this is possible. (See Chapter 4.)

The service control manager is a special system process running the image %SystemRoot%
\System32\Services.exe that is responsible for starting, stopping, and interacting with service
processes. Service programs are really just Windows images that call special Windows functions to
interact with the service control manager to perform such actions as registering the service's suc-
cessful startup, responding to status requests, or pausing or shutting down the service. Services are
defined in the registry under HKLM\SYSTEM\CurrentControlSet\Services.

Keep in mind that services have three names: the process name you see running on the system, the
internal name in the registry, and the display name shown in the Services administrative tool. (Not all
services have a display name—if a service doesn't have a display name, the internal name is shown.)
With Windows, services can also have a description field that further details what the service does.

Windows Internals, Sixth Edition, Part 1

To map a service process to the services contained in that process, use the tlist /s or tasklist /svc
command. Note that there isn't always one-to-one mapping between service processes and running
services, however, because some services share a process with other services. In the registry, the type
code indicates whether the service runs in its own process or shares a process with other services in
the image.

A number of Windows components are implemented as services, such as the Print Spooler, Event
Log, Task Scheduler, and various networking components. For more details on services, see Chapter 4.

mﬂ EXPERIMENT: Listing Installed Services

To list the installed services, select Administrative Tools from Control Panel, and then select
Services. You should see output like this:

. Services [=lfE =S

File Action Wiew Help

L 3 EREREAN 7 R N

£ Services (Local) . Senvices {Local)

Print Spooler Name * Description Status StortupType LogOndis =

o i NMsaceessU Strted Automatic Local Syste..

top the senvice p

e e % Office Source Engi.. Saves instal.. Manusl Local Syste..

R 3, Offfine Files The Offline . Disabled Local Syste...
% Performance Logs... Performanc., Manusl Local Senice

Description % Plug and Play Enablesac.. Strted Automatic Local Syste..

:;i‘:“ﬂ;““ to memory for ater £, PnP-XIP Bus Enu.. The PnP-X.. Disabled Local Syste...

is serice ..

fanual

£, Protected Storage

Provides pr.. Started Automatic

i Remote Access A, Creates 3 cou Wanual 4
i Remote Access G Manages di. Disabled

“, Remote Procedur., Serves asth., Started Automatic

J, Remote Procedur., Manages tha, Wanual

7, Remote Registry Enables rem. Disabled Local Service

“J Resultant Set of P... Pravidesa n.. Wanual Local Syste.

%, Routing and Rem... ~ Offers routi, Disabled Local Syste...

%, Secondary Legon Enables star. Disabled Local Syste...

%, Secure Socket Tun... Provides su. Disabled Local Senvice

7, Security Accounts... Thestartup .. Started Manual Local Syste... _

o ['

\ Extended { Standard

To see the detailed properties about a service, right-click on a service and select
Properties. For example, here are the properties for the Print Spooler service (highlighted
in the previous screen shot):

Print Spoaler Properties (Local Computer) (5]

General | Log On | Recover | D |
Service name:

Display name: Print Spooler

Description Loads fles to memary for later printing &

Paif o execulable
C:\Windows!\System 324 spoolsv.exe

Startup type: Automatic hd

Help me confiqure service startup options.

Service status: Started

o= Fers R

You can specily the start parameters that apply when you start the service
from here,

System Architecture 75

76

Notice that the Path To Executable field identifies the program that contains this service.
Remember that some services share a process with other services—mapping isn't always one
to one.

EXPERIMENT: Viewing Service Details Inside Service Processes

Process Explorer highlights processes hosting one service or more. (You can configure this by
selecting the Configure Colors entry in the Options menu.) If you double-click on a service-
hosting process, you will see a Services tab that lists the services inside the process, the name
of the registry key that defines the service, the display name seen by the administrator, the
description text for that service (if present), and for Svchost services, the path to the DLL that
implements the service. For example, listing the services in a Svchost.exe process running under
the System account looks like the following:

8 suchost.exe:360 Properties (== ==
Image | Performance | Performance Graph | Services | Threads | 1cp/1P | Security | Enviranment | Strings |
{%} Services registered in this process
Service Display Mame: Path
Apphdgmt
LanmanServer Server C\wiindowshspstem32hsrvsve. di
MMCSS Mulimedia Class Scheduler C:\windows \system3Zmmess.di
Themes Themes C\windowshspstem32ishsves.di
Winmgt Windows Management Instumentation C:\windowstsystem32nbemtu/Misve. di
Facilitates the running of interactive applications with additional administrative privileges. If this service is
stopped, users will be unable to launch applications with the addtional adminishative privileges they may
require to perform desired user tasks.

Local Session Manager (Lsm.exe)

The Local Session Manager (Lsm.exe) manages the state of terminal server sessions on the local
machine. It sends requests to Smss through the ALPC port SmSsWinStationApiPort to start new
sessions (for example, creating the Csrss and Winlogon processes) such as when a user selects Switch
User from Explorer. Lsm also communicates with Winlogon and Csrss (using a local system RPC). It
notifies Csrss of events such as connect, disconnect, terminate, and broadcast system message. It
receives notification from Winlogon for the following events:

®m Logon and logoff

Windows Internals, Sixth Edition, Part 1

m Shell start and termination
m Connect to a session
m Disconnect from a session

m Lock or unlock desktop

Winlogon, LogonUI, and Userinit

The Windows logon process (%SystemRoot%\System32\Winlogon.exe) handles interactive user logons
and logoffs. Winlogon is notified of a user logon request when the secure attention sequence (SAS)
keystroke combination is entered. The default SAS on Windows is the combination Ctrl+Alt+Delete.
The reason for the SAS is to protect users from password-capture programs that simulate the logon
process, because this keyboard sequence cannot be intercepted by a user-mode application.

The identification and authentication aspects of the logon process are implemented through
DLLs called credential providers. The standard Windows credential providers implement the default
Windows authentication interfaces: password and smartcard. However, developers can provide their
own credential providers to implement other identification and authentication mechanisms in place
of the standard Windows user name/password method (such as one based on a voice print or a
biometric device such as a fingerprint reader). Because Winlogon is a critical system process on which
the system depends, credential providers and the Ul to display the logon dialog box run inside a
child process of Winlogon called LogonUl. When Winlogon detects the SAS, it launches this process,
which initializes the credential providers. Once the user enters her credentials or dismisses the logon
interface, the LogonUI process terminates.

In addition, Winlogon can load additional network provider DLLs that need to perform secondary
authentication. This capability allows multiple network providers to gather identification and
authentication information all at one time during normal logon.

Once the user name and password have been captured, they are sent to the local security
authentication server process (%SystemRoot%\System32\Lsass.exe, described in Chapter 6) to be
authenticated. LSASS calls the appropriate authentication package (implemented as a DLL) to perform
the actual verification, such as checking whether a password matches what is stored in the Active
Directory or the SAM (the part of the registry that contains the definition of the local users and
groups).

Upon a successful authentication, LSASS calls a function in the security reference monitor (for
example, NtCreateToken) to generate an access token object that contains the user’s security profile.
If User Account Control (UAC) is used and the user logging on is a member of the administrators
group or has administrator privileges, LSASS will create a second, restricted version of the token. This
access token is then used by Winlogon to create the initial process(es) in the user’s session. The initial
process(es) are stored in the registry value Userinit under the registry key HKLM\SOFTWARE
\Microsoft\Windows NT\CurrentVersion\Winlogon. (The default is Userinit.exe, but there can be more
than one image in the list.)

System Architecture 77

Userinit performs some initialization of the user environment (such as running the login script and
applying group policies) and then looks in the registry at the Shell value (under the same Winlogon
key referred to previously) and creates a process to run the system-defined shell (by default,
Explorer.exe). Then Userinit exits. This is the reason Explorer.exe is shown with no parent—its parent
has exited, and as explained in Chapter 1, tlist left-justifies processes whose parent isn't running.
(Another way of looking at it is that Explorer is the grandchild of Winlogon.)

Winlogon is active not only during user logon and logoff but also whenever it intercepts
the SAS from the keyboard. For example, when you press Ctrl+Alt+Delete while logged on, the
Windows Security screen comes up, providing the options to log off, start the Task Manager, lock
the workstation, shut down the system, and so forth. Winlogon and LogonUI are the processes that
handle this interaction.

For a complete description of the steps involved in the logon process, see the section “Smss, Csrss,
and Wininit” in Chapter 13 in Part 2. For more details on security authentication, see Chapter 6. For
details on the callable functions that interface with LSASS (the functions that start with Lsa), see the
documentation in the Windows SDK.

Conclusion

78

In this chapter, we've taken a broad look at the overall system architecture of Windows. We've
examined the key components of Windows and seen how they interrelate. In the next chapter, we'll
look in more detail at the core system mechanisms that these components are built on, such as the
object manager and synchronization.

Windows Internals, Sixth Edition, Part 1

System Mechanisms

he Windows operating system provides several base mechanisms that kernel-mode components
such as the executive, the kernel, and device drivers use. This chapter explains the following
system mechanisms and describes how they are used:

m Trap dispatching, including interrupts, deferred procedure calls (DPCs), asynchronous
procedure calls (APCs), exception dispatching, and system service dispatching

m The executive object manager

m Synchronization, including spinlocks, kernel dispatcher objects, how waits are implemented, as
well as user-mode-specific synchronization primitives that avoid trips to kernel mode (unlike
typical dispatcher objects)

m System worker threads

= Miscellaneous mechanisms such as Windows global flags
m Advanced Local Procedure Calls (ALPCs)

m Kernel event tracing

= Wowb64

m User-mode debugging

m Theimage loader

m Hypervisor (Hyper-V)

m Kernel Transaction Manager (KTM)

m Kernel Patch Protection (KPP)

= Code integrity

Trap Dispatching

Interrupts and exceptions are operating system conditions that divert the processor to code outside
the normal flow of control. Either hardware or software can detect them. The term trap refers to a
processor's mechanism for capturing an executing thread when an exception or an interrupt occurs

79

80

and transferring control to a fixed location in the operating system. In Windows, the processor
transfers control to a trap handler, which is a function specific to a particular interrupt or exception.
Figure 3-1 illustrates some of the conditions that activate trap handlers.

The kernel distinguishes between interrupts and exceptions in the following way. An interrupt is
an asynchronous event (one that can occur at any time) that is unrelated to what the processor is
executing. Interrupts are generated primarily by 1/0 devices, processor clocks, or timers, and they can
be enabled (turned on) or disabled (turned off). An exception, in contrast, is a synchronous condition
that usually results from the execution of a particular instruction. (Aborts, such as machine checks,
is a type of processor exception that's typically not associated with instruction execution.) Running
a program a second time with the same data under the same conditions can reproduce exceptions.
Examples of exceptions include memory-access violations, certain debugger instructions, and divide-
by-zero errors. The kernel also regards system service calls as exceptions (although technically they're
system traps).

Trap handlers
——————1,

Interrupt
Interrupt —M8M8M8 service
4| routines

[—1

System
services

System service call ———

Exception

Hardware exceptions __ (Exception Exception
— —
handlers

Software exceptions frame) dispatcher

Virtual memory
Virtual address ——— | manager’s
exceptions pager

FIGURE 3-1 Trap dispatching

Either hardware or software can generate exceptions and interrupts. For example, a bus error
exception is caused by a hardware problem, whereas a divide-by-zero exception is the result of a soft-
ware bug. Likewise, an I/O device can generate an interrupt, or the kernel itself can issue a software
interrupt (such as an APC or DPC, both of which are described later in this chapter).

When a hardware exception or interrupt is generated, the processor records enough machine state
on the kernel stack of the thread that’s interrupted to return to that point in the control flow and
continue execution as if nothing had happened. If the thread was executing in user mode, Windows

Windows Internals, Sixth Edition, Part 1

switches to the thread’s kernel-mode stack. Windows then creates a trap frame on the kernel stack of
the interrupted thread into which it stores the execution state of the thread. The trap frame is a subset
of a thread’s complete context, and you can view its definition by typing dt nt!_ktrap_frame in the
kernel debugger. (Thread context is described in Chapter 5, "Processes and Threads.”) The kernel
handles software interrupts either as part of hardware interrupt handling or synchronously when a
thread invokes kernel functions related to the software interrupt.

In most cases, the kernel installs front-end, trap-handling functions that perform general trap-
handling tasks before and after transferring control to other functions that field the trap. For example,
if the condition was a device interrupt, a kernel hardware interrupt trap handler transfers control to
the interrupt service routine (ISR) that the device driver provided for the interrupting device. If the
condition was caused by a call to a system service, the general system service trap handler transfers
control to the specified system service function in the executive. The kernel also installs trap han-
dlers for traps that it doesn't expect to see or doesn’t handle. These trap handlers typically execute
the system function KeBugCheckEx, which halts the computer when the kernel detects problematic
or incorrect behavior that, if left unchecked, could result in data corruption. (For more information
on bug checks, see Chapter 14, "Crash Dump Analysis,” in Part 2.) The following sections describe
interrupt, exception, and system service dispatching in greater detail.

Interrupt Dispatching

Hardware-generated interrupts typically originate from I/O devices that must notify the processor
when they need service. Interrupt-driven devices allow the operating system to get the maximum
use out of the processor by overlapping central processing with I/O operations. A thread starts an
1/0 transfer to or from a device and then can execute other useful work while the device completes
the transfer. When the device is finished, it interrupts the processor for service. Pointing devices,
printers, keyboards, disk drives, and network cards are generally interrupt driven.

System software can also generate interrupts. For example, the kernel can issue a software
interrupt to initiate thread dispatching and to asynchronously break into the execution of a thread.
The kernel can also disable interrupts so that the processor isn't interrupted, but it does so only
infrequently—at critical moments while it's programming an interrupt controller or dispatching an
exception, for example.

The kernel installs interrupt trap handlers to respond to device interrupts. Interrupt trap handlers
transfer control either to an external routine (the ISR) that handles the interrupt or to an internal
kernel routine that responds to the interrupt. Device drivers supply ISRs to service device interrupts,
and the kernel provides interrupt-handling routines for other types of interrupts.

In the following subsections, you'll find out how the hardware notifies the processor of device
interrupts, the types of interrupts the kernel supports, the way device drivers interact with the kernel
(as a part of interrupt processing), and the software interrupts the kernel recognizes (plus the kernel
objects that are used to implement them).

System Mechanisms 81

82

Hardware Interrupt Processing

On the hardware platforms supported by Windows, external I/O interrupts come into one of the lines
on an interrupt controller. The controller, in turn, interrupts the processor on a single line. Once the
processor is interrupted, it queries the controller to get the interrupt request (IRQ). The interrupt con-
troller translates the IRQ to an interrupt number, uses this number as an index into a structure called
the interrupt dispatch table (IDT), and transfers control to the appropriate interrupt dispatch routine.
At system boot time, Windows fills in the IDT with pointers to the kernel routines that handle each
interrupt and exception.

Windows maps hardware IRQs to interrupt numbers in the IDT, and the system also uses the IDT
to configure trap handlers for exceptions. For example, the x86 and x64 exception number for a page
fault (an exception that occurs when a thread attempts to access a page of virtual memory that isn't
defined or present) is Oxe (14). Thus, entry Oxe in the IDT points to the system'’s page-fault handler.
Although the architectures supported by Windows allow up to 256 IDT entries, the number of IRQs a
particular machine can support is determined by the design of the interrupt controller the machine
uses.

EXPERIMENT: Viewing the IDT

You can view the contents of the IDT, including information on what trap handlers Windows has
assigned to interrupts (including exceptions and IRQs), using the /idt kernel debugger com-
mand. The /idt command with no flags shows simplified output that includes only registered
hardware interrupts (and, on 64-bit machines, the processor trap handlers).

The following example shows what the output of the /idt command looks like:

Tkd> !idt

Dumping IDT:

00: fffff80001a7ec40 nt!KiDivideErrorFault

01: fffff80001a7ed40 nt!KiDebugTrapOrFault

02: fffff80001a7ef00 nt!KiNmiInterrupt Stack = OxFFFFF80001865000
03: fffff80001a7f280 nt!KiBreakpointTrap

04: fffff80001a7f380 nt!KiOverflowTrap

05: fffff80001a7f480 nt!KiBoundFault

06: fffff80001a7f580 nt!KiInvalidOpcodeFault

07: fffff80001a7f7cO0 nt!KiNpxNotAvailableFault

08: fffff80001a7f880 nt!KiDoubleFaultAbort Stack = OxFFFFF80001863000
09: fffff80001a7f940 nt!KiNpxSegmentOverrunAbort

Oa: fffff80001a7fa00 nt!KiInvalidTssFault

Ob: fffff80001a7facO nt!KiSegmentNotPresentFault

Oc: fffff80001a7fc00 nt!KiStackFault

0d: fffff80001a7fd40 nt!KiGeneralProtectionFault

Oe: fffff80001a7fe80 nt!KiPageFault

10: fffff80001a80240 nt!KiFloatingErrorFault

11: fffff80001a803c0 nt!KiAlignmentFault

12: fffff80001a804c0 nt!KiMcheckAbort Stack = OxFFFFF80001867000

Windows Internals, Sixth Edition, Part 1

nt!KiXmmException

nt!KiApcInterrupt

nt!KiRaiseAssertion

nt!KiDebugServiceTrap

nt!KiDpcInterrupt

hal!PicSpuriousService37 (KINTERRUPT fffff8000201c000)
hal!PicSpuriousService37 (KINTERRUPT fffff8000201c0a0)
dxgkrn1!DpiFdoLineInterruptRoutine (KINTERRUPT fffffa80045bab40)
USBPORT !USBPORT_InterruptService (KINTERRUPT fffffa80029f1300)
USBPORT !USBPORT_InterruptService (KINTERRUPT fffffa80029f1540)

USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1240)

ataport!IdePortInterrupt (KINTERRUPT fffffa80029f1d80)
18042prt!18042KeyboardInterruptService (KINTERRUPT

ataport!IdePortInterrupt (KINTERRUPT fffffa80029f1e40)
Vid+0x7918 (KINTERRUPT fffffa80045bacc0)

18042prt!I8042MouselnterruptService (KINTERRUPT fffffa80045bae40)

vmbus !XPartPncIsr (KINTERRUPT fffffa80045bac00)
sdbus!SdbusInterrupt (KINTERRUPT fffffa80029f1180)

rimmpx64+0x9FFC (KINTERRUPT fffffa80029f10c0)
rimspx64+0x7A14 (KINTERRUPT fffffa80029f1000)
rixdpx64+0x9C50 (KINTERRUPT fffffa80045baf00)

USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1480)

HDAudBus!HdaController::Isr (KINTERRUPT fffffa80029f1c00)

13: fffff80001a80840
1f: fffff80001a5ecl0
2c: fffff80001a80a00
2d: fffff80001a80b00
2f: fffff80001acd590
37: fffff8000201c090
3f: fffff8000201c130
51: fffffa80045babd0
52: fffffa80029f1390
62: fffffa80029f15d0
72: fffffa80029f1el0
81: fffffa80045baell
fffffa80045bad80)

82: fffffa80029f1ed0
90: fffffa80045bad50
91: fffffa80045baed0
al: fffffa80045bac90
a2: fffffa80029f1210
a3: fffffa80029f1510
a8: fffffa80029f1bd0
ag: fffffa80029f1b10
aa: fffffa80029f1a50
ab: fffffa800291990
ac: fffffa80029f18d0
ad: fffffa80029f1810
ae: fffffa80029f1750
af: fffffa80029f1690
b0: fffffa80029f1d50
bl: fffffa80029f1f90
b3: fffffa80029f1450
cl: fffff8000201c3b0
dl: fffff8000201c450
d2: fffff8000201c4f0
df: fffff8000201c310
el: fffff80001a8elf0
e2: fffff8000201c270
e3: fffff8000201c1d0
fd: fffff8000201c590
fe: fffff8000201c630

NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1b40)
NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1a80)
NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f19c0)
NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1900)
NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1840)
NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1780)
NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f16c0)
NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1600)
NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1lcc0)
ACPI!ACPIInterruptServiceRoutine (KINTERRUPT fffffa80029f1f00)
USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f13c0)
hal!HalpBroadcastCallService (KINTERRUPT fffff8000201c320)
hal!HalpHpetClockInterrupt (KINTERRUPT fffff8000201c3c0)
hal!HalpHpetRolloverInterrupt (KINTERRUPT fffff8000201c460)
hal!HalpApicRebootService (KINTERRUPT fffff8000201c280)
nt!KiIpilnterrupt

hal!HalpDeferredRecoveryService (KINTERRUPT fffff8000201cle0)
hal!HalpLocalApicErrorService (KINTERRUPT fffff8000201c140)
hal!HalpProfileInterrupt (KINTERRUPT fffff8000201c500)
hal!HalpPerfInterrupt (KINTERRUPT fffff8000201c5a0)

On the system used to provide the output for this experiment, the keyboard device driver's

(18042prt.sys) keyboard ISR is at interrupt number 0x81. You can also see that interrupt Oxe
corresponds to KiPageFault, as explained earlier.

Each processor has a separate IDT so that different processors can run different ISRs, if appropriate.

For example, in a multiprocessor system, each processor receives the clock interrupt, but only one

processor updates the system clock in response to this interrupt. All the processors, however, use the

interrupt to measure thread quantum and to initiate rescheduling when a thread’s quantum ends.

System Mechanisms

83

Similarly, some system configurations might require that a particular processor handle certain device
interrupts.

x86 Interrupt Controllers

Most x86 systems rely on either the i8259A Programmable Interrupt Controller (PIC) or a variant of
the 182489 Advanced Programmable Interrupt Controller (APIC); today's computers include an APIC.
The PIC standard originates with the original IBM PC. The i8259A PIC works only with uniprocessor
systems and has only eight interrupt lines. However, the IBM PC architecture defined the addition of
a second PIC, called the slave, whose interrupts are multiplexed into one of the master PIC's inter-
rupt lines. This provides 15 total interrupts (seven on the master and eight on the slave, multiplexed
through the master’s eighth interrupt line). APICs and Streamlined Advanced Programmable Inter-
rupt Controllers (SAPICs, discussed shortly) work with multiprocessor systems and have 256 interrupt
lines. Intel and other companies have defined the Multiprocessor Specification (MP Specification),

a design standard for x86 multiprocessor systems that centers on the use of APIC. To provide com-
patibility with uniprocessor operating systems and boot code that starts a multiprocessor system

in uniprocessor mode, APICs support a PIC compatibility mode with 15 interrupts and delivery of
interrupts to only the primary processor. Figure 3-2 depicts the APIC architecture.

The APIC actually consists of several components: an 1/0 APIC that receives interrupts from
devices, local APICs that receive interrupts from the I/0O APIC on the bus and that interrupt the CPU
they are associated with, and an i8259A-compatible interrupt controller that translates APIC input into
PIC-equivalent signals. Because there can be multiple 1/0 APICs on the system, motherboards typi-
cally have a piece of core logic that sits between them and the processors. This logic is responsible for
implementing interrupt routing algorithms that both balance the device interrupt load across proces-
sors and attempt to take advantage of locality, delivering device interrupts to the same processor
that has just fielded a previous interrupt of the same type. Software programs can reprogram the 1/0
APICs with a fixed routing algorithm that bypasses this piece of chipset logic. Windows does this by
programming the APICs in an "“interrupt one processor in the following set” routing mode.

CPUO CPU1
Processor Core Processor Core
Local APIC Local APIC
|
|
Device ———] 1/0 elguzi\s/gl';t
interrupts ——— APIC a PIC

FIGURE 3-2 x86 APIC architecture

84 Windows Internals, Sixth Edition, Part 1

x64 Interrupt Controllers

Because the x64 architecture is compatible with x86 operating systems, x64 systems must provide

the same interrupt controllers as the x86. A significant difference, however, is that the x64 versions of

Windows will not run on systems that do not have an APIC because they use the APIC for interrupt
control.

IA64 Interrupt Controllers

The 1A64 architecture relies on the Streamlined Advanced Programmable Interrupt Controller (SAPIC),

which is an evolution of the APIC. Even if load balancing and routing are present in the firmware,
Windows does not take advantage of it; instead, it statically assigns interrupts to processors in a
round-robin manner.

EXPERIMENT: Viewing the PIC and APIC

You can view the configuration of the PIC on a uniprocessor and the current local APIC on a
multiprocessor by using the /pic and /apic kernel debugger commands, respectively. Here's the
output of the /pic command on a uniprocessor. (Note that the /pic command doesn’t work if
your system is using an APIC HAL.)
Tkd> !pic
----- IRQ Number ----- 00 01 02 03 04 05 06 07 08 09 0A OB OC OD OE OF
Physically in service: e e e e
Physically masked: T A 2 2 A 4
Physically requested: e e e e e e
Level Triggered:Y L. LY LY

Here's the output of the !apic command on a system running with an APIC HAL. Note that
during local kernel debugging, this command shows the APIC associated with the current
processor—in other words, whichever processor the debugger’s thread happens to be running
on as you enter the command. When looking at a crash dump or remote system, you can use
the ~(tilde) command followed by the processor number to switch the processor of whose local
APIC you want to see.
Tkd> l'apic

Apic @ fffe0000 ID:0 (50014) LogDesc:01000000 DestFmt:ffffffff TPR 20
TimeCnt: 00000000c1k SpurVec:3f FaultVec:e3 error:0

Ipi Cmd: 01000000'0000002f Vec:2F FixedDel Ph:01000000 edg high
Timer..: 00000000'000300fd Vec:FD FixedDel Dest=Self edg high m
Linti0.: 00000000'0001003f Vec:3F FixedDel Dest=Self edg high m
Lintil.: 00000000'000004ff Vec:FF NMI Dest=Self edg high

TMR: 51-52, 62, A3, Bl, B3

IRR:

ISR::

The various numbers following the Vec labels indicate the associated vector in the IDT with
the given command. For example, in this output, interrupt number OxFD is associated with
the APIC Timer, and interrupt number OxE3 handles APIC errors. Because this experiment was

System Mechanisms

85

run on the same machine as the earlier /idt experiment, you can notice that OxFD is the HAL's
Profiling Interrupt (which uses a timer for profile intervals), and Oxe3 is the HAL's Local APIC
Error Handler, as expected.

The following output is for the l/ioapic command, which displays the configuration of the 1/0
APICs, the interrupt controller components connected to devices:
Tkd> !ioapic

IoApic @ FECO0000 1ID:0 (51) Arb:A951
Inti00.: 0000a951'0000a951 Vec:51 LowestD]l Lg:0000a951 Tvl Tow

Software Interrupt Request Levels (IRQLs)

Although interrupt controllers perform interrupt prioritization, Windows imposes its own interrupt
priority scheme known as interrupt request levels (IRQLs). The kernel represents IRQLs internally as a
number from 0 through 31 on x86 and from 0 to 15 on x64 and 1A64, with higher numbers repre-
senting higher-priority interrupts. Although the kernel defines the standard set of IRQLs for software
interrupts, the HAL maps hardware-interrupt numbers to the IRQLs. Figure 3-3 shows IRQLs defined
for the x86 architecture, and Figure 3-4 shows IRQLs for the x64 and 1A64 architectures.

31 High
30 Power fail
29 Interprocessor interrupt
28 Clock
27 Profile/Synch .
— Hardware interrupts
26 Device n
5| Corrected Machine Check Interrupt
4 :
3 Device 1
2 DPC/dispatch
— Software interrupts
1 APC
0 Passive/Low <— Normal thread execution

FIGURE 3-3 x86 interrupt request levels (IRQLs)
Interrupts are serviced in priority order, and a higher-priority interrupt preempts the servicing of

a lower-priority interrupt. When a high-priority interrupt occurs, the processor saves the interrupted
thread's state and invokes the trap dispatchers associated with the interrupt. The trap dispatcher raises

Windows Internals, Sixth Edition, Part 1

the IRQL and calls the interrupt's service routine. After the service routine executes, the interrupt
dispatcher lowers the processor’s IRQL to where it was before the interrupt occurred and then loads
the saved machine state. The interrupted thread resumes executing where it left off. When the kernel
lowers the IRQL, lower-priority interrupts that were masked might materialize. If this happens, the
kernel repeats the process to handle the new interrupts.

x64 1A64
15 High/Profile High/Profile/Power
14 Interprocessor interrupt/Power Interprocessor interrupt
13 Clock Clock
12 Synch Synch
11 Device n Device n
4 Device 1
3 Device 1 Corrected Machine Check
2 Dispatch/DPC Dispatch/DPC & Synch
1 APC APC
0 Passive/Low Passive/Low

FIGURE 3-4 x64 and IA64 interrupt request levels (IRQLs)

IRQL priority levels have a completely different meaning than thread-scheduling priorities (which
are described in Chapter 5). A scheduling priority is an attribute of a thread, whereas an IRQL is an
attribute of an interrupt source, such as a keyboard or a mouse. In addition, each processor has an
IRQL setting that changes as operating system code executes.

Each processor's IRQL setting determines which interrupts that processor can receive. IRQLs are
also used to synchronize access to kernel-mode data structures. (You'll find out more about synchro-
nization later in this chapter.) As a kernel-mode thread runs, it raises or lowers the processor’s IRQL
either directly by calling KeRaiselrgl and KeLowerlrgl or, more commonly, indirectly via calls to func-
tions that acquire kernel synchronization objects. As Figure 3-5 illustrates, interrupts from a source
with an IRQL above the current level interrupt the processor, whereas interrupts from sources with
IRQLs equal to or below the current level are masked until an executing thread lowers the IRQL.

Because accessing a PIC is a relatively slow operation, HALs that require accessing the I/O bus to
change IRQLs, such as for PIC and 32-bit Advanced Configuration and Power Interface (ACPI) systems,
implement a performance optimization, called lazy IRQL, that avoids PIC accesses. When the IRQL
is raised, the HAL notes the new IRQL internally instead of changing the interrupt mask. If a lower-
priority interrupt subsequently occurs, the HAL sets the interrupt mask to the settings appropriate
for the first interrupt and does not quiesce the lower-priority interrupt until the IRQL is lowered (thus
keeping the interrupt pending). Thus, if no lower-priority interrupts occur while the IRQL is raised, the
HAL doesn’t need to modify the PIC.

System Mechanisms 87

IRQL setting

High
Power fail

Processor A

Inter-processor interrupt
IRQL = Clock
Clock

Profile/Synch

Device n

Interrupts masked on _|
Processor A

cmdal

Processor B

Device 1 y -
IRQL = DPC/dispat
DPC/dispatch __Q /dispatc

APC Interrupts masked on
Processor B

Passive

FIGURE 3-5 Masking interrupts

A kernel-mode thread raises and lowers the IRQL of the processor on which it's running,
depending on what it’s trying to do. For example, when an interrupt occurs, the trap handler (or
perhaps the processor) raises the processor’s IRQL to the assigned IRQL of the interrupt source. This
elevation masks all interrupts at and below that IRQL (on that processor only), which ensures that
the processor servicing the interrupt isn't waylaid by an interrupt at the same level or a lower level.
The masked interrupts are either handled by another processor or held back until the IRQL drops.
Therefore, all components of the system, including the kernel and device drivers, attempt to keep the
IRQL at passive level (sometimes called low level). They do this because device drivers can respond to
hardware interrupts in a timelier manner if the IRQL isn't kept unnecessarily elevated for long periods.

Note An exception to the rule that raising the IRQL blocks interrupts of that level and

lower relates to APC-level interrupts. If a thread raises the IRQL to APC level and then
is rescheduled because of a dispatch/DPC-level interrupt, the system might deliver an
APC-level interrupt to the newly scheduled thread. Thus, APC level can be considered a
thread-local rather than processor-wide IRQL.

ﬂ EXPERIMENT: Viewing the IRQL

You can view a processor’s saved IRQL with the !irqgl debugger command. The saved IRQL
represents the IRQL at the time just before the break-in to the debugger, which raises the IRQL
to a static, meaningless value:

kd> !irql
Debugger saved IRQL for processor 0x0 -- 0 (LOW_LEVEL)

88 Windows Internals, Sixth Edition, Part 1

Note that the IRQL value is saved in two locations. The first, which represents the current
IRQL, is the processor control region (PCR), while its extension, the processor region control
block (PRCB), contains the saved IRQL in the DebuggerSavelrgl field. The PCR and PRCB contain
information about the state of each processor in the system, such as the current IRQL, a pointer
to the hardware IDT, the currently running thread, and the next thread selected to run. The
kernel and the HAL use this information to perform architecture-specific and machine-specific
actions. Portions of the PCR and PRCB structures are defined publicly in the Windows Driver Kit
(WDK) header file Ntddk.h.

You can view the contents of the current processor’s PCR with the kernel debugger by using
the !pcr command. To view the PCR of a specific processor, add the processor’s number after
the command, separated with a space:

Tkd> !pcr 0

KPCR for Processor 0 at fffff80001bfad00:

Major 1 Minor 1
NtTib.ExceptionList: fffff80001853000
NtTib.StackBase: fffff80001854080
NtTib.StackLimit: 000000000026ea28
NtTib.SubSystemTib: fffff80001bfad00
NtTib.Version: 0000000001bfae80
NtTib.UserPointer: fffff80001bfb4f0
NtTib.SelfTib: 000007 fffffdb000

SelfPcr: 0000000000000000

Prcb: fffff80001bfae80

Irgl: 0000000000000000

IRR: 0000000000000000

IDR: 0000000000000000
InterruptMode: 0000000000000000
IDT: 0000000000000000

GDT: 0000000000000000

TSS: 0000000000000000

CurrentThread: fffff80001c08c40
NextThread: 0000000000000000
IdleThread: fffff80001c08c40

DpcQueue:

Because changing a processor's IRQL has such a significant effect on system operation, the
change can be made only in kernel mode—user-mode threads can’t change the processor’s
IRQL. This means that a processor’s IRQL is always at passive level when it's executing user-
mode code. Only when the processor is executing kernel-mode code can the IRQL be higher.

Each interrupt level has a specific purpose. For example, the kernel issues an interprocessor
interrupt (IP1) to request that another processor perform an action, such as dispatching a par-
ticular thread for execution or updating its translation look-aside buffer (TLB) cache. The system
clock generates an interrupt at regular intervals, and the kernel responds by updating the clock
and measuring thread execution time. If a hardware platform supports two clocks, the kernel

System Mechanisms

89

90

adds another clock interrupt level to measure performance. The HAL provides a number of
interrupt levels for use by interrupt-driven devices; the exact number varies with the processor
and system configuration. The kernel uses software interrupts (described later in this chapter) to
initiate thread scheduling and to asynchronously break into a thread’s execution.

Mapping Interrupts to IRQLs

IRQL levels aren’t the same as the interrupt requests (IRQs) defined by interrupt controllers—
the architectures on which Windows runs don't implement the concept of IRQLs in hardware.
So how does Windows determine what IRQL to assign to an interrupt? The answer lies in the
HAL. In Windows, a type of device driver called a bus driver determines the presence of devices
on its bus (PCI, USB, and so on) and what interrupts can be assigned to a device. The bus driver
reports this information to the Plug and Play manager, which decides, after taking into account
the acceptable interrupt assignments for all other devices, which interrupt will be assigned to
each device. Then it calls a Plug and Play interrupt arbiter, which maps interrupts to IRQLs. (The
root arbiter is used on non-ACPI systems, while the ACPI HAL has its own arbiter on ACPI-
compatible systems.)

The algorithm for assignment differs for the various HALs that Windows includes. On ACPI
systems (including x86, x64, and 1A64), the HAL computes the IRQL for a given interrupt by
dividing the interrupt vector assigned to the IRQ by 16. As for selecting an interrupt vector for
the IRQ, this depends on the type of interrupt controller present on the system. On today’s APIC
systems, this number is generated in a round-robin fashion, so there is no computable way to
figure out the IRQ based on the interrupt vector or the IRQL. However, an experiment later in
this section shows how the debugger can query this information from the interrupt arbiter.

Predefined IRQLs
Let's take a closer look at the use of the predefined IRQLs, starting from the highest level shown
in Figure 3-4:

m The kernel uses high level only when it's halting the system in KeBugCheckEx and masking
out all interrupts.

m Power fail level originated in the original Windows NT design documents, which specified
the behavior of system power failure code, but this IRQL has never been used.

m Interprocessor interrupt level is used to request another processor to perform an action,
such as updating the processor’s TLB cache, system shutdown, or system crash.

m Clock level is used for the system’s clock, which the kernel uses to track the time of day as
well as to measure and allot CPU time to threads.

m The system’s real-time clock (or another source, such as the local APIC timer) uses profile
level when kernel profiling (a performance-measurement mechanism) is enabled. When
kernel profiling is active, the kernel's profiling trap handler records the address of the code

Windows Internals, Sixth Edition, Part 1

—a

Sy
==

that was executing when the interrupt occurred. A table of address samples is constructed
over time that tools can extract and analyze. You can obtain Kernrate, a kernel profil-

ing tool that you can use to configure and view profiling-generated statistics, from the
Windows Driver Kit (WDK). See the Kernrate experiment for more information on using
this tool.

m The synchronization IRQL is internally used by the dispatcher and scheduler code to
protect access to global thread scheduling and wait/synchronization code. It is typically
defined as the highest level right after the device IRQLs.

m The device IRQLs are used to prioritize device interrupts. (See the previous section for how
hardware interrupt levels are mapped to IRQLs.)

m The corrected machine check interrupt level is used to signal the operating system after
a serious but corrected hardware condition or error that was reported by the CPU or
firmware through the Machine Check Error (MCE) interface.

m DPC/dispatch-level and APC-level interrupts are software interrupts that the kernel and
device drivers generate. (DPCs and APCs are explained in more detail later in this chapter.)

m The lowest IRQL, passive level, isn't really an interrupt level at all; it's the setting at which
normal thread execution takes place and all interrupts are allowed to occur.

EXPERIMENT: Using Kernel Profiler (Kernrate) to Profile Execution

You can use the Kernel Profiler tool (Kernrate) to enable the system-profiling timer, collect
samples of the code that is executing when the timer fires, and display a summary showing
the frequency distribution across image files and functions. It can be used to track CPU usage
consumed by individual processes and/or time spent in kernel mode independent of processes
(for example, interrupt service routines). Kernel profiling is useful when you want to obtain a
breakdown of where the system is spending time.

In its simplest form, Kernrate samples where time has been spent in each kernel module (for
example, Ntoskrnl, drivers, and so on). For example, after installing the Windows Driver Kit, try
performing the following steps:

1. Openacommand prompt.

2. Type cd C:\WinDDK\7600.16385.1\tools\other (the path to your installation of the
Windows 7/Server 2008R2 WDK).

3. Type dir. (You will see directories for each platform.)

4. Run the image that matches your platform (with no arguments or switches). For
example, i386\kernrate.exe is the image for an x86 system.

System Mechanisms

91

5. While Kernrate is running, perform some other activity on the system. For example,
run Windows Media Player and play some music, run a graphics-intensive game, or
perform network activity such as doing a directory listing of a remote network share.

6. Press Ctrl+C to stop Kernrate. This causes Kernrate to display the statistics from the
sampling period.

In the following sample output from Kernrate, Windows Media Player was running, playing a
recorded movie from disk:

C:\WinDDK\7600.16385.1\too1s\Other\i386>kernrate.exe

/ \

< KERNRATE LOG >

\ /
Date: 2011/03/09 Time: 16:44:24
Machine Name: TEST-LAPTOP

Number of Processors: 2
PROCESSOR_ARCHITECTURE: x86
PROCESSOR_LEVEL: 6

PROCESSOR_REVISION: 0f06

Physical Memory: 3310 MB

Pagefile Total: 7285 MB
Virtual Total: 2047 MB

PageFilel: \??\C:\pagefile.sys, 4100MB
0S Version: 6.1 Build 7601 Service-Pack: 1.0
WinDir: C:\Windows

Kernrate Executable Location: C:\WINDDK\7600.16385.1\TOOLS\OTHER\I386

Kernrate User-Specified Command Line:
kernrate.exe

Kernel Profile (PID = 0): Source= Time,
Using Kernrate Default Rate of 25000 events/hit
Starting to collect profile data

*%%> Press ctrl-c to finish collecting profile data
===> Finished Collecting Data, Starting to Process Results

PO K 0:00:00.000 (0.0%) U 0:00:00.234 (4.7%) I 0:00:04.789 (95.3%)
DPC 0:00:00.000 (0.0%) Interrupt 0:00:00.000 (0.0%)
Interrupts= 9254, Interrupt Rate= 1842/sec.

P1 K 0:00:00.031 (0.6%) U 0:00:00.140 (2.8%) I 0:00:04.851 (96.6%)
DPC 0:00:00.000 (0.0%) Interrupt 0:00:00.000 (0.0%)
Interrupts= 7051, Interrupt Rate= 1404/sec.

TOTAL K 0:00:00.031 (0.3%) U 0:00:00.374 (3.7%) I 0:00:09.640 (96.0%)

DPC 0:00:00.000 (0.0%) Interrupt 0:00:00.000 (0.0%)
Total Interrupts= 16305, Total Interrupt Rate= 3246/sec.

92 Windows Internals, Sixth Edition, Part 1

Total Profile Time = 5023 msec

BytesStart BytesStop BytesDiff.

Available Physical Memory y 1716359168, 1716195328, -163840
Available Pagefile(s) s 5973733376, 5972783104, -950272
Available Virtual y 2122145792, 2122145792, 0
Available Extended Virtual , 0, 0, 0
Committed Memory Bytes s 1665404928, 1666355200, 950272
Non Paged Pool Usage Bytes , 66211840, 66211840, 0
Paged Pool Usage Bytes y 189083648, 189087744, 4096
Paged Pool Available Bytes |, 150593536, 150593536, 0
Free System PTEs y 37322, 37322, 0

Total Avg. Rate
Context Switches s 30152, 6003/sec.
System Calls s 110807, 22059/sec.
Page Faults , 226, 45/sec.
I/0 Read Operations , 730, 145/sec.
I/0 Write Operations , 1038, 207/sec.
I/0 Other Operations , 858, 171/sec.
I/0 Read Bytes , 2013850, 2759/ I/0
I/0 Write Bytes s 28212, 27/ 1/0
I/0 Other Bytes , 19902, 23/ I/0

OutputResults: KernelModuleCount = 167
Percentage in the following table is based on the Total Hits for the Kernel

Time 3814 hits, 25000 events per hit --------

ModuTe Hits msec %Total Events/Sec
NTKRNLPA 3768 5036 98 % 18705321
NVLDDMKM 12 5036 0% 59571
HAL 12 5036 0 % 59571
WIN32K 10 5037 0% 49632
DXGKRNL 9 5036 0 % 44678
NETW4V32 2 5036 0 % 9928
FLTMGR 1 5036 0% 4964
END OF RUN

NORMAL END OF RUN

The overall summary shows that the system spent 0.3 percent of the time in kernel mode,
3.7 percent in user mode, 96.0 percent idle, 0.0 percent at DPC level, and 0.0 percent at inter-
rupt level. The module with the highest hit rate was Ntkrnlpa.exe, the kernel for machines with
Physical Address Extension (PAE) or NX support. The module with the second highest hit rate
was nvlddmkm.sys, the driver for the video card on the machine used for the test. This makes
sense because the major activity going on in the system was Windows Media Player sending
video I/O to the video driver.

System Mechanisms

If you have symbols available, you can zoom in on individual modules and see the time spent
by function name. For example, profiling the system while rapidly dragging a window around
the screen resulted in the following (partial) output:

C:\WinDDK\7600.16385.1\too1s\Other\i386>kernrate.exe -z ntkrnlpa -z win32k
/ \

< KERNRATE LOG >
\ /

Date: 2011/03/09 Time: 16:49:56

Time 4191 hits, 25000 events per hit --------

Module Hits msec %Total Events/Sec
NTKRNLPA 3623 5695 86 % 15904302
WIN32K 303 5696 7% 1329880
INTELPPM 141 5696 3% 618855
HAL 61 5695 1% 267778
CDD 30 5696 0% 131671
NVLDDMKM 13 5696 0% 57057

————— Zoomed module WIN32K.SYS (Bucket size = 16 bytes, Rounding Down) --------

ModuTe Hits msec %Total Events/Sec
B1tLnkReadPat 34 5696 10 % 149227
memmove 21 5696 6 % 92169
vSrcTranCopyS8D32 17 5696 5% 74613
memcpy 12 5696 3% 52668
RGNOBJ: :bMerge 10 5696 3% 43890
HANDLELOCK: : vLockHandTe 8 5696 2 % 35112

————— Zoomed module NTKRNLPA.EXE (Bucket size = 16 bytes, Rounding Down) --------

ModuTe Hits msec %Total Events/Sec
KiIdleLoop 3288 5695 87 % 14433713
READ_REGISTER_USHORT 95 5695 2% 417032
READ_REGISTER_ULONG 93 5695 2% 408252
RtT1Fi11MemoryUTlong 31 5695 0% 136084
KiFastCallEntry 18 5695 0% 79016

The module with the second hit rate was Win32k.sys, the windowing system driver. Also high
on the list were the video driver and Cdd.dll, a global video driver used for the 3D-accelerated
Aero desktop theme. These results make sense because the main activity in the system was
drawing on the screen. Note that in the zoomed display for Win32k.sys, the functions with the
highest hits are related to merging, copying, and moving bits, the main GDI operations for
painting a window dragged on the screen.

One important restriction on code running at DPC/dispatch level or above is that it can't wait
for an object if doing so necessitates the scheduler to select another thread to execute, which is
an illegal operation because the scheduler relies on DPC-level software interrupts to schedule
threads. Another restriction is that only nonpaged memory can be accessed at IRQL DPC/dis-
patch level or higher.

This rule is actually a side effect of the first restriction because attempting to access memory
that isn't resident results in a page fault. When a page fault occurs, the memory manager initi-
ates a disk I/O and then needs to wait for the file system driver to read the page in from disk.

94 Windows Internals, Sixth Edition, Part 1

This wait would, in turn, require the scheduler to perform a context switch (perhaps to the idle
thread if no user thread is waiting to run), thus violating the rule that the scheduler can't be
invoked (because the IRQL is still DPC/dispatch level or higher at the time of the disk read). A
further problem results in the fact that /0 completion typically occurs at APC_LEVEL, so even in
cases where a wait wouldn't be required, the 1/0 would never complete because the completion
APC would not get a chance to run.

If either of these two restrictions is violated, the system crashes with an IRQL_NOT_LESS _
OR_EQUAL or a DRIVER_IRQL_NOT_LESS_OR_EQUAL crash code. (See Chapter 14 in Part 2 for a
thorough discussion of system crashes.) Violating these restrictions is a common bug in device
drivers. The Windows Driver Verifier (explained in the section "Driver Verifier” in Chapter 10,
“Memory Management,” in Part 2) has an option you can set to assist in finding this particular
type of bug.

Interrupt Objects

The kernel provides a portable mechanism—a kernel control object called an interrupt object—
that allows device drivers to register ISRs for their devices. An interrupt object contains all the
information the kernel needs to associate a device ISR with a particular level of interrupt, includ-
ing the address of the ISR, the IRQL at which the device interrupts, and the entry in the kernel's
interrupt dispatch table (IDT) with which the ISR should be associated. When an interrupt object
is initialized, a few instructions of assembly language code, called the dispatch code, are copied
from an interrupt-handling template, KilnterruptTemplate, and stored in the object. When an
interrupt occurs, this code is executed.

This interrupt-object resident code calls the real interrupt dispatcher, which is typically
either the kernel’s KilnterruptDispatch or KiChainedDispatch routine, passing it a pointer to the
interrupt object. KilnterruptDispatch is the routine used for interrupt vectors for which only
one interrupt object is registered, and KiChainedDispatch is for vectors shared among multiple
interrupt objects. The interrupt object contains information that this second dispatcher routine
needs to locate and properly call the ISR the device driver provides.

The interrupt object also stores the IRQL associated with the interrupt so that
KilnterruptDispatch or KiChainedDispatch can raise the IRQL to the correct level before calling
the ISR and then lower the IRQL after the ISR has returned. This two-step process is required
because there’'s no way to pass a pointer to the interrupt object (or any other argument for that
matter) on the initial dispatch because the initial dispatch is done by hardware. On a multipro-
cessor system, the kernel allocates and initializes an interrupt object for each CPU, enabling the
local APIC on that CPU to accept the particular interrupt.

On x64 Windows systems, the kernel optimizes interrupt dispatch by using specific routines that

save processor cycles by omitting functionality that isn't needed, such as KilnterruptDispatchNoLock,

which is used for interrupts that do not have an associated kernel-managed spinlock (typically used
by drivers that want to synchronize with their ISRs), and KilnterruptDispatchNoEOI, which is used for

interrupts that have programmed the APIC in "Auto-End-of-Interrupt” (Auto-EOI) mode—because

System Mechanisms

95

the interrupt controller will send the EOI signal automatically, the kernel does not need to the extra
code to do perform the EOI itself. Finally, for the performance/profiling interrupt specifically, the
KilnterruptDispatchLBControl handler is used, which supports the Last Branch Control MSR available
on modern CPUs. This register enables the kernel to track/save the branch instruction when tracing;
during an interrupt, this information would be lost because it's not stored in the normal thread
register context, so special code must be added to preserve it. The HAL's performance and profiling
interrupts use this functionality, for example, while the other HAL interrupt routines take advantage of
the "no-lock” dispatch code, because the HAL does not require the kernel to synchronize with its ISR.

Another kernel interrupt handler is KiFloatingDispatch, which is used for interrupts that require
saving the floating-point state. Unlike kernel-mode code, which typically is not allowed to use
floating-point (MMX, SSE, 3DNow!) operations because these registers won't be saved across con-
text switches, ISRs might need to use these registers (such as the video card ISR performing a quick
drawing operation). When connecting an interrupt, drivers can set the FloatingSave argument to
TRUE, requesting that the kernel use the floating-point dispatch routine, which will save the floating
registers. (However, this greatly increases interrupt latency.) Note that this is supported only on 32-bit
systems.

Figure 3-6 shows typical interrupt control flow for interrupts associated with interrupt objects.

Peripheral Device 1/0 APIC CPU Local
Controller or PIC APIC/IRQ# Line

n

CPU Interrupt
Dispatch Table

ISR Address e — Read from device
Raise IRQL —

Spinlock

e Grab Spinlocy Acknowledge-
Dispatch — Interrupt

Code Drop Spinlock —
Interrupt Request DPC

Object Lower IRQL _—

KilnterruptDispatch Driver ISR

FIGURE 3-6 Typical interrupt control flow

96 Windows Internals, Sixth Edition, Part 1

»

-

EXPERIMENT: Examining Interrupt Internals

Using the kernel debugger, you can view details of an interrupt object, including its IRQL, ISR
address, and custom interrupt-dispatching code. First, execute the /idt command and locate the
entry that includes a reference to 18042KeyboardinterruptService, the ISR routine for the PS2
keyboard device:

81: fffffa80045bael0 i8042prt!I8042KeyboardInterruptService (KINTERRUPT
fffffa80045bad80)

To view the contents of the interrupt object associated with the interrupt, execute
dt nt!_kinterrupt with the address following KINTERRUPT:

Tkd> dt nt!_KINTERRUPT fffffa80045bad80

+0x000
+0x002

+0x008 InterruptListEntry :

+0x018

Type
Size

ServiceRoutine

1 22

: 160
_LIST_ENTRY [0x00000000'00000000 - 0x0]
: Oxfffff880'0356ca04

i8042prt!I8042KeyboardInterruptService+0

unsigned char

+0x020 MessageServiceRoutine : (null)

+0x028 MessageIndex 0

+0x030 ServiceContext : Oxfffffa80'02c839f0
+0x038 SpinLock : 0

+0x040 TickCount : 0

+0x048 ActuallLock : Oxfffffa80'02c83b50
+0x050 DispatchAddress : Oxfffff800'01a7db90 nt!KiInterruptDispatch+0
+0x058 Vector : 0x81

+0x05¢c Irql : 0x8 "'

+0x05d SynchronizeIrql : Ox9 ''

+0x05e FloatingSave 0"

+0x05f Connected : 0x1 '

+0x060 Number : 0

+0x064 ShareVector 0"’

+0x065 Pad [3;] "

+0x068 Mode
+0x06c Polarity

: 1 (Latched)
: 0 (InterruptPolarityUnknown)

+0x070 ServiceCount 0
+0x074 DispatchCount : 0
+0x078 Rsvdl : 0

: Oxfffff800'0185ab00 _KTRAP_FRAME
: (nul1T)
[4] 0x8d485550

+0x080 TrapFrame
+0x088 Reserved
+0x090 DispatchCode

In this example, the IRQL that Windows assigned to the interrupt is 8. Although there is
no direct mapping between an interrupt vector and an IRQ, Windows does keep track of this
translation when managing device resources through what are called arbiters. For each resource

type, an arbiter maintains the relationship between virtual resource usage (such as an interrupt
vector) and physical resources (such as an interrupt line). As such, you can query either the root

System Mechanisms

97

98

IRQ arbiter (on systems without ACPI) or the ACPI IRQ arbiter and obtain this mapping. Use the
lapciirgarb command to obtain information on the ACPI IRQ arbiter:

Tkd> lacpiirqgarb

Processor 0 (0, 0):
Device Object: 0000000000000000
Current IDT Allocation:

0000000000000081 - 0000000000000081 D fffffa80029b4c20 (i8042prt)
A:0000000000000000 IRQ:0

If you don’t have an ACPI system, you can use /arbiter 4 (4 tells the debugger to display only
IRQ arbiters):

Tkd> !arbiter 4

DEVNODE fffffa80027c6d90 (HTREE\ROOT\O0)
Interrupt Arbiter "RootIRQ" at fffff80001c82500
Allocated ranges:
0000000000000081 - 0000000000000081 Owner fffffa80029b4c20 (i8042prt)

In both cases, you will be given the owner of the vector, in the type of a device object. You
can then use the /devobj command to get information on the i8042prt device in this example
(which corresponds to the PS/2 driver):

Tkd> !'devobj fffffa80029b4c20
Device object (fffffa80029b4c20) is for:
00000061 \Driver\ACPI DriverObject fffffa8002888e70
Current Irp 00000000 RefCount 1 Type 00000032 Flags 00003040
Dacl fffff9al00096a41l DevExt fffffa800299f740 DevObjExt fffffa80029b4d70 DevNode
fffffa80029b54b0
The device object is associated to a device node, which stores all the device's physical
resources.
You can now dump these resources with the !devnode command, and using the 6 flag to ask
for resource information:
Tkd> !devnode fffffa80029b54b0 6
DevNode Oxfffffa80029b54b0 for PDO Oxfffffa80029b4c20
Parent Oxfffffa800299b390 Sibling Oxfffffa80029b5230 Child 0000000000
InstancePath is "ACPI\PNP0303\4&17aa870d&0"
ServiceName is "i8042prt"

CmResourcelList at Oxfffff8a00185bf40 Version 1.1 Interface Oxf Bus #0
Entry 0 - Port (Ox1) Device Exclusive (0x1)
Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE
Range starts at 0x60 for Ox1 bytes
Entry 1 - Port (Ox1) Device Exclusive (0x1)
Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE
Range starts at 0x64 for Ox1 bytes
Entry 2 - Port (0Ox1) Device Exclusive (0x1)
Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE
Range starts at 0x62 for Ox1 bytes

Windows Internals, Sixth Edition, Part 1

Entry 3 - Port (0x1) Device Exclusive (0x1)
Flags (0x11) - PORT_MEMORY PORT_IO 16 _BIT_DECODE
Range starts at 0x66 for O0x1 bytes

Entry 4 - Interrupt (Ox2) Device Exclusive (0x1)
Flags (0x01) - LATCHED
Level 0x1, Vector Ox1, Group 0, Affinity Oxffffffff

The device node tells you that this device has a resource list with 4 entries, one of which is an
interrupt entry corresponding to IRQ 1. (The level and vector numbers represent the IRQ vector,
not the interrupt vector.) IRQ 1 is the traditional PC/AT IRQ number associated with the PS/2
keyboard device, so this is the expected value. (A USB keyboard would have a different inter-
rupt.)

On ACPI systems, you can obtain this information in a slightly easier way by reading the
extended output of the /acpiirgarb command introduced earlier. As part of its output, it displays
the IRQ to IDT mapping table:

Interrupt Controller (Inputs: 0x0-0x17 Dev: 0000000000000000):

(00)Cur:IDT-al Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
(01)Cur:IDT-81 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
(02)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
(03)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
(04)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
(05)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
(06)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
(07)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
(08)Cur:IDT-71 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
(09)Cur:IDT-b1l Ref-1 Tev hi Pos:IDT-00 Ref-0 edg hi
(0a)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
(0b)Cur:IDT-00 Ref-0 edg hi Pos:IDT-00 Ref-0 edg hi
(0c)Cur:IDT-91 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
(0d)Cur:IDT-61 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
(0e)Cur:IDT-82 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
(0f)Cur:IDT-72 Ref-1 edg hi Pos:IDT-00 Ref-0 edg hi
(10)Cur:IDT-51 Ref-3 Tev Tow Pos:IDT-00 Ref-0 edg hi
(11)Cur:IDT-b2 Ref-1 Tev Tow Pos:IDT-00 Ref-0 edg hi
(12)Cur:IDT-a2 Ref-5 Tev Tow Pos:IDT-00 Ref-0 edg hi
(13)Cur:IDT-92 Ref-1 Tev Tow Pos:IDT-00 Ref-0 edg hi
(14)Cur:IDT-62 Ref-2 Tev Tow Pos:IDT-00 Ref-0 edg hi
(15)Cur:IDT-a3 Ref-2 lev Tow Pos:IDT-00 Ref-0 edg hi

(16)Cur:IDT-b3 Ref-1 Tev low Pos:IDT-00 Ref-0 edg hi

(17)Cur:IDT-52 Ref-1 Tev low Pos:IDT-00 Ref-0 edg hi

As expected, IRQ 1 is associated with IDT entry 0x81. For more information on device
objects, resources, and other related concepts, see Chapter 8, “I/O System,” in Part 2.

The ISR’s address for the interrupt object is stored in the ServiceRoutine field (which is what
lidt displays in its output), and the interrupt code that actually executes when an interrupt
occurs is stored in the DispatchCode array at the end of the interrupt object. The interrupt code
stored there is programmed to build the trap frame on the stack and then call the function
stored in the DispatchAddress field (KilnterruptDispatch in the example), passing it a pointer to
the interrupt object.

System Mechanisms

929

Windows and Real-Time Processing

Deadline requirements, either hard or soft, characterize real-time environments. Hard real-time
systems (for example, a nuclear power plant control system) have deadlines the system must
meet to avoid catastrophic failures, such as loss of equipment or life. Soft real-time systems (for
example, a car’s fuel-economy optimization system) have deadlines the system can miss, but
timeliness is still a desirable trait. In real-time systems, computers have sensor input devices and
control output devices. The designer of a real-time computer system must know worst-case
delays between the time an input device generates an interrupt and the time the device's driver
can control the output device to respond. This worst-case analysis must take into account the
delays the operating system introduces as well as the delays the application and device drivers
impose.

Because Windows doesn’t enable controlled prioritization of device IRQs and user-level
applications execute only when a processor's IRQL is at passive level, Windows isn't typi-
cally suitable as a real-time operating system. The system’s devices and device drivers—not
Windows—ultimately determine the worst-case delay. This factor becomes a problem when the
real-time system’s designer uses off-the-shelf hardware. The designer can have difficulty deter-
mining how long every off-the-shelf device’s ISR or DPC might take in the worst case. Even after
testing, the designer can't guarantee that a special case in a live system won't cause the system
to miss an important deadline. Furthermore, the sum of all the delays a system’s DPCs and ISRs
can introduce usually far exceeds the tolerance of a time-sensitive system.

Although many types of embedded systems (for example, printers and automotive
computers) have real-time requirements, Windows Embedded Standard 7 doesn’t have real-
time characteristics. It is simply a version of Windows 7 that makes it possible to produce small-
footprint versions of Windows 7 suitable for running on devices with limited resources. For
example, a device that has no networking capability would omit all the Windows 7 components
related to networking, including network management tools and adapter and protocol stack
device drivers.

Still, there are third-party vendors that supply real-time kernels for Windows. The approach
these vendors take is to embed their real-time kernel in a custom HAL and to have Windows
run as a task in the real-time operating system. The task running Windows serves as the user
interface to the system and has a lower priority than the tasks responsible for managing the
device.

Associating an ISR with a particular level of interrupt is called connecting an interrupt object, and
dissociating an ISR from an IDT entry is called disconnecting an interrupt object. These operations,
accomplished by calling the kernel functions loConnectinterruptEx and loDisconnectinterruptEx, allow
a device driver to "turn on” an ISR when the driver is loaded into the system and to “turn off” the ISR
if the driver is unloaded.

100 Windows Internals, Sixth Edition, Part 1

Using the interrupt object to register an ISR prevents device drivers from fiddling directly with
interrupt hardware (which differs among processor architectures) and from needing to know any
details about the IDT. This kernel feature aids in creating portable device drivers because it eliminates
the need to code in assembly language or to reflect processor differences in device drivers.

Interrupt objects provide other benefits as well. By using the interrupt object, the kernel can
synchronize the execution of the ISR with other parts of a device driver that might share data with the
ISR. (See Chapter 8 in Part 2 for more information about how device drivers respond to interrupts.)

Furthermore, interrupt objects allow the kernel to easily call more than one ISR for any interrupt
level. If multiple device drivers create interrupt objects and connect them to the same IDT entry, the
interrupt dispatcher calls each routine when an interrupt occurs at the specified interrupt line. This
capability allows the kernel to easily support daisy-chain configurations, in which several devices share
the same interrupt line. The chain breaks when one of the ISRs claims ownership for the interrupt by
returning a status to the interrupt dispatcher.

If multiple devices sharing the same interrupt require service at the same time, devices not
acknowledged by their ISRs will interrupt the system again once the interrupt dispatcher has lowered
the IRQL. Chaining is permitted only if all the device drivers wanting to use the same interrupt
indicate to the kernel that they can share the interrupt; if they can't, the Plug and Play manager
reorganizes their interrupt assignments to ensure that it honors the sharing requirements of each. If
the interrupt vector is shared, the interrupt object invokes KiChainedDispatch, which will invoke the
ISRs of each registered interrupt object in turn until one of them claims the interrupt or all have been
executed. In the earlier sample /idt output (in the "EXPERIMENT: Viewing the IDT" section), vector
Oxa2 is connected to several chained interrupt objects. On the system it was run on, it happens to
correspond to an integrated 7-in-1 media card reader, which is a combination of Secure Digital (SD),
Compact Flash (CF), MultiMedia Card (MMC) and other types of readers, each having their individual
interrupt. Because it's packaged as one device by the same vendor, it makes sense that its interrupts
share the same vector.

Line-Based vs. Message Signaled-Based Interrupts

Shared interrupts are often the cause of high interrupt latency and can also cause stability
issues. They are typically undesirable and a side effect of the limited number of physical inter-
rupt lines on a computer. For example, in the previous example of the 7-in-1 media card reader,
a much better solution is for each device to have its own interrupt and for one driver to manage
the different interrupts knowing which device they came from. However, consuming four IRQ
lines for a single device quickly leads to IRQ line exhaustion. Additionally, PCI devices are each
connected to only one IRQ line anyway, so the media card reader cannot use more than one
IRQ in the first place.

Other problems with generating interrupts through an IRQ line is that incorrect
management of the IRQ signal can lead to interrupt storms or other kinds of deadlocks
on the machine, because the signal is driven “high” or “low” until the ISR acknowledges it.
(Furthermore, the interrupt controller must typically receive an EOI signal as well.) If either

System Mechanisms 101

of these does not happen due to a bug, the system can end up in an interrupt state forever,
further interrupts could be masked away, or both. Finally, line-based interrupts provide poor
scalability in multiprocessor environments. In many cases, the hardware has the final decision
as to which processor will be interrupted out of the possible set that the Plug and Play manager
selected for this interrupt, and there is little device drivers can do.

A solution to all these problems is a new interrupt mechanism first introduced in the PCI
2.2 standard called message-signaled interrupts (MSI). Although it remains an optional compo-
nent of the standard that is seldom found in client machines, an increasing number of servers
and workstations implement MSI support, which is fully supported by the all recent versions
of Windows. In the MSI model, a device delivers a message to its driver by writing to a spe-
cific memory address. This action causes an interrupt, and Windows then calls the ISR with
the message content (value) and the address where the message was delivered. A device can
also deliver multiple messages (up to 32) to the memory address, delivering different payloads
based on the event.

Because communication is based across a memory value, and because the content is de-
livered with the interrupt, the need for IRQ lines is removed (making the total system limit of
MSIs equal to the number of interrupt vectors, not IRQ lines), as is the need for a driver ISR to
query the device for data related to the interrupt, decreasing latency. Due to the large number
of device interrupts available through this model, this effectively nullifies any benefit of sharing
interrupts, decreasing latency further by directly delivering the interrupt data to the concerned
ISR.

Finally, MSI-X, an extension to the MSI model, which is introduced in PCI 3.0, adds support
for 32-bit messages (instead of 16-bit), a maximum of 2048 different messages (instead of just
32), and more importantly, the ability to use a different address (which can be dynamically de-
termined) for each of the MSI payloads. Using a different address allows the MSI payload to be
written to a different physical address range that belongs to a different processor, or a different
set of target processors, effectively enabling nonuniform memory access (NUMA)-aware inter-
rupt delivery by sending the interrupt to the processor that initiated the related device request.
This improves latency and scalability by monitoring both load and closest NUMA node during
interrupt completion.

Interrupt Affinity and Priority

On systems that both support ACPI and contain an APIC, Windows enables driver developers
and administrators to somewhat control the processor affinity (selecting the processor or group
of processors that receives the interrupt) and affinity policy (selecting how processors will be
chosen and which processors in a group will be chosen). Furthermore, it enables a primitive

102 Windows Internals, Sixth Edition, Part 1

mechanism of interrupt prioritization based on IRQL selection. Affinity policy is defined
according to Table 3-1, and it's configurable through a registry value called InterruptPolicyValue
in the Interrupt Management\Affinity Policy key under the device’s instance key in the registry.
Because of this, it does not require any code to configure—an administrator can add this
value to a given driver's key to influence its behavior. Microsoft provides such a tool, called the
Interrupt Affinity policy Tool, which can be downloaded from http://www.microsoft.com/whdc

/system/sysperf/intpolicy.mspx.

TABLE 3-1 IRQ Affinity Policies

Policy
IrgPolicyMachineDefault

IrgPolicyAllCloseProcessors

IrgPolicyOneCloseProcessor

IrgPolicyAllProcessorsinMachine

IrgPolicySpecifiedProcessors

IrgPolicySpreadMessagesAcrossAllProcessors

Meaning

The device does not require a particular affinity policy.
Windows uses the default machine policy, which (for machines
with less than eight logical processors) is to select any avail-
able processor on the machine.

On a NUMA machjne, the Plug and Play manager assigns the
interrupt to all the processors that are close to the device (on
the same node). On non-NUMA machines, this is the same as
IrgPolicyAllProcessorsinMachine.

On a NUMA machjne, the Plug and Play manager assigns the
interrupt to one processor that is close to the device (on the

same node). On non-NUMA machines, the chosen processor
will be any available on the system.

The interrupt is processed by any available processor on the
machine.

The interrupt is processed only by one of the pro-
cessors specified in the affinity mask under the
AssignmentSetOverride registry value.

Different message-signaled interrupts are distributed across
an optimal set of eligible processors, keeping track of NUMA
topology issues, if possible. This requires MSI-X support on
the device and platform.

Other than setting this affinity policy, another registry value can also be used to set the
interrupt'’s priority, based on the values in Table 3-2.

TABLE 3-2 |IRQ Priorities

Priority Meaning

IrgPriorityUndefined No particular priority is required by the device. It receives the default priority
(IrgPriorityNormal).

IrgPriorityLow The device can tolerate high latency and should receive a lower IRQL than usual.

IrgPriorityNormal The device expects average latency. It receives the default IRQL associated with

its interrupt vector.

IrgPriorityHigh The device requires as little latency as possible. It receives an elevated IRQL

beyond its normal assignment.

System Mechanisms

As discussed earlier, it is important to note that Windows is not a real-time operating
system, and as such, these IRQ priorities are hints given to the system that control only the
IRQL associated with the interrupt and provide no extra priority other than the Windows
IRQL priority-scheme mechanism. Because the IRQ priority is also stored in the registry,
administrators are free to set these values for drivers should there be a requirement of lower
latency for a driver not taking advantage of this feature.

Software Interrupts

Although hardware generates most interrupts, the Windows kernel also generates software interrupts
for a variety of tasks, including these:

m Initiating thread dispatching

m Non-time-critical interrupt processing

= Handling timer expiration

= Asynchronously executing a procedure in the context of a particular thread
m Supporting asynchronous I/O operations

These tasks are described in the following subsections.

Dispatch or Deferred Procedure Call (DPC) Interrupts When a thread can no longer continue
executing, perhaps because it has terminated or because it voluntarily enters a wait state, the kernel
calls the dispatcher directly to effect an immediate context switch. Sometimes, however, the kernel
detects that rescheduling should occur when it is deep within many layers of code. In this situation,
the kernel requests dispatching but defers its occurrence until it completes its current activity. Using a
DPC software interrupt is a convenient way to achieve this delay.

The kernel always raises the processor’s IRQL to DPC/dispatch level or above when it needs to
synchronize access to shared kernel structures. This disables additional software interrupts and thread
dispatching. When the kernel detects that dispatching should occur, it requests a DPC/dispatch-level
interrupt; but because the IRQL is at or above that level, the processor holds the interrupt in check.
When the kernel completes its current activity, it sees that it's going to lower the IRQL below
DPC/dispatch level and checks to see whether any dispatch interrupts are pending. If there are, the
IRQL drops to DPC/dispatch level and the dispatch interrupts are processed. Activating the thread dis-
patcher by using a software interrupt is a way to defer dispatching until conditions are right. However,
Windows uses software interrupts to defer other types of processing as well.

104 Windows Internals, Sixth Edition, Part 1

In addition to thread dispatching, the kernel also processes deferred procedure calls (DPCs) at this
IRQL. A DPC is a function that performs a system task—a task that is less time-critical than the current
one. The functions are called deferred because they might not execute immediately.

DPCs provide the operating system with the capability to generate an interrupt and execute a
system function in kernel mode. The kernel uses DPCs to process timer expiration (and release threads
waiting for the timers) and to reschedule the processor after a thread’s quantum expires. Device
drivers use DPCs to process interrupts. To provide timely service for hardware interrupts, Windows—
with the cooperation of device drivers—attempts to keep the IRQL below device IRQL levels. One way
that this goal is achieved is for device driver ISRs to perform the minimal work necessary to acknowl-
edge their device, save volatile interrupt state, and defer data transfer or other less time-critical
interrupt processing activity for execution in a DPC at DPC/dispatch IRQL. (See Chapter 8 in Part 2 for
more information on DPCs and the 1/0 system.)

A DPC is represented by a DPC object, a kernel control object that is not visible to user-mode
programs but is visible to device drivers and other system code. The most important piece of infor-
mation the DPC object contains is the address of the system function that the kernel will call when it
processes the DPC interrupt. DPC routines that are waiting to execute are stored in kernel-managed
queues, one per processor, called DPC queues. To request a DPC, system code calls the kernel to
initialize a DPC object and then places it in a DPC queue.

By default, the kernel places DPC objects at the end of the DPC queue of the processor on which
the DPC was requested (typically the processor on which the ISR executed). A device driver can over-
ride this behavior, however, by specifying a DPC priority (low, medium, medium-high, or high, where
medium is the default) and by targeting the DPC at a particular processor. A DPC aimed at a specific
CPU is known as a targeted DPC. If the DPC has a high priority, the kernel inserts the DPC object at
the front of the queue; otherwise, it is placed at the end of the queue for all other priorities.

When the processor’s IRQL is about to drop from an IRQL of DPC/dispatch level or higher to a
lower IRQL (APC or passive level), the kernel processes DPCs. Windows ensures that the IRQL remains
at DPC/dispatch level and pulls DPC objects off the current processor’s queue until the queue is
empty (that is, the kernel “drains” the queue), calling each DPC function in turn. Only when the queue
is empty will the kernel let the IRQL drop below DPC/dispatch level and let regular thread execution
continue. DPC processing is depicted in Figure 3-7.

DPC priorities can affect system behavior another way. The kernel usually initiates DPC queue
draining with a DPC/dispatch-level interrupt. The kernel generates such an interrupt only if the DPC
is directed at the current processor (the one on which the ISR executes) and the DPC has a priority
higher than low. If the DPC has a low priority, the kernel requests the interrupt only if the number
of outstanding DPC requests for the processor rises above a threshold or if the number of DPCs
requested on the processor within a time window is low.

System Mechanisms 105

@ A timer expires, and the kernel IRQI;:;::"Q
queues a DPC that will release
any threads waiting on the High
timer. The kernel then Power failure
requests a software interrupt.

@ After the DPC interrupt,
control transfers to the
(thread) dispatcher.

@ When the IRQL drops below

DPC/dispatch level, a DPC DPC/dispatch » | Dispatcher
interrupt occurs. APC
Passive
DPC DPC
DPC queue

@ The dispatcher executes each DPC routine
in the DPC queue, emptying the queue as
it proceeds. If required, the dispatcher also
reschedules the processor.

FIGURE 3-7 Delivering a DPC

If a DPC is targeted at a CPU different from the one on which the ISR is running and the DPC'’s
priority is either high or medium-high, the kernel immediately signals the target CPU (by sending it
a dispatch IPI) to drain its DPC queue, but only as long as the target processor is idle. If the priority is
medium or low, the number of DPCs queued on the target processor must exceed a threshold for the
kernel to trigger a DPC/dispatch interrupt. The system idle thread also drains the DPC queue for the
processor it runs on. Although DPC targeting and priority levels are flexible, device drivers rarely need
to change the default behavior of their DPC objects. Table 3-3 summarizes the situations that initiate
DPC queue draining. Medium-high and high appear and are, in fact, equal priorities when looking at
the generation rules. The difference comes from their insertion in the list, with high interrupts being
at the head and medium-high interrupts at the tail.

TABLE 3-3 DPC Interrupt Generation Rules

DPC Priority DPC Targeted at ISR’s Processor DPC Targeted at Another Processor
Low DPC queue length exceeds maximum DPC DPC queue length exceeds maximum DPC
queue length, or DPC request rate is less queue length, or system is idle

than minimum DPC request rate

Medium Always DPC queue length exceeds maximum DPC
queue length, or system is idle

Medium-High Always Target processor is idle

High Always Target processor is idle

106 Windows Internals, Sixth Edition, Part 1

Because user-mode threads execute at low IRQL, the chances are good that a DPC will interrupt
the execution of an ordinary user's thread. DPC routines execute without regard to what thread
is running, meaning that when a DPC routine runs, it can't assume what process address space is
currently mapped. DPC routines can call kernel functions, but they can't call system services, generate
page faults, or create or wait for dispatcher objects (explained later in this chapter). They can, how-
ever, access nonpaged system memory addresses, because system address space is always mapped
regardless of what the current process is.

DPCs are provided primarily for device drivers, but the kernel uses them too. The kernel most
frequently uses a DPC to handle quantum expiration. At every tick of the system clock, an interrupt
occurs at clock IRQL. The clock interrupt handler (running at clock IRQL) updates the system time
and then decrements a counter that tracks how long the current thread has run. When the coun-
ter reaches 0, the thread's time quantum has expired and the kernel might need to reschedule the
processor, a lower-priority task that should be done at DPC/dispatch IRQL. The clock interrupt handler
queues a DPC to initiate thread dispatching and then finishes its work and lowers the processor’s
IRQL. Because the DPC interrupt has a lower priority than do device interrupts, any pending device
interrupts that surface before the clock interrupt completes are handled before the DPC interrupt
occurs.

Because DPCs execute regardless of whichever thread is currently running on the system (much
like interrupts), they are a primary cause for perceived system unresponsiveness of client systems
or workstation workloads because even the highest-priority thread will be interrupted by a pend-
ing DPC. Some DPCs run long enough that users might perceive video or sound lagging, and
even abnormal mouse or keyboard latencies, so for the benefit of drivers with long-running DPCs,
Windows supports threaded DPCs.

Threaded DPCs, as their name implies, function by executing the DPC routine at passive level on
a real-time priority (priority 31) thread. This allows the DPC to preempt most user-mode threads
(because most application threads don't run at real-time priority ranges), but it allows other
interrupts, nonthreaded DPCs, APCs, and higher-priority threads to preempt the routine.

The threaded DPC mechanism is enabled by default, but you can disable it by adding a DWORD
value HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\kernel
\ThreadDpcEnable and setting it to 0. Because threaded DPCs can be disabled, driver developers
who make use of threaded DPCs must write their routines following the same rules as for
nonthreaded DPC routines and cannot access paged memory, perform dispatcher waits, or make
assumptions about the IRQL level at which they are executing. In addition, they must not use the
KeAcquire/ReleaseSpinLockAtDpcLevel APls because the functions assume the CPU is at dispatch level.
Instead, threaded DPCs must use KeAcquire/ReleaseSpinLockForDpc, which performs the appropriate
action after checking the current IRQL.

System Mechanisms 107

EXPERIMENT: Monitoring Interrupt and DPC Activity

You can use Process Explorer to monitor interrupt and DPC activity by opening the System
Information dialog and switching to the CPU tab, where it lists the number of interrupts and
DPCs executed each time Process Explorer refreshes the display (1 second by default):

File Options View Process

Find Users Help

i System Information EI\EI
| Summary | CPU [Memory [0 [apu |
CPU
I
. \
s b [
ER ety bl Aol
Totals CPU
Handles 61,530 Context Switch Delta 5,371
Threads 1,760 Interrupt Delta 3,232
Processes 132 DPC Delta 115
Ehow one graph per CALE
L}!Pmcs& Explorer - WWW, om [dsol \ ol] EI@

B conhost.exe

4|

T

d@meaoe|ex|ae [,] i |14 | |
Process FID CPU Private Bptes Session Warking Set Description ol
7] System Idle Process 0 97.07 0K 24K L
= 5] System 4 0.05 244K 0 9,040k
B Interrupts nfa 043 oK 1] 0K Hardware Interrupts and DPCs
[57] smss.exe 276 516K 1] 1.184 K Windows Session Manager
= B cerss.exe 404 <0.m 3512k il 5.B80 K Client Server Runtime Process =

+

CPU Usage: 293%

Commit Charge: 24.09% Processes: 127 Physical Usage: 45.71%

You can also trace the execution of specific interrupt service routines and deferred
procedure calls with the built-in event tracing support (described later in this chapter):

1. Start capturing events by opening an elevated command prompt, navigating to the
Microsoft Windows Performance Toolkit directory (typically in c:\Program Files) and
typing the following command (make sure no other program is capturing events, such

as Process Explorer or Process Monitor, or this will fail with an error):

xperf -on PROC_THREAD+LOADER+DPC+INTERRUPT

2. Stop capturing events by typing the following:

xperf -d dpcisr.etl

108 Windows Internals, Sixth Edition, Part 1

3. Generate reports for the event capture by typing this:

xperf dpcisr.etl
tracerpt \kernel.etl -report dpcisr.html -f html

This will generate a web page called dpcisr.html.

4. Open report.html, and expand the DPC/ISR subsection. Expand the DPC/ISR
Breakdown area, and you will see summaries of the time spent in ISRs and DPCs by
each driver. For example:

& CAProgramminghddkitoolsitracinghi3gf\dpcise.hitrnl - Windows Internet Explarer ===
v v |@ CAProgrammingtddkitoolsitracinghis ‘ "7| X ‘ | Google el |
— . »
e o [_@ CaPragramming\ddkitools\trarin... I } % ov B v & v [Page v) Tooks v
I | .
| DPC/ISR = (*)
|oPCasR Breakdown @]
DPC processor utilization Top: 68 of 68 | [z
Module Processor Address Percent
ataport.sys 0 BO7BZFAC 3
ndis.gys 0 806371CT7 A
dxgkrnlsys 0 8F726005 A
topip.sys 0 9018D2ZFE (1l
tcpip.sys 1 9018D2FE (1l]
ushhub.sys 0 8FFCDO0S 02
ushpor.sys 0 8F5288BC 02
classpnp.sys 0 B23BCHI4 02
ndis. sys 0 BOBEF1FC 01
i8042pr.sys 0 BF4C4554 a1
nlddmkmm. sys 0 8FB4D460 a1
ataport.sys 1 8078B2FAC
nidis.sys 1 BOB371CT
dughrnl.sys 1 8FT726B005
ushhub.sys 1 8FFCDO0S
ushpor.sys 1 8F5288BC
classpnp.sys 1 B23BCH94
ndis. sys 1 BOBEF1FC
i8042pr.sys 1 BF4C4554
nlddrmkim. sys 1 8FB4D460 il
Done /M Computer | Protected Made: Off H100% -

Running an /n command in the kernel debugger on the address of each event record shows
the name of the function that executed the DPC or ISR:
Tkd> Tn 0x806321C7
(806321c7) ndis!ndisInterruptDpc

Tkd> Tn Ox820AED3F
(820aed3f) nt!IopTimerDispatch

Tkd> Tn 0x82051312
(82051312) nt!PpmPerfIdleDpc

The first is a DPC queued by a network card NDIS miniport driver. The second is a DPC for a
generic I/O timer expiration. The third address is the address of a DPC for an idle performance
operation.

System Mechanisms 109

Other than using it to get an HTML report, you can use the Xperf Viewer to show a detailed
overview of all DPC and ISR events by right-clicking on the DPC and/or ISR CPU Usage graphs in
the main Xperf window and choosing Summary Table. You will be able to see a per-driver view
of each DPC and ISR in detail, along with its duration and count, just as shown in the following
graphic:

[PDPC CPU Usage Summary Table - C:\Program Files\Microsoft Windows Performance Toolkit\DPCISR.etl - [0 s - 25.9494843 5]~ 25.949 =lof x|
Fle Coumns Trace Window Help
| tire [Module [Function [Count | Max Ackusl Duration [ms] [Awvg Actusl Duration [ms] | Actual Duration [ms] = | % Actusl Duration | Ert
1 NDIS.5Y5 1,609 1.115 236 0.005 711 153,599 264 0.30
2 (xfffifaB003abasEs , 0.14
4 0.02
s 752 01086 645 0,003 549 10,153 563 0.02
3) 01,036 570 0,015 529 665 567 0.02
7 E USEPORTSYS) 0,043 D6 0,003 259 3,530 346 .01
& E nviddmkm.sys e 0,423 254 0,006 400 2679233 .01
9 B ACPLsys &0 0,057 077 10,025 455 1,529 138 0.00
10 HoAudBus.sys) OxFFFFFEE0034044d 130 0,030 077 0,007 308 0,550 155 0.00
11 WdF01000.5ys [DxfFFFFEa000089F33 2 0.045 795 0,034 230 0,589 993 0.00
12 HETIOSYS OxfFFFFEB00105F370 120 0.012 965 0,006 006 0.720816 0.00
13 netbhsys OxfFFFFaB0022d1198 16 0.059 128 0,043 662 0,696 602 .00
14 shwrtedsys OxfFFFFEB0040cF7d4 130 0,025 292 0,005 313 0,690 735 .00
15 @ sfdsys = 0.022 899 0.010078 0,393 051 .00
16 tunnelsys OxfFFFFEE001221750 52 0.008 203 0,005 297 0.275 478 .00
17 btaudio.sys Oxfffffaan02412d10 26 0.031 786 0,009 964 0,259 074 .00
18 btkrlsys Oxfffffaa003coeaco 2 0.011 962 0,007 808 0,203 021 .00
19 @ bs7ndsda.svs 52 0.005 127 0,003 227 0167811 .00
20 HIDCLASS 5¥S OxfffifaB004194245 2 0.046 141 0.043 919 0.087 838 0.00
21 srv.sys 13 0.009 570 0.004 101 0.053 318 0.00
22 rdbss.sys OxfffFfaB0023735b0 s 0.006 152 0.004 589 0.024 549 0.00
23 mifssys OxfffFfEa001 44ch00 s 0.004 443 0,003 964 0.019 524 0.00
24 ludfrsys OcfFFFFEB0400FE2e 5 0.005 463 0,003 696 0,019 452 0.00
25 ngsys) OFFFFFEE001 207650 2 0,006 152 0,005 39 0.011 279 0.00
%6 svnebsys) OxFFFFFEE0073a8370 2 0,003 760 0,003 559 0,007 175 0.00
27 haldl OfFFEFE0001FFO0E4 1 0,005 127 0,005 127 0,005 127 000 16,
25 flmgr.sys OfFFFFEB001305ch0 1 0002 051 0,002 051 0,002 051 000 14,
o | o
Total DPC Usage - 0.57% in 11532 DPCs |

Asynchronous Procedure Call Interrupts Asynchronous procedure calls (APCs) provide a way for
user programs and system code to execute in the context of a particular user thread (and hence a
particular process address space). Because APCs are queued to execute in the context of a particular
thread and run at an IRQL less than DPC/dispatch level, they don't operate under the same restric-
tions as a DPC. An APC routine can acquire resources (objects), wait for object handles, incur page
faults, and call system services.

APCs are described by a kernel control object, called an APC object. APCs waiting to execute
reside in a kernel-managed APC queue. Unlike the DPC queue, which is systemwide, the APC queue
is thread-specific—each thread has its own APC queue. When asked to queue an APC, the kernel
inserts it into the queue belonging to the thread that will execute the APC routine. The kernel, in turn,
requests a software interrupt at APC level, and when the thread eventually begins running, it executes
the APC.

There are two kinds of APCs: kernel mode and user mode. Kernel-mode APCs don’t require
permission from a target thread to run in that thread’s context, while user-mode APCs do. Kernel-
mode APCs interrupt a thread and execute a procedure without the thread's intervention or consent.
There are also two types of kernel-mode APCs: normal and special. Special APCs execute at APC level
and allow the APC routine to modify some of the APC parameters. Normal APCs execute at passive
level and receive the modified parameters from the special APC routine (or the original parameters if
they weren't modified).

110 Windows Internals, Sixth Edition, Part 1

Both normal and special APCs can be disabled by raising the IRQL to APC level or by calling
KeEnterGuardedRegion. KeEnterGuardedRegion disables APC delivery by setting the SpecialApcDisable
field in the calling thread’s KTHREAD structure (described further in Chapter 5). A thread can disable
normal APCs only by calling KeEnterCriticalRegion, which sets the KernelApcDisable field in the
thread’s KTHREAD structure. Table 3-4 summarizes the APC insertion and delivery behavior for each
type of APC.

The executive uses kernel-mode APCs to perform operating system work that must be completed
within the address space (in the context) of a particular thread. It can use special kernel-mode APCs
to direct a thread to stop executing an interruptible system service, for example, or to record the
results of an asynchronous 1/O operation in a thread'’s address space. Environment subsystems use
special kernel-mode APCs to make a thread suspend or terminate itself or to get or set its user-mode
execution context. The Subsystem for UNIX Applications uses kernel-mode APCs to emulate the
delivery of UNIX signals to Subsystem for UNIX Application processes.

Another important use of kernel-mode APCs is related to thread suspension and termination.
Because these operations can be initiated from arbitrary threads and directed to other arbitrary
threads, the kernel uses an APC to query the thread context as well as to terminate the thread. Device
drivers often block APCs or enter a critical or guarded region to prevent these operations from
occurring while they are holding a lock; otherwise, the lock might never be released, and the system
would hang.

TABLE 3-4 APC Insertion and Delivery

APC Type Insertion Behavior Delivery Behavior
Special (kernel) Inserted at the tail of the Delivered at APC level as soon as IRQL drops and the
kernel-mode APC list thread is not in a guarded region. It is given pointers to

arguments specified when inserting the APC.

Normal (kernel) Inserted right after the last Delivered at PASSIVE_LEVEL after the associated special
special APC (at the head of all APC was executed. It is given arguments returned by
other normal APCs) the associated special APC (which can be the original

arguments used during insertion or new ones).

Normal (user) Inserted at the tail of the Delivered at PASSIVE_LEVEL as soon as IRQL drops, the
user-mode APC list thread is not in a critical (or guarded) region, and the
thread is in an alerted state. It is given arguments re-
turned by the associated special APC (which can be the
original arguments used during insertion or new ones).

Normal (user) Inserted at the head of the Delivered at PASSIVE_LEVEL on return to user mode,

Thread Exit user-mode APC list if the thread is doing an alerted user-mode wait. It is

(PsExitSpecialApc) given arguments returned by the thread-termination
special APC.

Device drivers also use kernel-mode APCs. For example, if an 1/0O operation is initiated and a
thread goes into a wait state, another thread in another process can be scheduled to run. When the
device finishes transferring data, the /O system must somehow get back into the context of the
thread that initiated the 1/O so that it can copy the results of the I/O operation to the buffer in the ad-
dress space of the process containing that thread. The I/O system uses a special kernel-mode APC to
perform this action, unless the application used the SetFileloOverlappedRange API or 1/O completion

System Mechanisms 111

ports—in which case, the buffer will either be global in memory or copied only after the thread pulls
a completion item from the port. (The use of APCs in the I/O system is discussed in more detail in
Chapter 8 in Part 2.)

Several Windows APls—such as ReadFileEx, WriteFileEx, and QueueUserAPC—use user-mode APCs.
For example, the ReadFileEx and WriteFileEx functions allow the caller to specify a completion routine
to be called when the I/0 operation finishes. The 1/0 completion is implemented by queuing an APC
to the thread that issued the I/O. However, the callback to the completion routine doesn’t necessar-
ily take place when the APC is queued because user-mode APCs are delivered to a thread only when
it's in an alertable wait state. A thread can enter a wait state either by waiting for an object handle
and specifying that its wait is alertable (with the Windows WaitForMultipleObjectsEx function) or by
testing directly whether it has a pending APC (using SleepEx). In both cases, if a user-mode APC is
pending, the kernel interrupts (alerts) the thread, transfers control to the APC routine, and resumes
the thread’s execution when the APC routine completes. Unlike kernel-mode APCs, which can execute
at APC level, user-mode APCs execute at passive level.

APC delivery can reorder the wait queues—the lists of which threads are waiting for what, and in
what order they are waiting. (Wait resolution is described in the section “Low-IRQL Synchronization,”
later in this chapter.) If the thread is in a wait state when an APC is delivered, after the APC routine
completes, the wait is reissued or re-executed. If the wait still isn't resolved, the thread returns to the
wait state, but now it will be at the end of the list of objects it's waiting for. For example, because
APCs are used to suspend a thread from execution, if the thread is waiting for any objects, its wait is
removed until the thread is resumed, after which that thread will be at the end of the list of threads
waiting to access the objects it was waiting for. A thread performing an alertable kernel-mode wait
will also be woken up during thread termination, allowing such a thread to check whether it woke up
as a result of termination or for a different reason.

Timer Processing

The system’s clock interval timer is probably the most important device on a Windows machine,

as evidenced by its high IRQL value (CLOCK_LEVEL) and due to the critical nature of the work it is
responsible for. Without this interrupt, Windows would lose track of time, causing erroneous results in
calculations of uptime and clock time—and worse, causing timers not to expire anymore and threads
never to lose their quantum anymore. Windows would also not be a preemptive operating system,
and unless the current running thread yielded the CPU, critical background tasks and scheduling
could never occur on a given processor.

Windows programs the system clock to fire at the most appropriate interval for the machine, and
subsequently allows drivers, applications, and administrators to modify the clock interval for their
needs. Typically, the system clock is maintained either by the PIT (Programmable Interrupt Timer)
chip that is present on all computers since the PC/AT, or the RTC (Real Time Clock). The PIT works on
a crystal that is tuned at one-third the NTSC color carrier frequency (because it was originally used
for TV-Out on the first CGA video cards), and the HAL uses various achievable multiples to reach
millisecond-unit intervals, starting at 1 ms all the way up to 15 ms. The RTC, on the other hand, runs
at 32.768 KHz, which, by being a power of two, is easily configured to run at various intervals that

112 Windows Internals, Sixth Edition, Part 1

are also powers of two. On today’s machines, the APIC Multiprocessor HAL configures the RTC to fire
every 15.6 milliseconds, which corresponds to about 64 times a second.

Some types of Windows applications require very fast response times, such as multimedia
applications. In fact, some multimedia tasks require rates as low as 1 ms. For this reason, Windows
implements APIs and mechanisms that enable lowering the interval of the system’s clock interrupt,
which results in more clock interrupts (at least on processor 0). Note that this increases the resolution
of all timers in the system, potentially causing other timers to expire more frequently.

Windows tries its best to restore the clock timer back to its original value whenever it can. Each
time a process requests a clock interval change, Windows increases an internal reference count and
associates it with the process. Similarly, drivers (which can also change the clock rate) get added to the
global reference count. When all drivers have restored the clock and all processes that modified the
clock either have exited or restored it, Windows restores the clock to its default value (or, barring that,
to the next highest value that's been required by a process or driver).

EXPERIMENT: Identifying High-Frequency Timers

Due to the problems that high-frequency timers can cause, Windows uses Event Tracing for
Windows (ETW) to trace all processes and drivers that request a change in the system'’s clock
interval, displaying the time of the occurrence and the requested interval. The current interval

is also shown. This data is of great use to both developers and system administrators in identi-
fying the causes of poor battery performance on otherwise healthy systems, and to decrease
overall power consumption on large systems as well. To obtain it, simply run powercfg /energy
and you should obtain an HTML file called energy-report.html similar to the one shown here:

/€ Ci\energy-report html - Windows Internet Explorer ol o=

Q U |g Ci\energy-report.html - | ‘9‘ x | | Bing o -

i Favorites | g3 @] Suggested Sites = jg| Web Slice Gallery =

55|~ @ Chenergy... X |{fi YouTube - A.. 5i ~ B - [& v Pagev Safety~ Tools~ @~

Information

Platform Timer Resolution: Timer Request Stack
The stack of modules responsible for the lowest platfarm timer setting in this process.
Requestad Period 10000
Requesting Process 1D 2084
Requesting Process Path \Device\SftVol\140062.enu\Office14\POWERPNT.EXE
Calling Module Stack \Device\HarddiskVolume2\Windows\SysWOWS4 \ntdiL.dll
\Device\HarddiskVolume2\Windows\SysWOW&4 \winmm.dll
\Device\SftVol\140062.ENU\OFFICE14\PPCORE.DLL
\Device\5ftVol\140062.enu\Office14\POWERPNT.EXE
\Device\HarddiskVolume2\Windows\SysWOW64 \kemel32.dIl
\Device\HarddiskVolume2\Windows\SysWOW64 \ntdILdll

Platform Timer Resolution: Timer Request Stack
The stack of mocules raspensible for the lowsst plecform timer sexing in this process.
Requested Period 10000

om

Requesting Process 1D 3128

Requesting Process Path \Device\HarddiskVolume2\Program Files (xB86)\UltraVNC\winvnc.exe

Calling Module Stack \Device\HarddiskVolume2\Windows\SysWOW64\ntdILdll
\Device\HarddiskValume2\Windows\SysWOW64 \winmm.dil
\Device\HarddiskVolume2\Program Files {x86)\UltraVNC\winvnc.exe
\Device\HarddiskVolume2\Windows\SysWOW64\kemel32.dll
\Device\HarddiskVolume2\Windows\SysWOW64\ntdILdll

Done W& Computer | Protected Mode: Off far EBIH -

System Mechanisms 113

Scroll down to the section on Platform Timer Resolution, and you will be shown all the
applications that have modified the timer resolution and are still active, along with the call
stacks that caused this call. Timer resolutions are shown in hundreds of nanoseconds, so
a period of 20,000 corresponds to 2 ms. In the sample shown, two applications—namely,
Microsoft PowerPoint and the UltraVNC remote desktop server—each requested a higher
resolution.

You can also use the debugger to obtain this information. For each process, the EPROCESS
structure contains a number of fields, shown next, that help identify changes in timer resolution:

+0x4a8 TimerResolutionLink : _LIST_ENTRY [Oxfffffa80'05218fd8 - Oxfffffa80'059cd508]
+0x4b8 RequestedTimerResolution : 0

+0x4bc ActiveThreadsHighWatermark : Ox1d

+0x4c0 SmallestTimerResolution : 0x2710

+0x4c8 TimerResolutionStackRecord : Oxfffff8a0'0476ecd0 _PO_DIAG_STACK_RECORD

Note that the debugger shows you an additional piece of information: the smallest timer
resolution that was ever requested by a given process. In this example, the process shown cor-
responds to PowerPoint 2010, which typically requests a lower timer resolution during slide-
shows, but not during slide editing mode. The EPROCESS fields of PowerPoint, shown in the
preceding code, prove this, and the stack could be parsed by dumping the PO_DIAG_STACK_
RECORD structure.

Finally, the TimerResolutionLink field connects all processes that have made changes to timer
resolution, through the ExpTimerResolutionListHead doubly linked list. Parsing this list with
the /list debugger command can reveal all processes on the system that have, or had, made
changes to the timer resolution, when the powercfg command is unavailable or information on
past processes is required:

Tkd> !Tist "-e -x \"dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS,
TimerResolutionLink))

ImageFileName SmallestTimerResolution RequestedTimerResolution\"
nt!ExpTimerResolutionlListHead"

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution

+0x2e0 ImageFileName : [15] "audiodg.exe"

+0x4b8 RequestedTimerResolution : 0

+0x4c0 SmallestTimerResolution : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution

+0x2e0 ImageFileName : [15] "chrome.exe"

+0x4b8 RequestedTimerResolution : 0

+0x4c0 SmallestTimerResolution : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))

ImageFileName
SmallestTimerResolution RequestedTimerResolution

114 Windows Internals, Sixth Edition, Part 1

+0x2e0 ImageFileName : [15] "calc.exe"
+0x4b8 RequestedTimerResolution : 0
+0x4c0 SmallestTimerResolution : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution

+0x2e0 ImageFileName : [15] "devenv.exe"

+0x4b8 RequestedTimerResolution : 0

+0x4c0 SmallestTimerResolution : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution

+0x2e0 ImageFileName : [15] "POWERPNT.EXE"

+0x4b8 RequestedTimerResolution : 0

+0x4c0 SmallestTimerResolution : 0x2710

dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink))
ImageFileName
SmallestTimerResolution RequestedTimerResolution

+0x2e0 ImageFileName : [15] "winvnc.exe"

+0x4b8 RequestedTimerResolution : 0x2710

+0x4c0 SmallestTimerResolution : 0x2710

Timer Expiration

As we said, one of the main tasks of the ISR associated with the interrupt that the RTC or PIT will
generate is to keep track of system time, which is mainly done by the KeUpdateSystemTime routine. Its
second job is to keep track of logical run time, such as process/thread execution times and the system
tick time, which is the underlying number used by APIs such as GetTickCount that developers use to
time operations in their applications. This part of the work is performed by KeUpdateRunTime. Before
doing any of that work, however, KeUpdateRunTime checks whether any timers have expired.

Windows timers can be either absolute timers, which implies a distinct expiration time in the
future, or relative timers, which contain a negative expiration value used as a positive offset from the
current time during timer insertion. Internally, all timers are converted to an absolute expiration time,
although the system keeps track of whether or not this is the “true” absolute time or a converted
relative time. This difference is important in certain scenarios, such as Daylight Savings Time (or even
manual clock changes). An absolute timer would still fire at “8PM" if the user moved the clock from
1PM to 7PM, but a relative timer—say, one set to expire “in two hours"—would not feel the effect of
the clock change because two hours haven't really elapsed. During system time-change events such
as these, the kernel reprograms the absolute time associated with relative timers to match the new
settings.

Because the clock fires at known interval multiples, the bottom bits of the current system time
will be at one of 64 known positions (on an APIC HAL). Windows uses that fact to organize all driver
and application timers into linked lists based on an array where each entry corresponds to a possible
multiple of the system time. This table, called the timer table, is located in the PRCB, which enables

System Mechanisms 115

each processor to perform its own independent timer expiration without needing to acquire a global
lock, as shown in Figure 3-8. Later, you will see what determines which logical processor’s timer table
a timer is inserted on. Because each processor has its own timer table, each processor also does its
own timer expiration work. As each processor gets initialized, the table is filled with absolute timers
with an infinite expiration time, to avoid any incoherent state. Each multiple of the system time that a
timer can be associated with is called the hand, and it's stored in the timer object’s dispatcher header.
Therefore, to determine if a clock has expired, it is only necessary to check if there are any timers on
the linked list associated with the current hand.

t{ Timer 1 I—l Timer 2 | t{ Timer 3 I—l Timer 4 |

CPUO CPU1
Timer Table Timer Table
255 255
0 0
Timer Hand Timer Hand
31 0 31 0

FIGURE 3-8 Example of per-processor timer lists

Although updating counters and checking a linked list are fast operations, going through every
timer and expiring it is a potentially costly operation—keep in mind that all this work is currently
being performed at CLOCK_LEVEL, an exceptionally elevated IRQL. Similarly to how a driver ISR
queues a DPC to defer work, the clock ISR requests a DPC software interrupt, setting a flag in the
PRCB so that the DPC draining mechanism knows timers need expiration. Likewise, when updating
process/thread runtime, if the clock ISR determines that a thread has expired its quantum, it also
queues a DPC software interrupt and sets a different PRCB flag. These flags are per-PRCB because
each processor normally does its own processing of run-time updates, because each processor is
running a different thread and has different tasks associated with it. Table 3-5 displays the various
fields used in timer expiration and processing.

Once the IRQL eventually drops down back to DISPATCH_LEVEL, as part of DPC processing, these
two flags will be picked up.

116 Windows Internals, Sixth Edition, Part 1

TABLE 3-5 Timer Processing KPRCB Fields

KPRCB Field Type Description

ReadySummary Bitmask (32 bits) Bitmask of priority levels that have one or
more ready threads

DeferredReadyListHead Singly linked list Single list head for the deferred ready
queue
DispatcherReadyListHead Array of 32 list entries List heads for the 32 ready queues

Chapter 5 covers the actions related to thread scheduling and quantum expiration. Here we will
take a look at the timer expiration work. Because the timers are linked together by hand, the expira-
tion code (executed by the DPC associated with the PRCB in the TimerExpiryDpc field) parses this list
from head to tail. (At insertion time, the timers nearest to the clock interval multiple will be first, fol-
lowed by timers closer and closer to the next interval, but still within this hand.) There are two primary
tasks to expiring a timer:

m The timer is treated as a dispatcher synchronization object (threads are waiting on the timer as
part of a timeout or directly as part of a wait). The wait-testing and wait-satisfaction algo-
rithms will be run on the timer. This work is described in a later section on synchronization in
this chapter. This is how user-mode applications, and some drivers, make use of timers.

m The timer is treated as a control object associated with a DPC callback routine that executes
when the timer expires. This method is reserved only for drivers and enables very low latency
response to timer expiration. (The wait/dispatcher method requires all the extra logic of wait
signaling.) Additionally, because timer expiration itself executes at DISPATCH_LEVEL, where
DPCs also run, it is perfectly suited as a timer callback.

As each processor wakes up to handle the clock interval timer to perform system-time and
run-time processing, it therefore also processes timer expirations after a slightly latency/delay in
which the IRQL drops from CLOCK_LEVEL to DISPATCH_LEVEL. Figure 3-9 shows this behavior on two
processors—the solid arrows indicate the clock interrupt firing, while the dotted arrows indicate any
timer expiration processing that might occur if the processor had associated timers.

o AA A A A A A AA A

= \ \

o v ' ' ' ' ' i '

& L] 1 1 1 1 1 (I} 1

4] o , , , , , i ,

Q [}]]]] 1 (] 1

o ! '

2 ' ;

o >
Time

— A A AA A A

5 h i h h

2 ' . i : :

a h h " : :

(O] 1 1 [} 1 1

1% 1 1 [} 1 1

o H

2 i

N >
Time

Timer Interrupt Software Timer Expiration ----- >

FIGURE 3-9 Timer expiration

System Mechanisms 117

Processor Selection

A critical determination that must be made when a timer is inserted is to pick the appropriate table
to use—in other words, the most optimal processor choice. If the timer has no DPC associated with
it, the kernel scans all processors in the current processor’s group that have not been parked. (For
more information on Core Parking, see Chapter 5.) If the current processor is parked, it picks the next
processor in the group; otherwise, the current processor is used. On the other hand, if the timer does
have an associated DPC, the insertion code simply looks at the target processor associated with the
DPC and selects that processor’s timer table.

In the case where the driver developer did not specify a target processor for the DPC, the kernel
must make the choice. Because driver developers typically expect the DPC to execute on the same
processor as the one the driver code was running on at insertion time, the kernel typically chooses
CPU 0, since CPU 0 is the timekeeping processor that will always be active to pick up clock interrupts
(more on this later). However, on server systems, the kernel picks a processor, just as it normally does
when there is no DPC, by using the same checks just described.

This behavior is intended to improve performance and scalablity on server systems that make use
of Hyper-V, although it can improve performance on any heavily loaded system. As system timers pile
up—because most drivers do not affinitize their DPCs—CPU 0 becomes more and more congested
with the execution of timer expiration code, which increases latency and can even cause heavy delays
or missed DPCs. Additionally, the timer expiration can start competing with the DPC timer typi-
cally associated with driver interrupt processing, such as network packet code, causing systemwide
slowdowns. This process is exacerbated in a Hyper-V scenario, where CPU 0 must process the timers
and DPCs associated with potentially numerous virtual machines, each with their own timers and
associated devices.

By spreading the timers across processors, as shown in Figure 3-10, each processor’s timer-
expiration load is fully distributed among unparked logical processors. The timer object stores its
associated processor number in the dispatcher header on 32-bit systems and in the object itself on
64-bit systems.

Note This behavior is controlled by the kernel variable KiDistributeTimers, which is
initialized based on a registry key whose value is different between a server and client
installation. By modifying, or creating, the value DistributeTimers under HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\kernel, this behavior can be configured
differently from its SKU-based default.

118 Windows Internals, Sixth Edition, Part 1

go9° 2108

Timers Queue on CPU 0 Timers Queued on Current CPU

FIGURE 3-10 Timer queuing behaviors

EXPERIMENT: Listing System Timers

You can use the kernel debugger to dump all the current registered timers on the system, as
well as information on the DPC associated with each timer (if any). See the following output for
a sample:

[Tkd> !timer
Dump system timers

Interrupt time: 61876995 000003df [4/ 5/2010 18:58:09.189]

List Timer Interrupt Low/High Fire Time DPC/thread
PROCESSOR 0 (nt!_KTIMER_TABLE fffff80001bfd080)
5 fffffa8003099810 627684ac 000003df [4/ 5/2010 18:58:10.756]

NDIS!ndisMTimerObjectDpc (DPC @ fffffa8003099850)
13 fffffa8003027278 272dde78 000004cf [4/ 6/2010 23:34:30.510] NDIS!ndisMwWakeUpDpcX
(DPC @ fffffa80030272b8)

fffffa8003029278 272e0588 000004cf [4/ 6/2010 23:34:30.511] NDIS!ndisMwakeUpDpcX
(DPC @ fffffa80030292b8)

fffffa8003025278 272e0588 000004cf [4/ 6/2010 23:34:30.511] NDIS!ndisMwakeUpDpcX
(DPC @ fffffa80030252b8)

fffffa8003023278 272e2c99 000004cf [4/ 6/2010 23:34:30.512] NDIS!ndisMwakeUpDpcX
(DPC @ fffffa80030232b8)
16 fffffa8006096c20 6cl613a6 000003df [4/ 5/2010 18:58:26.901] thread
fffffa8006096b60
19 fffff80001c85c40 64f9aeb5 000003df [4/ 5/2010 18:58:14.971]
nt!CmpLazyFlushDpcRoutine (DPC @ fffff80001c85c00)
31 fffffa8002c43660 P dc527b9b 000003e8 [4/ 5/2010 20:06:00.673]
intelppm!LongCapTraceDpc (DPC @ fffffa8002c436a0)
40 fffff80001c86f60 62cal080 000003df [4/ 5/2010 18:58:11.304] nt!CcScanDpc (DPC @
fffff80001c86120)

fffff88004039710 62cal080 000003df [4/ 5/2010 18:58:11.304]
Juafv!ScavengerTimerRoutine (DPC @ fffff88004039750)

252 fffffa800458ed50 62619291 000003df [4/ 5/2010 18:58:10.619] netbt!TimerExpiry (DPC

@ fffffa800458ed10)

fffffa8004599b60 fe2fc6ce 000003e0 [4/ 5/2010 19:09:41.514] netbt!TimerExpiry (DPC

@ fffffa8004599b20)

System Mechanisms

119

PROCESSOR 1 (nt!_KTIMER_TABLE fffff880009ba380)
0 fffffa8004ec9700 626bel21 000003df [4/ 5/2010 18:58:10.686]
fffffa80027f3060
fffff80001c84dd0 P 70b3f446 000003df [4/ 5/2010 18:58:34.647]
nt!IopIrpStackProfilerTimer (DPC @ fffff80001c84el0)
11 fffffa8005c26cd0 62859842 000003df [4/ 5/2010 18:58:10.855]
@ fffffa8005c26c90)
fffffa8002ce8160
fffffa80053c2b60
fffffa8004fdb3do
fffffa8004f4bb60
13 fffffa8005051c20
fffffa8005051b60
15 fffffa8005edel20
fffffa8005ede060
20 fffffa8004f40ef0
fffffa8004f4bb60
22 fffffa8005195120
fffffa8005195060
28 fffffa8004760e20
fffffa8004760e60)+12d10

thread

afd!AfdTimeoutPol1 (DPC

6e6c45f4 000003df [4/ 5/2010 18:58:30.822] thread

77f0c2cb 000003df [4/ 5/2010 18:58:46.789] thread

60713a93 800003df [NEVER] thread

77f9fb8c 000003df [4/ 5/2010 18:58:46.850] thread

629a3748 000003df [4/ 5/2010 18:58:10.990] thread

6500ec7a 000003df [4/ 5/2010 18:58:15.019] thread

62ad4e07 000003df [4/ 5/2010 18:58:11.115] btaudio (DPC @

31 fffffa8002c40660 P dc527b9b
intelppm!LongCapTraceDpc (DPC @

232 fffff80001c85040 P 62317a00

000003e8 [4/ 5/2010
fffffa8002c406a0)

000003df [4/ 5/2010

20:

18:

:00.

:10.

673]

304]

nt!IopTimerDispatch

(DPC @ fffff80001c85080)
fffff80001c26fcO0 P 6493d400 000003df [4/ 5/2010 18:
nt!EtwpAdjustBuffersDpcRoutine (DPC @ fffff80001c26f80)
235 fffffa80047471a8 6238ba5c 000003df [4/ 5/2010 18:
fffffa80047471e8)+67d4
242 fffff880023ae480 11228580
(DPC @ fffff880023ae4c0)
245 fffff800020156b8 P 72fb2569
hal!HalpCmcDeferredRoutine (DPC
248 fffffa80029ee460 P 62578455
ataport!IdePortTickHandler (DPC
fffffa8002776460 P 62578455 000003df [4/ 5/2010
ataport!IdePortTickHandler (DPC @ fffffa80027764a0)
fffff88001678500 fe2f836f 000003e0 [4/ 5/2010
(DPC @ fffff880016784c0)
fffff80001c25b80 885e52b3 00642048 [12/31/2099
nt!ExpCenturyDpcRoutine (DPC @ fffff80001c25bc0)

:14.304]

:10.351] stwrt64 (DPC @

000003el [4/ 5/2010 19:10:13.304] dfsc!DfscTimerDispatch

000003df [4/ 5/2010 18:58:38.
@ fffff800020156f8)
000003df [4/ 5/2010

@ fffffa80029ee4al)

469]

18:58:10.553]

18:58:10.553]

19:09:41.512] cng!seedFileDpcRoutine

23:00:00.008]

Total Timers: 254, Maximum List: 8

In this example, there are multiple driver-associated timers, due to expire shortly, associated
with the Ndis.sys and Afd.sys drivers (both related to networking), as well as audio, Bluetooth,
and ATA/IDE drivers. There are also background housekeeping timers due to expire, such as
those related to power management, ETW, registry flushing, and Users Account Control (UAC)
virtualization. Additionally, there are a dozen or so timers that don't have any DPC associ-
ated with them—this likely indicates user-mode or kernel-mode timers that are used for wait

120 Windows Internals, Sixth Edition, Part 1

dispatching. You can use thread on the thread pointers to verify this. Finally, three interesting
timers that are always present on a Windows system are the timer that checks for Daylight
Savings Time time-zone changes, the timer that checks for the arrival of the upcoming year, and
the timer that checks for entry into the next century. One can easily locate them based on their
typically distant expiration time, unless this experiment is performed on the eve of one of these
events.

Intelligent Timer Tick Distribution

Figure 3-11, which shows processors handling the clock ISR and expiring timers, reveals that
processor 1 wakes up a number of times (the solid arrows) even when there are no associated expiring
timers (the dotted arrows). Although that behavior is required as long as processor 1 is running (to
update the thread/process run times and scheduling state), what if processor 1 is idle (and has no
expiring timers). Does it still need to handle the clock interrupt? Because the only other work required
that was referenced earlier is to update the overall system time/clock ticks, it's sufficient to designate
merely one processor as the time-keeping processor (in this case, processor 0) and allow other pro-
cessors to remain in their sleep state; if they wake, any time-related adjustments can be performed by
resynchronizing with processor 0.

Windows does, in fact, make this realization (internally called intelligent timer tick distribution),
and Figure 3-11 shows the processor states under the scenario where processor 1 is sleeping (unlike
earlier, when we assumed it was running code). As you can see, processor 1 wakes up only 5 times to
handle its expiring timers, creating a much larger gap (sleeping period). The kernel uses a variable
KiPendingTimer, which contains an array of affinity mask structures that indicate which logical proces-
sors need to receive a clock interval for the given timer hand (clock-tick interval). It can then appro-
priately program the interrupt controller, as well as determine to which processors it will send an IPI
to initiate timer processing.

o AA A A A A A AA A

= v \ .. |

o a ' ' ' ' ' a '

& L] 1 1 1 1 1 (I} 1

] o H H H H H o H

1) [}]]]] 1 (] 1

e) h h

— ' '

o »

Time

— A A AA A A

5 | ‘i | |

2] , i ' '

a | | a | h

(O] 1 1 [} 1 1

o [1] [[

o '

e h

o >

Time
Timer Interrupt Software Timer Expiration ----- >

FIGURE 3-11 Intelligent timer tick distribution applied to processor 1

System Mechanisms 121

Leaving as large a gap as possible is important due to the way power management works in
processors: as the processor detects that the work load is going lower and lower, it decreases its
power consumption (P states), until it finally reaches an idle state. The processor then has the ability
to selectively turn off parts of itself and enter deeper and deeper idle/sleep states, such as turn-
ing off caches. However, if the processor has to wake again, it will consume energy and take time to
power up; for this reason, processor designers will risk entering these lower idle/sleep states (C states)
only if the time spent in a given state outweighs the time and energy it takes to enter and exit the
state. Obviously, it makes no sense to spend 10 ms to enter a sleep state that will last only 1 ms. By
preventing clock interrupts from waking sleeping processors unless needed (due to timers), they can
enter deeper C-states and stay there longer.

Timer Coalescing

Although minimizing clock interrupts to sleeping processors during periods of no timer expiration
gives a big boost to longer C-state intervals, with a timer granularity of 15 ms, many timers likely will
be queued at any given hand and expiring often, even if just on processor 0. Reducing the amount
of software timer-expiration work would both help to decrease latency (by requiring less work at
DISPATCH_LEVEL) as well as allow other processors to stay in their sleep states even longer (because
we've established that the processors wake up only to handle expiring timers, fewer timer expirations
result in longer sleep times). In truth, it is not just the amount of expiring timers that really affects
sleep state (it does affect latency), but the periodicity of these timer expirations—six timers all expir-
ing at the same hand is a better option than six timers expiring at six different hands. Therefore, to
fully optimize idle-time duration, the kernel needs to employ a coalescing mechanism to combine
separate timer hands into an individual hand with multiple expirations.

Timer coalescing works on the assumption that most drivers and user-mode applications do
not particularly care about the exact firing period of their timers (except in the case of multimedia
applications, for example). This "don't care” region actually grows as the original timer period grows—
an application waking up every 30 seconds probably doesn’t mind waking up every 31 or 29 seconds
instead, while a driver polling every second could probably poll every second plus or minus 50 ms
without too many problems. The important guarantee most periodic timers depend on is that their
firing period remains constant within a certain range—for example, when a timer has been changed
to fire every second plus 50 ms, it continues to fire within that range forever, not sometimes at every
two seconds and other times at half a second. Even so, not all timers are ready to be coalesced into
coarser granularities, so Windows enables this mechanism only for timers that have marked them-
selves as coalescable, either through the KeSetCoalescableTimer kernel API or through its user-mode
counterpart, SetWaitableTimerEx.

With these APIs, driver and application developers are free to provide the kernel with the
maximum tolerance (or tolerably delay) that their timer will endure, which is defined as the maxi-
mum amount of time past the requested period at which the timer will still function correctly. (In
the previous example, the 1-second timer had a tolerance of 50 milliseconds.) The recommended
minimum tolerance is 32 ms, which corresponds to about twice the 15.6-ms clock tick—any smaller
value wouldn't really result in any coalescing, because the expiring timer could not be moved even
from one clock tick to the next. Regardless of the tolerance that is specified, Windows aligns the timer
to one of four preferred coalescing intervals: 1 second, 250 ms, 100 ms, or 50 ms.

122 Windows Internals, Sixth Edition, Part 1

When a tolerable delay is set for a periodic timer, Windows uses a process called shifting, which
causes the timer to drift between periods until it gets aligned to the most optimal multiple of the
period interval within the preferred coalescing interval associated with the specified tolerance
(which is then encoded in the dispatcher header). For absolute timers, the list of preferred coalescing
intervals is scanned, and a preferred expiration time is generated based on the closest acceptable
coalescing interval to the maximum tolerance the caller specified. This behavior means that absolute
timers are always pushed out as far as possible past their real expiration point, which spreads out
timers as far as possible and creates longer sleep times on the processors.

Now with timer coalescing, refer back to Figure 3-11 and assume all the timers specified tolerances
and are thus coalescable. In one scenario, Windows could decide to coalesce the timers as shown in
Figure 3-12. Notice that now, processor 1 receives a total of only three clock interrupts, significantly
increasing the periods of idle sleep, thus achieving a lower C-state. Furthermore, there is less work to
do for some of the clock interrupts on processor 0, possibly removing the latency of requiring a drop
to DISPATCH_LEVEL at each clock interrupt.

o AAA "

= A

o (RE .

m [NR] o

4] ‘o "

o] i "

o ,

=~ "

o >
Time

— AAAAA AA

1o} T "

2 i N

2 HEE N

I} IFERE] '

O i N

s i

- e

a >
Time

Timer Interrupt Software Timer Expiration ----- >

FIGURE 3-12 Timer coalescing

Exception Dispatching

In contrast to interrupts, which can occur at any time, exceptions are conditions that result directly
from the execution of the program that is running. Windows uses a facility known as structured
exception handling, which allows applications to gain control when exceptions occur. The application
can then fix the condition and return to the place the exception occurred, unwind the stack (thus
terminating execution of the subroutine that raised the exception), or declare back to the system that
the exception isn't recognized and the system should continue searching for an exception han-

dler that might process the exception. This section assumes you're familiar with the basic concepts
behind Windows structured exception handling—if you're not, you should read the overview in the
Windows API reference documentation in the Windows SDK or Chapters 23 through 25 in Jeffrey
Richter and Christophe Nasarre's book Windows via C/C++ (Microsoft Press, 2007) before proceed-
ing. Keep in mind that although exception handling is made accessible through language extensions
(for example, the __try construct in Microsoft Visual C++), it is a system mechanism and hence isn't
language specific.

System Mechanisms 123

On the x86 and x64 processors, all exceptions have predefined interrupt numbers that directly
correspond to the entry in the IDT that points to the trap handler for a particular exception. Table 3-6
shows x86-defined exceptions and their assigned interrupt numbers. Because the first entries of the
IDT are used for exceptions, hardware interrupts are assigned entries later in the table, as mentioned
earlier.

All exceptions, except those simple enough to be resolved by the trap handler, are serviced by
a kernel module called the exception dispatcher. The exception dispatcher’s job is to find an excep-
tion handler that can dispose of the exception. Examples of architecture-independent exceptions
that the kernel defines include memory-access violations, integer divide-by-zero, integer overflow,
floating-point exceptions, and debugger breakpoints. For a complete list of architecture-independent
exceptions, consult the Windows SDK reference documentation.

TABLE 3-6 x86 Exceptions and Their Interrupt Numbers

Interrupt Number Exception

0 Divide Error

1 Debug (Single Step)

2 Non-Maskable Interrupt (NMI)

3 Breakpoint

4 Overflow

5 Bounds Check

6 Invalid Opcode

7 NPX Not Available
Double Fault

9 NPX Segment Overrun

10 Invalid Task State Segment (TSS)

11 Segment Not Present

12 Stack Fault

13 General Protection

14 Page Fault

15 Intel Reserved

16 Floating Point

17 Alignment Check

18 Machine Check

19 SIMD Floating Point

The kernel traps and handles some of these exceptions transparently to user programs. For
example, encountering a breakpoint while executing a program being debugged generates an
exception, which the kernel handles by calling the debugger. The kernel handles certain other
exceptions by returning an unsuccessful status code to the caller.

124 Windows Internals, Sixth Edition, Part 1

A few exceptions are allowed to filter back, untouched, to user mode. For example, certain types of
memory-access violations or an arithmetic overflow generate an exception that the operating system
doesn’t handle. 32-bit applications can establish frame-based exception handlers to deal with these
exceptions. The term frame-based refers to an exception handler’s association with a particular proce-
dure activation. When a procedure is invoked, a stack frame representing that activation of the pro-
cedure is pushed onto the stack. A stack frame can have one or more exception handlers associated
with it, each of which protects a particular block of code in the source program. When an exception
occurs, the kernel searches for an exception handler associated with the current stack frame. If none
exists, the kernel searches for an exception handler associated with the previous stack frame, and so
on, until it finds a frame-based exception handler. If no exception handler is found, the kernel calls its
own default exception handlers.

For 64-bit applications, structured exception handling does not use frame-based handlers. Instead,
a table of handlers for each function is built into the image during compilation. The kernel looks for
handlers associated with each function and generally follows the same algorithm we described for
32-bit code.

Structured exception handling is heavily used within the kernel itself so that it can safely verify
whether pointers from user mode can be safely accessed for read or write access. Drivers can make
use of this same technique when dealing with pointers sent during I/O control codes (IOCTLs).

Another mechanism of exception handling is called vectored exception handling. This method can
be used only by user-mode applications. You can find more information about it in the Windows SDK
or the MSDN Library.

When an exception occurs, whether it is explicitly raised by software or implicitly raised by
hardware, a chain of events begins in the kernel. The CPU hardware transfers control to the kernel
trap handler, which creates a trap frame (as it does when an interrupt occurs). The trap frame allows
the system to resume where it left off if the exception is resolved. The trap handler also creates an
exception record that contains the reason for the exception and other pertinent information.

If the exception occurred in kernel mode, the exception dispatcher simply calls a routine to locate
a frame-based exception handler that will handle the exception. Because unhandled kernel-mode
exceptions are considered fatal operating system errors, you can assume that the dispatcher always
finds an exception handler. Some traps, however, do not lead into an exception handler because the
kernel always assumes such errors to be fatal—these are errors that could have been caused only by
severe bugs in the internal kernel code or by major inconsistencies in driver code (that could have
occurred only through deliberate, low-level system modifications that drivers should not be responsi-
ble for). Such fatal errors will result in a bug check with the UNEXPECTED_KERNEL_MODE_TRAP code.

If the exception occurred in user mode, the exception dispatcher does something more elaborate.
As you'll see in Chapter 5, the Windows subsystem has a debugger port (this is actually a debugger
object, which will be discussed later) and an exception port to receive notification of user-mode
exceptions in Windows processes. (In this case, by “port” we mean an LPC port object, which will
be discussed later in this chapter.) The kernel uses these ports in its default exception handling, as
illustrated in Figure 3-13.

System Mechanisms 125

126

Debugger breakpoints are common sources of exceptions. Therefore, the first action the exception
dispatcher takes is to see whether the process that incurred the exception has an associated debug-
ger process. If it does, the exception dispatcher sends a debugger object message to the debug object
associated with the process (which internally the system refers to as a “port” for compatibility with
programs that might rely on behavior in Windows 2000, which used an LPC port instead of a debug

object).

Debugger Debugger
port (first chance)
Trap
handler
Frame-based
i -
Exception e handlers
record -
Exception Debugger Debugger
dispatcher port (second chance)
Exception Environment
port subsystem
————» Function call Error port Windows Error
Reporting
—— ALPC
\\
\\
\\\
\\
S~ | Kernel default
‘A
handler

FIGURE 3-13 Dispatching an exception

If the process has no debugger process attached or if the debugger doesn't handle the exception,
the exception dispatcher switches into user mode, copies the trap frame to the user stack formatted
as a CONTEXT data structure (documented in the Windows SDK), and calls a routine to find a struc-
tured or vectored exception handler. If none is found or if none handles the exception, the exception
dispatcher switches back into kernel mode and calls the debugger again to allow the user to do more
debugging. (This is called the second-chance notification.)

If the debugger isn’t running and no user-mode exception handlers are found, the kernel sends
a message to the exception port associated with the thread’s process. This exception port, if one ex-
ists, was registered by the environment subsystem that controls this thread. The exception port gives
the environment subsystem, which presumabily is listening at the port, the opportunity to translate
the exception into an environment-specific signal or exception. For example, when Subsystem for
UNIX Applications gets a message from the kernel that one of its threads generated an exception,
Subsystem for UNIX Applications sends a UNIX-style signal to the thread that caused the exception.
However, if the kernel progresses this far in processing the exception and the subsystem doesn’t

Windows Internals, Sixth Edition, Part 1

handle the exception, the kernel sends a message to a systemwide error port that Csrss (Client/Server
Run-Time Subsystem) uses for Windows Error Reporting (WER)—which will be discussed shortly—and

executes a default exception handler that simply terminates the process whose thread caused the

exception.

Unhandled Exceptions

All Windows threads have an exception handler that processes unhandled exceptions. This exception
handler is declared in the internal Windows start-of-thread function. The start-of-thread function runs
when a user creates a process or any additional threads. It calls the environment-supplied thread start

routine specified in the initial thread context structure, which in turn calls the user-supplied thread

start routine specified in the CreateThread call.

EXPERIMENT: Viewing the Real User Start Address for Windows Threads

The fact that each Windows thread begins execution in a system-supplied function (and not
the user-supplied function) explains why the start address for thread 0 is the same for every
Windows process in the system (and why the start addresses for secondary threads are also the
same). To see the user-supplied function address, use Process Explorer or the kernel debugger.

Because most threads in Windows processes start at one of the system-supplied wrapper
functions, Process Explorer, when displaying the start address of threads in a process, skips the
initial call frame that represents the wrapper function and instead shows the second frame on

the stack. For example, notice the thread start address of a process running Notepad.exe:

j notepad.exe:#284 Properties

=N Nl =)

| Image I Performance I

Perfarmance Graph I Disk and Metwark ‘

| GPU Graph | Threads |TCP,|’IP | Security | Enwironment I Job I Skrings ‘

Count; 1

TID EF‘U Cycles Delta Start Address

notepad ex A ainCRT Startup

4|

1

| 3

Thread ID:
Start Time:
State:
Kernel Time:

User Time:

Cycles:

Conkext Switches:

512726 PM 1121j2011

Wait:WrllserRequest Base Prioriby: =]

0:00:00.031 Drynarnic Prioriky: 10

0:00:00.015 {0 Pricrity: Marmal

1,647 Memory Pricrity: =

90,217,906 Ideal Processor: 3
Permissions] [Kill] [Suspend]

System Mechanisms

127

Process Explorer does display the complete call hierarchy when it displays the call stack.
Notice the following results when the Stack button is clicked:

5 Stack for thread 8540 =

0 ntoskinl exelKiSwapContest+0:7 a

1 ntoskml exelKiCommitT hreadw ait+0x1d2
2 ntoskinlexelKew aitF orSingle0bject+0x1 9F
3 ntoskinlexelKiSuzpendT hread+0x54

4 ntoskinl exelKiDeliverdpo+0x201
5
g
7
g

ntoskml. exel KiCommitT hread ait+0x3dd
ntoskinl exelKew aitF orSingle0bject+0x1 9F
win3Zk. spsluxxRealSleepT hread+0x257
win32k. spslusxSleepT hread+0:59

9 win3Zk syslusxRealntemalGettd essage+0x7do

10 win32k. syslusslntemnalG et ezzage+ 0435

11 win32k spslMtUserGetMessage+0x70

12 ntoskinl exelKiSystemServiceCopyE nd+0x13

13 USER3Z dMIU serGettessage+lxa

14 USER3Z dilG et eszagein/+0x34

15 notepad.exel'inkd ain+0:182

16 notepad.exelDizplayMonGenuineD g orker+0x2da

17 kemel32.dlB aseT hreadinitT hunk+0xd

18 ntdlldlRHU serT hreadStart+0x1d

Line 18 in the preceding screen shot is the first frame on the stack—the start of the internal
thread wrapper. The second frame (line 17) is the environment subsystem’s thread wrapper—in
this case, kernel32, because you are dealing with a Windows subsystem application. The third
frame (line 16) is the main entry point into Notepad.exe.

The generic code for the internal thread start functions is shown here:

VOID RtlUserThreadStart(VOID)

{
LPVOID TpStartAddr = (R/E)AX; // Located in the initial thread context structure
LPVOID TpvThreadParam = (R/E)BX; // Located in the initial thread context structure
LPVOID TpWin32StartAddr;

TpWin32StartAddr = Kernel32ThreadInitThunkFunction ? Kernel32ThreadInitThunkFunction :
TpStartAddr;

__try

{
DWORD dwThreadExitCode = TpWin32StartAddr(1pvThreadParam);
Rt1ExitUserThread(dwThreadExitCode) ;

}

__except(Rt1pGetExceptionFilter(GetExceptionInformation()))

{

NtTerminateProcess(NtCurrentProcess(), GetExceptionCode());

128 Windows Internals, Sixth Edition, Part 1

VOID Win32StartOfProcess(
LPTHREAD_START_ROUTINE TpStartAddr,
LPVOID TpvThreadParam)

TpStartAddr(1pvThreadParam);

Notice that the Windows unhandled exception filter is called if the thread has an exception that it
doesn’t handle. The purpose of this function is to provide the system-defined behavior for what to do
when an exception is not handled, which is to launch the WerFault.exe process. However, in a default
configuration the Windows Error Reporting service, described next, will handle the exception and this
unhandled exception filter never executes.

WerFault.exe checks the contents of the HKLM\SOFTWARE\Microsoft\Windows NT
\CurrentVersion\AeDebug registry key and makes sure that the process isn't on the exclusion list.
There are two important values in the key: Auto and Debugger. Auto tells the unhandled exception
filter whether to automatically run the debugger or ask the user what to do. Installing development
tools, such as Microsoft Visual Studio, changes this value to 0 if it is already set. (If the value was not
set, 0 is the default option.) The Debugger value is a string that points to the path of the debug-
ger executable to run in the case of an unhandled exception, and WerFault passes the process ID of
the crashing process and an event name to signal when the debugger has started as command-line
arguments when it starts the debugger.

Windows Error Reporting

Windows Error Reporting (WER) is a sophisticated mechanism that automates the submission of both
user-mode process crashes as well as kernel-mode system crashes. (For a description of how this
applies to system crashes, see Chapter 14 in Part 2.)

Windows Error Reporting can be configured by going to Control Panel, choosing Action Center,
Change Action Center settings, and then Problem Reporting Settings.

When an unhandled exception is caught by the unhandled exception filter (described in the
previous section), it builds context information (such as the current value of the registers and stack)
and opens an ALPC port connection to the WER service. This service begins to analyze the crashed
program'’s state and performs the appropriate actions to notify the user. As described previously, in
most cases this means launching the WerFault.exe program, which executes with the current user’s
credentials and, unless the system is configured not to, displays a message box informing the user
of the crash. On systems where a debugger is installed, an additional option to debug the process is
shown, as you can see in Figure 3-14. When you click the Debug button, the debugger (registered in
the Debugger string value described earlier in the AeDebug key) will be launched so that it can attach
to the crashing process.

System Mechanisms 129

130

S Microsoft Windaws o] = =)
@ accvio.EXE has stopped working

Windows can check online for a solution to the problem,

* Check online for a solution and close the program
* Close the program

% Debug the program

() View problem details!

FIGURE 3-14 Windows Error Reporting dialog box

On default configured systems, an error report (@ minidump and an XML file with various details,
such as the DLL version numbers loaded in the process) is sent to Microsoft’s online crash analysis
server. Eventually, as the service is notified of a solution for a problem, it will display a tooltip to the
user informing her of steps that should be taken to solve the problem. An entry will also be displayed
in the Action Center. Furthermore, the Reliability Monitor will also show all instances of application
and system crashes.

Note WER will actively (visually) inform the user of a crashed application only if the
application has at least one visible/interactive window; otherwise, the crash will be logged,
but the user will have to manually visit the Action Center to view it. This behavior attempts
to avoid user confusion by not displaying a WER dialog box about an invisible crashed
process the user might not be aware of, such as a background service.

In environments where systems are not connected to the Internet or where the administrator
wants to control which error reports are submitted to Microsoft, the destination for the error report
can be configured to be an internal file server. Microsoft System Center Desktop Error Monitoring un-
derstands the directory structure created by Windows Error Reporting and provides the administrator
with the option to take selective error reports and submit them to Microsoft.

If all the operations we've described had to occur within the crashing thread’s context—that is, as
part of the unhandled exception filter that was initially set up—these complex steps would sometimes
become impossible for a badly damaged thread to perform, and the unhandled exception filter itself
would crash. This “silent process death” would be impossible to log, making it hard to debug and also
resulting in invisible crashes in cases where no user was present on the machine. To avoid such issues,
Windows" WER mechanism performs this work externally from the crashed thread if the unhandled
exception filter itself crashes, which allows any kind of process or thread crash to be logged and for
the user to be notified.

WER contains many customizable settings that can be configured by the user through the
Group Policy editor or by manually making changes to the registry. Table 3-7 lists the WER registry

Windows Internals, Sixth Edition, Part 1

configuration options, their use, and possible values. These values are located under the
HKLM\SOFTWARE\Microsoft\Windows\Windows Error Reporting subkey for computer configuration
and in the equivalent path under HKEY_CURRENT_USER for per-user configuration.

TABLE 3-7 WER Registry Settings

Setting

ConfigureArchive
Consent\DefaultConsent
Consent\DefaultOverrideBehavior

Consent\PluginName

CorporateWERDirectory
CorporateWERPortNumber

CorporateWERServer

CorporateWERUseAuthentication

CorporateWERUseSSL

DebugApplications

DisableArchive

Disabled

DisableQueue

DontShowU!

DontSendAdditionalData

ExcludedApplications\AppName

ForceQueue

LocalDumps\DumpFolder

LocalDumps\DumpCount

LocalDumps\DumpType

LocalDumps\CustomDumpFlags

Meaning
Contents of archived data
What kind of data should require

consent

Whether the DefaultConsent over-
rides WER plug-in consent values

Consent value for a specific WER
plug-in

Directory for a corporate WER store
Port to use for a corporate WER store

Name to use for a corporate WER
store

Use Windows Integrated
Authentication for corporate WER
store

Use Secure Sockets Layer (SSL) for
corporate WER store

List of applications that require the
user to choose between Debug and
Continue

Whether the archive is enabled
Whether WER is disabled

Determines whether reports are to
be queued

Disables or enables the WER Ul

Prevents additional crash data from
being sent

List of applications excluded from
WER

Whether reports should be sent to
the user queue

Path at which to store the dump files

Maximum number of dump files in
the path

Type of dump to generate during a
crash

For custom dumps, specifies custom
options

Values

1 for parameters, 2 for all data

1 for any data, 2 for parameters only, 3
for parameters and safe data, 4 for all
data.

1 to enable override

Same as DefaultConsent

String containing the path
Port number

String containing the name

1 to enable built-in authentication

1 to enable SSL

1 to require the user to choose

1 to disable archive
1 to disable WER

1 to disable queue

1 to disable Ul

1 not to send

String containing the application list

1 to send reports to the queue

String containing the path

Count

0 for a custom dump, 1 for a minidump,
2 for a full dump

Values defined in MINIDUMP_TYPE (see
Chapter 13, “Startup and Shutdown,” in
Part 2 for more information)

131

System Mechanisms

Setting Meaning Values
LoggingDisabled Enables or disables logging 1 to disable logging
MaxArchiveCount Maximum size of the archive (in files) | Value between 1-5000
MaxQueueCount Maximum size of the queue Value between 1-500
QueuePesterinterval Days between requests to have the Number of days

user check for solutions

Note The values listed under LocalDumps can also be configured per application by
adding the application name in the subkey path between LocalDumps and the relevant
value. However, they cannot be configured per user; they exist only in the HKLM path.

As discussed, the WER service uses an ALPC port for communicating with crashed processes.
This mechanism uses a systemwide error port that the WER service registers through
NtSetInformationProcess (which uses DbgkRegisterErrorPort). As a result, all Windows processes now
have an error port that is actually an ALPC port object registered by the WER service. The kernel,
which is first notified of an exception, uses this port to send a message to the WER service, which then
analyzes the crashing process. This means that even in severe cases of thread state damage, WER
will still be able to receive notifications and launch WerFault.exe to display a user interface instead
of having to do this work within the crashing thread itself. Additionally, WER will be able to gener-
ate a crash dump for the process, and a message will be written to the Event Log. This solves all the
problems of silent process death: users are notified, debugging can occur, and service administrators
can see the crash event.

System Service Dispatching

As Figure 3-1 illustrated, the kernel's trap handlers dispatch interrupts, exceptions, and system service
calls. In the preceding sections, you saw how interrupt and exception handling work; in this section,
you'll learn about system services. A system service dispatch is triggered as a result of executing an
instruction assigned to system service dispatching. The instruction that Windows uses for system
service dispatching depends on the processor on which it's executing.

System Service Dispatching

On x86 processors prior to the Pentium Il, Windows uses the int Ox2e instruction (46 decimal), which
results in a trap. Windows fills in entry 46 in the IDT to point to the system service dispatcher. (Refer to
Table 3-3.) The trap causes the executing thread to transition into kernel mode and enter the system
service dispatcher. A numeric argument passed in the EAX processor register indicates the system
service number being requested. The EDX register points to the list of parameters the caller passes

to the system service. To return to user mode, the system service dispatcher uses the iret (interrupt
return instruction).

132 Windows Internals, Sixth Edition, Part 1

=3
=2

=t y

On x86 Pentium Il processors and higher, Windows uses the sysenter instruction, which Intel
defined specifically for fast system service dispatches. To support the instruction, Windows stores at
boot time the address of the kernel’s system service dispatcher routine in a machine-specific register
(MSR) associated with the instruction. The execution of the instruction causes the change to kernel
mode and execution of the system service dispatcher. The system service number is passed in the EAX
processor register, and the EDX register points to the list of caller arguments. To return to user mode,
the system service dispatcher usually executes the sysexit instruction. (In some cases, like when the
single-step flag is enabled on the processor, the system service dispatcher uses the iret instead be-
cause sysexit does not allow returning to user-mode with a different EFLAGS register, which is needed
if sysenter was executed while the trap flag was set as a result of a user-mode debugger tracing or
stepping over a system call.)

Note Because certain older applications might have been hardcoded to use the int Ox2e
instruction to manually perform a system call (an unsupported operation), 32-bit Windows
keeps this mechanism usable even on systems that support the sysenter instruction by still
having the handler registered.

On the x64 architecture, Windows uses the syscall instruction, passing the system call number in
the EAX register, the first four parameters in registers, and any parameters beyond those four on the
stack.

On the 1A64 architecture, Windows uses the epc (Enter Privileged Mode) instruction. The first eight
system call arguments are passed in registers, and the rest are passed on the stack.

EXPERIMENT: Locating the System Service Dispatcher

As mentioned, 32-bit system calls occur through an interrupt, which means that the handler
needs to be registered in the IDT or through a special sysenter instruction that uses an MSR
to store the handler address at boot time. On certain 32-bit AMD systems, Windows uses the
syscall instruction instead, which is similar to the 64-bit syscall instruction. Here's how you can
locate the appropriate routine for either method:

1. To see the handler on 32-bit systems for the interrupt 2E version of the system call
dispatcher, type lidt 2e in the kernel debugger.

Tkd> !idt 2e
Dumping IDT:
2e: 8208c8ee nt!KiSystemService

2. To see the handler for the sysenter version, use the rdmsr debugger command to read
from the MSR register 0x176, which stores the handler:

Tkd> rdmsr 176
msr[176] = 00000000'8208c9c0

System Mechanisms 133

134

Tkd> Tn 00000000'8208c9c0
(8208c9c0) nt!KiFastCallEntry

If you have a 64-bit machine, you can look at the 64-bit service call dispatcher by
repeating this step, but using the 0xC0000082 MSR instead, which is used by the
syscall version for 64-bit code. You will see it corresponds to nt!KiSystemCall64:
Tkd> rdmsr c0000082
msr[c0000082] = fffff800'01la7lecO

Tkd> Tn fffff800'0la7lecO
(fffff800'01la7lec0) nt!KiSystemCall64

You can disassemble the KiSystemService or KiSystemCall64 routine with the u
command. On a 32-bit system, you'll eventually notice the following instructions:

nt!KiSystemService+0x7b:

8208c969 897d04 mov dword ptr [ebp+4],edi
8208c96¢c fb sti
8208c96d €9dd000000 jmp nt!KiFastCallEntry+0x8f (8208ca4f)

Because the actual system call dispatching operations are common regardless of the
mechanism used to reach the handler, the older interrupt-based handler simply calls into the

middle of the newer sysenter-based handler to perform the same generic tasks. The only parts
of the handlers that are different are related to the generation of the trap frame and the setup

of certain registers.

At boot time, 32-bit Windows detects the type of processor on which it's executing and sets up the
appropriate system call code to use by storing a pointer to the correct code in the SharedUserData

structure. The system service code for NtReadFile in user mode looks like this:

0:000> u ntdl1!NtReadFile
ntd11!ZwReadFile:

77020074
77020079
7702007e
77020080
77020083

The system service number is 0x102 (258 in decimal), and the call instruction executes the system
service dispatch code set up by the kernel, whose pointer is at address 0x7ffe0300. (This corresponds
to the SystemCallStub member of the KUSER_SHARED_DATA structure, which starts at 0x7FFE0000.)
Because the following output was taken from an Intel Core 2 Duo, it contains a pointer to sysenter:

b802010000 mov eax,102h

ba0003fe7f mov edx,offset SharedUserData!SystemCallStub (7ffe0300)
ff12 call dword ptr [edx]

22400 ret 24h

90 nop

0:000> dd SharedUserData!SystemCallStub 1 1
7ffe0300 7702030

0:000> u 7702030

ntd11!KiFastSystemCall:

7702030 8bd4 mov edx, esp
7702032 0f34 sysenter

Windows Internals, Sixth Edition, Part 1

Because 64-bit systems have only one mechanism for performing system calls, the system service
entry points in Ntdll.dll use the syscall instruction directly, as shown here:

ntd11!NtReadFile:

00000000'77f9fc60 4c8bdl mov rl10, rcx
00000000'77f9fc63 810200000 mov eax,0x102
00000000'77f9fc68 0f05 syscall
00000000'77f9fc6a c3 ret

Kernel-Mode System Service Dispatching

As Figure 3-15 illustrates, the kernel uses the system call number to locate the system service
information in the system service dispatch table. On 32-bit systems, this table is similar to the interrupt
dispatch table described earlier in the chapter except that each entry contains a pointer to a system
service rather than to an interrupt-handling routine. On 64-bit systems, the table is implemented
slightly differently—instead of containing pointers to the system service, it contains offsets relative to
the table itself. This addressing mechanism is more suited to the x64 application binary interface (ABI)
and instruction-encoding format.

Note System service numbers can change between service packs—Microsoft occasionally
adds or removes system services, and the system service numbers are generated
automatically as part of a kernel compile.

User mode
Kernel mode
System .
service call System service
dispatch table
System 0
T service 1
CIEEEEE \‘ 2 e——— System service 2
3
n

FIGURE 3-15 System service exceptions

The system service dispatcher, KiSystemService, copies the caller's arguments from the thread's
user-mode stack to its kernel-mode stack (so that the user can't change the arguments as the kernel
is accessing them) and then executes the system service. The kernel knows how many stack bytes
require copying by using a second table, called the argument table, which is a byte array (instead of
a pointer array like the dispatch table), each entry describing the number of bytes to copy. On 64-bit
systems, Windows actually encodes this information within the service table itself through a process
called system call table compaction. If the arguments passed to a system service point to buffers in

System Mechanisms 135

136

user space, these buffers must be probed for accessibility before kernel-mode code can copy data to
or from them. This probing is performed only if the previous mode of the thread is set to user mode.
The previous mode is a value (kernel or user) that the kernel saves in the thread whenever it executes
a trap handler and identifies the privilege level of the incoming exception, trap, or system call. As an
optimization, if a system call comes from a driver or the kernel itself, the probing and capturing of
parameters is skipped, and all parameters are assumed to be pointing to valid kernel-mode buffers
(also, access to kernel-mode data is allowed).

Because kernel-mode code can also make system calls, let’s look at the way these are done.
Because the code for each system call is in kernel mode and the caller is already in kernel mode, you
can see that there shouldn't be a need for an interrupt or sysenter operation: the CPU is already at the
right privilege level, and drivers, as well as the kernel, should only be able to directly call the func-
tion required. In the executive’s case, this is actually what happens: the kernel has access to all its own
routines and can simply call them just like standard routines. Externally, however, drivers can access
these system calls only if they have been exported just like other standard kernel-mode APIs. In fact,
quite a few of the system calls are exported. Drivers, however, are not supposed to access system calls
this way. Instead, drivers must use the Zw versions of these calls—that is, instead of NtCreateFile, they
must use ZwCreateFile. These Zw versions must also be manually exported by the kernel, and only a
handful are, but they are fully documented and supported.

The Zw versions are officially available only for drivers because of the previous mode concept
discussed earlier. Because this value is updated only each time the kernel builds a trap frame, its value
won't actually change across a simple API call—no trap frame is being generated. By calling a func-
tion such as NtCreateFile directly, the kernel preserves the previous mode value that indicates that it
is user mode, detects that the address passed is a kernel-mode address, and fails the call, correctly
asserting that user-mode applications should not pass kernel-mode pointers. However, this is not
actually what happens, so how can the kernel be aware of the correct previous mode? The answer lies
in the Zw calls.

These exported APIs are not actually simple aliases or wrappers around the Nt versions. Instead,
they are “trampolines” to the appropriate Nt system call, which use the same system call-dispatching
mechanism. Instead of generating an interrupt or a sysenter, which would be slow and/or unsupport-
ed, they build a fake interrupt stack (the stack that the CPU would generate after an interrupt) and call
the KiSystemService routine directly, essentially emulating the CPU interrupt. The handler executes the
same operations as if this call came from user mode, except it detects the actual privilege level this
call came from and set the previous mode to kernel. Now NtCreateFile sees that the call came from
the kernel and does not fail anymore. Here's what the kernel-mode trampolines look like on both
32-bit and 64-bit systems. The system call number is highlighted in bold.

Tkd> u nt!ZwReadFile
nt!ZwReadFile:

8207118 b802010000 mov eax,102h

8207f11d 8d542404 Tea edx, [esp+4]

8207121 9c pushfd

82071122 6a08 push 8

82071124 e8c5d70000 call nt!KiSystemService (8208c8ee)
8207129 c22400 ret 24h

Windows Internals, Sixth Edition, Part 1

Tkd> uf nt!ZwReadFile
nt!ZwReadFile:

fffff800'01a7a520 488bc4 mov rax, rsp

fffff800'01a7a523 fa cli

fffff800'01a7a524 4883ecl0 sub rsp,10h

fffff800'01a7a528 50 push rax

fffff800'01a7a529 9c pushfq

fffff800'01la7a52a 6al0 push 10h

fffff800'01a7a52c 488d05bd310000 Tea rax, [nt!KiServicelLinkage (fffff800'01a7d6f0)]
fffff800'01a7a533 50 push rax

fffff800'01a7a534 b803000000 mov eax,3

fffff800'01a7a539 €902690000 jmp nt!KiServiceInternal (fffff800'01a80e40)

As you'll see in Chapter 5, Windows has two system service tables, and third-party drivers cannot
extend the tables or insert new ones to add their own service calls. On 32-bit and IA64 versions of
Windows, the system service dispatcher locates the tables via a pointer in the thread kernel structure,
and on x64 versions it finds them via their global addresses. The system service dispatcher determines
which table contains the requested service by interpreting a 2-bit field in the 32-bit system service
number as a table index. The low 12 bits of the system service number serve as the index into the
table specified by the table index. The fields are shown in Figure 3-16.

Table Index
Index into table System service number
31 13 11 0
0 0
Native API Native API
1 1
Unused Win32k.sys API
KeServiceDescriptorTable KeServiceDescriptorTableShadow

FIGURE 3-16 System service number to system service translation

Service Descriptor Tables

A primary default array table, KeServiceDescriptorTable, defines the core executive system services
implemented in Ntosrknl.exe. The other table array, KeServiceDescriptorTableShadow, includes the
Windows USER and GDI services implemented in the kernel-mode part of the Windows subsystem,
Win32k.sys. On 32-bit and |A64 versions of Windows, the first time a Windows thread calls a Windows
USER or GDI service, the address of the thread’s system service table is changed to point to a table
that includes the Windows USER and GDI services. The KeAddSystemServiceTable function allows
Win32k.sys to add a system service table.

System Mechanisms 137

The system service dispatch instructions for Windows executive services exist in the system library
Ntdll.dll. Subsystem DLLs call functions in Ntdll to implement their documented functions. The
exception is Windows USER and GDI functions, for which the system service dispatch instructions
are implemented in User32.dll and Gdi32.dIl—Ntdll.dll is not involved. These two cases are shown in
Figure 3-17.

As shown in Figure 3-17, the Windows WriteFile function in Kernel32.dIl imports and calls the
WriteFile function in API-MS-Win-Core-File-L1-1-0.dll, one of the MinWin redirection DLLs (see
the next section for more information on API redirection), which in turn calls the WriteFile function
in KernelBase.dll, where the actual implementation lies. After some subsystem-specific parameter
checks, it then calls the NtWriteFile function in Ntdll.dll, which in turn executes the appropriate in-
struction to cause a system service trap, passing the system service number representing NtWriteFile.
The system service dispatcher (function KiSystemService in Ntoskrnl.exe) then calls the real NtWriteFile
to process the 1/0 request. For Windows USER and GDI functions, the system service dispatch calls
functions in the loadable kernel-mode part of the Windows subsystem, Win32k.sys.

Windows USER and

Windows kernel APls GDI APIs
Windows - o Call USER or

application Sl Ul 2 Application | Gpy service(...

WriteFile in | Call NtWriteFile | Windows-
Kernelbase.dll | Return to caller | specific
NtWriteFile in SYSENTER Used by all Gdi32.dll SYSENTER Windows-

Ntdildll | Return to caller |subsystems or User32.dll[Return to caller | specific
l l User mode

Software interrupt

>

KiSystemService
in Ntoskrnl.exe

Call NtWriteFile
Dismiss interrupt

!

NtWriteFile in
Ntoskrnl.exe

Do the operation
Return to caller

FIGURE 3-17 System service dispatching

138

Windows Internals, Sixth Edition, Part 1

Software interrupt

Kernel mode

3

Call Windows
routine
Dismiss interrupt

KiSystemService in
Ntoskrnl.exe

!

Do the operation
Return to caller

Service entry point
in Win32k.sys

»

-

EXPERIMENT: Mapping System Call Numbers to Functions and
Arguments

You can duplicate the same lookup performed by the kernel when dealing with a system call ID
to figure out which function is responsible for handling it and how many arguments it takes

1. The KeServiceDescriptorTable and KeServiceDescriptorTableShadow tables both point
to the same array of pointers (or offsets, on 64-bit) for kernel system calls, called
KiServiceTable, and the same array of stack bytes, called KiArgumentTable. On a 32-bit
system, you can use the kernel debugger command dds to dump the data along with
symbolic information. The debugger attempts to match each pointer with a symbol.
Here's a partial output:

Tkd> dds KiServiceTable

820807d0 821be2e5 nt!NtAcceptConnectPort

820807d4 820659a6 nt!NtAccessCheck

820807d8 8224a953 nt!NtAccessCheckAndAuditAlarm

820807dc 820659dd nt!NtAccessCheckByType

820807e0 82242992 nt!NtAccessCheckByTypeAndAuditAlarm

820807e4 82065al18 nt!NtAccessCheckByTypeResultList

820807e8 8224a9db nt!NtAccessCheckByTypeResultListAndAuditAlarm

820807ec 8224aa24 nt!NtAccessCheckByTypeResultListAndAuditAlarmByHandle
820807f0 822892af nt!NtAddAtom

2. Asdescribed earlier, 64-bit Windows organizes the system call table differently and
uses relative pointers (an offset) to system calls instead of the absolute addresses used
by 32-bit Windows. The base of the pointer is the KiServiceTable itself, so you'll have to
dump the data in its raw format with the dg command. Here's an example of output
from a 64-bit system:

Tkd> dg nt!KiServiceTable
fffff800'01a73b00 02f6f000'04106900 031a0105' fff72d00

3. Instead of dumping the entire table, you can also look up a specific number. On
32-bit Windows, because each system call number is an index into the table and
because each element is 4 bytes, you can use the following calculation: Handler
= KiServiceTable + Number * 4. Let's use the number 0x102, obtained during our
description of the NtReadFile stub code in Ntdll.dll.

Tkd> Tn poi(KiServiceTable + 102 * 4)
(82193023) nt!NtReadFile

On 64-bit Windows, each offset can be mapped to each function with the /n com-
mand, by shifting right by 4 bits (used as described earlier) and adding the remaining
value to the base of KiServiceTable itself, as shown here:

Tkd> Tn @@c++(((int*)@@(nt!KiServiceTable))[3] >> 4) + nt!KiServiceTable
(fffff800'01d9ch10) nt!NtReadFile | (fffff800'01d9d24c) nt!NtOpenFile

Exact matches:
nt!NtReadFile = <no type information>

System Mechanisms 139

@® ™

4. Because drivers, including kernel-mode rootkits, are able to patch this table on 32-bit
versions of Windows, which is something the operating system does not support, you
can use dds to dump the entire table and look for any values outside the range of valid
kernel addresses (dds will also make this clear by not being able to look up a symbol
for the function). On 64-bit Windows, Kernel Patch Protection monitors the system
service tables and crashes the system when it detects modifications.

J EXPERIMENT: Viewing System Service Activity

You can monitor system service activity by watching the System Calls/Sec performance counter
in the System object. Run the Performance Monitor, click on Performance Monitor under
Monitoring Tools, and click the Add button to add a counter to the chart. Select the System
object, select the System Calls/Sec counter, and then click the Add button to add the counter to
the chart.

-

Object Manager

As mentioned in Chapter 2, “System Architecture,” Windows implements an object model to provide
consistent and secure access to the various internal services implemented in the executive. This
section describes the Windows object manager, the executive component responsible for creating,
deleting, protecting, and tracking objects. The object manager centralizes resource control operations
that otherwise would be scattered throughout the operating system. It was designed to meet the
goals listed on the next page.

@l EXPERIMENT: Exploring the Object Manager

Throughout this section, you'll find experiments that show you how to peer into the object
manager database. These experiments use the following tools, which you should become
familiar with if you aren't already:

m WinObj (available from Sysinternals) displays the internal object manager’'s namespace
and information about objects (such as the reference count, the number of open handles,
security descriptors, and so forth).

m Process Explorer and Handle from Sysinternals, as well as Resource Monitor (introduced in
Chapter 1) display the open handles for a process.

m The Openfiles /query command displays the open file handles for a process, but it requires
a global flag to be set in order to operate.

m The kernel debugger 'handle command displays the open handles for a process.

140 Windows Internals, Sixth Edition, Part 1

WinObj provides a way to traverse the namespace that the object manager maintains. (As

we'll explain later, not all objects have names.) Run WinObj, and examine the layout, shown next.

@‘_Winﬂhi - Sysinternals: www.sysinternals.com 1Ol x|
File Wiew Help
By Mame ¢ | Type | symLink |
Archame DosDevices SymbolicLink. 177
BaseMamedObjects 1M gfs Dievice
Callback /1 CsrShSyncEvent Event
De.vice lEDFs SymbolicLink. \Device\DfsClient
. D.rlver /¥, D5Y¥SDBG.Debug, Trace.Memary,... Event
i FlleSystem A\ EFSIritEvert Evertt
GLOBAL?? /1 LanmanServerAnnounceEyvent Event
----- KernelObjects = .
_____ | KnownDlls ;LsaPerformance Section
_____ | knownDlls32 L MmcssApiPort ALPC Part
_____ LS ity Device

ObijectTypes £ PowerManitorPort ALPC Port

PSisS ! PawerPort ALPC Part
RPC Cartral ¥ REGISTRY Key
Security 4\ SAM_SERYICE_STARTED Evert

SeLsaCommandPort ALPC Port
SeRmCommandPort ALPC Port

Sessions
. UMDFCommunicationPorts

- | Windows SmdpiPart ALPC Port
Sm3sWinStationApiPort ALPC Port
@SystemRoot SymbolicLink. \Device\Harddisk0iPartition2)Windows
/0 UniqueInteractiveSessionIdEvent Event

UniqueSessionIdEvent Event
LExSmsApiPork ALPC Port
‘L4 WindowsErrorReportingServicePort - ALPC Port:

4

As noted previously, the Windows Openfiles /query command requires that a Windows

global flag called maintain objects list be enabled. (See the “Windows Global Flags” section later
in this chapter for more details about global flags.) If you type Openfiles /Local, it will tell you
whether the flag is enabled. You can enable it with the Openfiles /Local ON command. In either
case, you must reboot the system for the setting to take effect. Process Explorer, Handle, and
Resource Monitor do not require object tracking to be turned on because they query all system
handles and create a per-process object list.

The object manager was designed to meet the following goals:

Provide a common, uniform mechanism for using system resources

Isolate object protection to one location in the operating system to ensure uniform and
consistent object access policy

Provide a mechanism to charge processes for their use of objects so that limits can be placed
on the usage of system resources

Establish an object-naming scheme that can readily incorporate existing objects, such as the
devices, files, and directories of a file system, or other independent collections of objects

Support the requirements of various operating system environments, such as the ability of a
process to inherit resources from a parent process (needed by Windows and Subsystem for

System Mechanisms 141

UNIX Applications) and the ability to create case-sensitive file names (needed by Subsystem
for UNIX Applications)

m Establish uniform rules for object retention (that is, for keeping an object available until all
processes have finished using it)

m Provide the ability to isolate objects for a specific session to allow for both local and global
objects in the namespace

Internally, Windows has three kinds of objects: executive objects, kernel objects, and GDI/User
objects. Executive objects are objects implemented by various components of the executive (such as
the process manager, memory manager, 1/0 subsystem, and so on). Kernel objects are a more primi-
tive set of objects implemented by the Windows kernel. These objects are not visible to user-mode
code but are created and used only within the executive. Kernel objects provide fundamental capa-
bilities, such as synchronization, on which executive objects are built. Thus, many executive objects
contain (encapsulate) one or more kernel objects, as shown in Figure 3-18.

Name

Owned by the | HandleCount
object manager | ReferenceCount
Type

Owned by the

kernel Kernel object

Owned by the

. Executive object
executive

FIGURE 3-18 Executive objects that contain kernel objects

Note GDI/User objects, on the other hand, belong to the Windows subsystem
(Win32k.sys) and do not interact with the kernel. For this reason, they are outside the
scope of this book, but you can get more information on them from the Windows SDK.

Details about the structure of kernel objects and how they are used to implement synchronization
are given later in this chapter. The remainder of this section focuses on how the object manager
works and on the structure of executive objects, handles, and handle tables and just briefly describes
how objects are involved in implementing Windows security access checking; Chapter 6 thoroughly
covers that topic.

142 Windows Internals, Sixth Edition, Part 1

Executive Objects

Each Windows environment subsystem projects to its applications a different image of the operating
system. The executive objects and object services are primitives that the environment subsystems use
to construct their own versions of objects and other resources.

Executive objects are typically created either by an environment subsystem on behalf of a user
application or by various components of the operating system as part of their normal operation. For
example, to create a file, a Windows application calls the Windows CreateFileW function, implement-
ed in the Windows subsystem DLL Kernelbase.dll. After some validation and initialization, CreateFileW
in turn calls the native Windows service NtCreateFile to create an executive file object.

The set of objects an environment subsystem supplies to its applications might be larger or smaller
than the set the executive provides. The Windows subsystem uses executive objects to export its own
set of objects, many of which correspond directly to executive objects. For example, the Windows
mutexes and semaphores are directly based on executive objects (which, in turn, are based on cor-
responding kernel objects). In addition, the Windows subsystem supplies named pipes and mailslots,
resources that are based on executive file objects. Some subsystems, such as Subsystem for UNIX
Applications, don't support objects as objects at all. Subsystem for UNIX Applications uses executive
objects and services as the basis for presenting UNIX-style processes, pipes, and other resources to its
applications.

Table 3-8 lists the primary objects the executive provides and briefly describes what they
represent. You can find further details on executive objects in the chapters that describe the related
executive components (or in the case of executive objects directly exported to Windows, in the
Windows API reference documentation). You can see the full list of object types by running Winobj
with elevated rights and navigating to the ObjectTypes directory.

Note The executive implements a total of 4242 object types. Many of these objects are for
use only by the executive component that defines them and are not directly accessible by
Windows APIs. Examples of these objects include Driver, Device, and EventPair.

TABLE 3-8 Executive Objects Exposed to the Windows API

Object Type Represents

Process The virtual address space and control information necessary for the execution of a
set of thread objects.

Thread An executable entity within a process.

Job A collection of processes manageable as a single entity through the job.
Section A region of shared memory (known as a file-mapping object in Windows).

File An instance of an opened file or an I/O device.

Token The security profile (security ID, user rights, and so on) of a process or a thread.
Event An object with a persistent state (signaled or not signaled) that can be used for

synchronization or notification.

System Mechanisms 143

Object Type

Semaphore

Mutex
Timer

loCompletion

Key

Directory

TpWorkerFactory

TmRm (Resource Manager),
TmTx (Transaction), TmTm
(Transaction Manager),
TmEn (Enlistment)

WindowStation

Desktop

PowerRequest

EtwConsumer

EtwRegistration

Represents

A counter that provides a resource gate by allowing some maximum number of
threads to access the resources protected by the semaphore.

A synchronization mechanism used to serialize access to a resource.
A mechanism to notify a thread when a fixed period of time elapses.

A method for threads to enqueue and dequeue notifications of the completion of
I/O operations (known as an /O completion port in the Windows API).

A mechanism to refer to data in the registry. Although keys appear in the object
manager namespace, they are managed by the configuration manager, in a way
similar to that in which file objects are managed by file system drivers. Zero or more
key values are associated with a key object; key values contain data about the key.

A virtual directory in the object manager’s namespace responsible for containing
other objects or object directories.

A collection of threads assigned to perform a specific set of tasks. The kernel can
manage the number of work items that will be performed on the queue, how many
threads should be responsible for the work, and dynamic creation and termination
of worker threads, respecting certain limits the caller can set. Windows exposes the
worker factory object through thread pools.

Objects used by the Kernel Transaction Manager (KTM) for various transactions
and/or enlistments as part of a resource manager or transaction manager. Objects
can be created through the CreateTransactionManager, CreateResourceManager,
CreateTransaction, and CreateEnlistment APIs.

An object that contains a clipboard, a set of global atoms, and a group of Desktop
objects.

An object contained within a window station. A desktop has a logical display
surface and contains windows, menus, and hooks.

An object associated with a thread that executes, among other things, a call to
SetThreadExecutionState to request a given power change, such as blocking sleeps
(due to a movie being played, for example).

Represents a connected ETW real-time consumer that has registered with the
StartTrace API (and can call ProcessTrace to receive the events on the object queue).

Represents the registration object associated with a user-mode (or kernel-mode)
ETW provider that registered with the EventRegister API.

Note Because Windows NT was originally supposed to support the OS/2 operating
system, the mutex had to be compatible with the existing design of OS/2 mutual-exclusion
objects, a design that required that a thread be able to abandon the object, leaving it
inaccessible. Because this behavior was considered unusual for such an object, another
kernel object—the mutant—was created. Eventually, OS/2 support was dropped, and the
object became used by the Windows 32 subsystem under the name mutex (but it is still
called mutant internally).

144 Windows Internals, Sixth Edition, Part 1

Object Structure

As shown in Figure 3-19, each object has an object header and an object body. The object manager
controls the object headers, and the owning executive components control the object bodies of the
object types they create. Each object header also contains an index to a special object, called the
type object, that contains information common to each instance of the object. Additionally, up to five
optional subheaders exist: the name information header, the quota information header, the process
information header, the handle information header, and the creator information header.

Object name

Object directory

Security descriptor

Object name 7
Object directory /
Object Security descriptor
header |Quota charges
Open handle count
Open handles list ~
Object type
Reference count

W\

\

Quota charges

Open handles list +— %

[\

Object Type Table

Object _ »
body | Object-specific data 034DEF0 Type object
2A1DDAF
6D3AED4 ™~ Type name
0A3C44A1 ol T
3DF12AB4 Default quota charges
Access types

Generic access rights mapping
Synchronizable? (Y/N)
Methods:

Open, close, delete,

parse, security,

query name

FIGURE 3-19 Structure of an object

Object Headers and Bodies

The object manager uses the data stored in an object’s header to manage objects without regard
to their type. Table 3-9 briefly describes the object header fields, and Table 3-10 describes the fields
found in the optional object subheaders.

System Mechanisms 145

TABLE 3-9 Object Header Fields

Field
Handle count

Pointer count

Purpose
Maintains a count of the number of currently opened handles to the object.
Maintains a count of the number of references to the object (including one reference for

each handle). Kernel-mode components can reference an object by pointer without using
a handle.

Security descriptor Determines who can use the object and what they can do with it. Note that unnamed

Object type index

Subheader mask

Flags

Lock

objects, by definition, cannot have security.

Contains the index to a type object that contains attributes common to objects of this type.
The table that stores all the type objects is ObTypelndexTable.

Bitmask describing which of the optional subheader structures described in Table

3-10 are present, except for the creator information subheader, which, if present,

always precedes the object. The bitmask is converted to a negative offset by using the
ObplnfoMaskToOffset table, with each subheader being associated with a 1-byte index that
places it relative to the other subheaders present.

Characteristics and object attributes for the object. See Table 3-12 for a list of all the object
flags.

Per-object lock used when modifying fields belonging to this object header or any of its
subheaders.

In addition to the object header, which contains information that applies to any kind of object, the
subheaders contain optional information regarding specific aspects of the object. Note that these
structures are located at a variable offset from the start of the object header, the value of which

depends on the

number of subheaders associated with the main object header (except, as mentioned

earlier, for creator information). For each subheader that is present, the InfoMask field is updated to
reflect its existence. When the object manager checks for a given subheader, it checks if the corre-
sponding bit is set in the InfoMask and then uses the remaining bits to select the correct offset into
the ObpinfoMaskToOffset table, where it finds the offset of the subheader from the start of the object

header.

These offsets exist for all possible combinations of subheader presence, but because the
subheaders, if present, are always allocated in a fixed, constant order, a given header will have only
as many possible locations as the maximum number of subheaders that precede it. For example,
because the name information subheader is always allocated first, it has only one possible offset.
On the other hand, the handle information subheader (which is allocated third) has three possible

locations, becau

se it might or might not have been allocated after the quota subheader, itself hav-

ing possibly been allocated after the name information. Table 3-10 describes all the optional object

subheaders and

their location. In the case of creator information, a value in the object header flags

determines whether the subheader is present. (See Table 3-12 for information about these flags.)

TABLE 3-10 Optional Object Subheaders

Name

Creator
information

Purpose Bit Location

Links the object into a list for all the objects 0 (0x1) Object header -

of the same type, and records the process ObpinfoMaskToOffset[0])
that created the object, along with a back

trace.

146 Windows Internals, Sixth Edition, Part 1

Name Purpose Bit Location

Name Contains the object name, responsible for 1 (0x2) Object header - ObpInfoMaskToOffset -
information making an object visible to other processes ObpInfoMaskToOffset[InfoMask & 0x3]

for sharing, and a pointer to the object direc-
tory, which provides the hierarchical structure
in which the object names are stored.

Handle Contains a database of entries (or just a single | 2 (0x4) Object header -

information entry) for a process that has an open handle ObpinfoMaskToOffset[InfoMask & 0x7]
to the object (along with a per-process
handle count).

Quota Lists the resource charges levied against a 3 (0x8) Object header -
information process when it opens a handle to the object. ObpinfoMaskToOffset[InfoMask & 0xF]
Process Contains a pointer to the owning process 4 (0x10) | Object header -
information if this is an exclusive object. More informa- ObpinfoMaskToOffset[InfoMask & 0x1F]
tion on exclusive objects follows later in the
chapter.

Each of these subheaders is optional and is present only under certain conditions, either during
system boot up or at object creation time. Table 3-11 describes each of these conditions.

TABLE 3-11 Conditions Required for Presence of Object Subheaders

Name Condition

Name information The object must have been created with a name.

Quota information The object must not have been created by the initial (or idle) system process.
Process information The object must have been created with the exclusive object flag. (See Table 3-12 for

information about object flags.)

Handle information The object type must have enabled the maintain handle count flag. File objects, ALPC objects,
WindowsStation objects, and Desktop objects have this flag set in their object type structure.

Creator information The object type must have enabled the maintain type list flag. Driver objects have this flag
set if the Driver Verifier is enabled. However, enabling the maintain object type list global flag
(discussed earlier) will enable this for all objects, and Type objects always have the flag set.

Finally, a number of attributes and/or flags determine the behavior of the object during creation
time or during certain operations. These flags are received by the object manager whenever any new
object is being created, in a structure called the object attributes. This structure defines the object
name, the root object directory where it should be inserted, the security descriptor for the object, and
the object attribute flags. Table 3-12 lists the various flags that can be associated with an object.

Note When an object is being created through an APl in the Windows subsystem (such as
CreateEvent or CreateFile), the caller does not specify any object attributes—the subsys-
tem DLL performs the work behind the scenes. For this reason, all named objects created
through Win32 go in the BaseNamedObjects directory, either the global or per-session
instance, because this is the root object directory that Kernelbase.dll specifies as part of the
object attributes structure. More information on BaseNamedObjects and how it relates to
the per-session namespace will follow later in this chapter.

System Mechanisms 147

TABLE 3-12 Object Flags

Attributes Flag
OBJ_INHERIT

OBJ_PERMANENT

OBJ_EXCLUSIVE

OBJ_CASE_INSENSITIVE

OBJ_OPENIF

OBJ_OPENLINK

OBJ_KERNEL_HANDLE

OBJ_FORCE_ACCESS_CHECK

OBJ_KERNEL_EXCLUSIVE

N/A

N/A

N/A

N/A

Header Flag

Saved in the handle table entry

OB_FLAG_PERMANENT_OBJECT

OB_FLAG_EXCLUSIVE_OBJECT

Stored in the handle table entry

Not stored, used at run time

Not stored, used at run time

OB_FLAG_KERNEL_OBJECT

Not stored, used at run time

OB_FLAG_KERNEL_ONLY_ACCESS

OF_FLAG_DEFAULT_SECURITY_QUOTA

OB_FLAG_SINGLE_HANDLE_ENTRY

OB_FLAG_NEW_OBJECT

OB_FLAG_DELETED_INLINE

Purpose

Determines whether the handle to the
object will be inherited by child pro-
cesses, and whether a process can use
DuplicateHandle to make a copy.

Defines object retention behavior related to
reference counts, described later.

Specifies that the object can be used only
by the process that created it.

Specifies that lookups for this object in the
namespace should be case insensitive. It
can be overridden by the case insensitive
flag in the object type.

Specifies that a create operation for this
object name should result in an open, if the
object exists, instead of a failure.

Specifies that the object manager should
open a handle to the symbolic link, not the
target.

Specifies that the handle to this object
should be a kernel handle (more on this
later).

Specifies that even if the object is being
opened from kernel mode, full access
checks should be performed.

Disables any user-mode process from
opening a handle to the object; used
to protect the /Device/PhysicalMemory
section object.

Specifies that the object’s security
descriptor is using the default 2-KB quota.

Specifies that the handle information
subheader contains only a single entry and
not a database.

Specifies that the object has been created
but not yet inserted into the object
namespace.

Specifies that the object is being deleted
through the deferred deletion worker thread.

In addition to an object header, each object has an object body whose format and contents are
unique to its object type; all objects of the same type share the same object body format. By creating
an object type and supplying services for it, an executive component can control the manipulation of
data in all object bodies of that type. Because the object header has a static and well-known size, the
object manager can easily look up the object header for an object simply by subtracting the size of
the header from the pointer of the object. As explained earlier, to access the subheaders, the object
manager subtracts yet another well-known value from the pointer of the object header.

148 Windows Internals, Sixth Edition, Part 1

Because of the standardized object header and subheader structures, the object manager is able
to provide a small set of generic services that can operate on the attributes stored in any object
header and can be used on objects of any type (although some generic services don't make sense for
certain objects). These generic services, some of which the Windows subsystem makes available to
Windows applications, are listed in Table 3-13.

Although these generic object services are supported for all object types, each object has its own
create, open, and query services. For example, the I/0 system implements a create file service for its
file objects, and the process manager implements a create process service for its process objects.

Although a single create object service could have been implemented, such a routine would have
been quite complicated, because the set of parameters required to initialize a file object, for example,
differs markedly from that required to initialize a process object. Also, the object manager would have
incurred additional processing overhead each time a thread called an object service to determine the
type of object the handle referred to and to call the appropriate version of the service.

TABLE 3-13 Generic Object Services

Service Purpose
Close Closes a handle to an object
Duplicate Shares an object by duplicating a handle and giving it to another process
Make permanent/temporary Changes the retention of an object (described later)
Query object Gets information about an object’s standard attributes
Query security Gets an object’s security descriptor
Set security Changes the protection on an object
Wait for a single object Synchronizes a thread’s execution with one object
Signal an object and wait for another Signals an object (such as an event), and synchronizes a thread’s execution
with another
Wait for multiple objects Synchronizes a thread's execution with multiple objects
Type Objects

Object headers contain data that is common to all objects but that can take on different values for
each instance of an object. For example, each object has a unique name and can have a unique
security descriptor. However, objects also contain some data that remains constant for all objects of

a particular type. For example, you can select from a set of access rights specific to a type of object
when you open a handle to objects of that type. The executive supplies terminate and suspend access
(among others) for thread objects and read, write, append, and delete access (among others) for file
objects. Another example of an object-type-specific attribute is synchronization, which is described
shortly.

To conserve memory, the object manager stores these static, object-type-specific attributes once
when creating a new object type. It uses an object of its own, a type object, to record this data. As
Figure 3-20 illustrates, if the object-tracking debug flag (described in the “Windows Global Flags”

System Mechanisms 149

section later in this chapter) is set, a type object also links together all objects of the same type (in this
case, the process type), allowing the object manager to find and enumerate them, if necessary. This
functionality takes advantage of the creator information subheader discussed previously.

Process

type

object

| Process _|

Object 1
Process Process Process

L —S —40 —

Object 2 Object 3 Object 4

FIGURE 3-20 Process objects and the process type object

UUT EXPERIMENT: Viewing Object Headers and Type Objects

You can look at the process object type data structure in the kernel debugger by first
identifying a process object with the !process command:
Tkd> !process 0 0
«% NT ACTIVE PROCESS DUMP ¥
PROCESS fffffa800279cae0
SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000

DirBase: 00187000 ObjectTable: fffff8a000001920 HandleCount: 541.
Image: System

Then execute the /object command with the process object address as the argument:

Tkd> !object fffffa800279cael

Object: fffffa800279cae0 Type: (fffffa8002755b60) Process
ObjectHeader: fffffa800279cab0 (new version)
HandleCount: 3 PointerCount: 172 3172

Notice that on 32-bit Windows, the object header starts 0x18 (24 decimal) bytes prior to the
start of the object body, and on 64-bit Windows, it starts 0x30 (48 decimal) bytes prior—the
size of the object header itself. You can view the object header with this command:

Tkd> dt nt!_OBJECT_HEADER fffffa800279cab0

+0x000 PointerCount ;172

+0x008 HandleCount 1 33

+0x008 NextToFree : 0x000000000x00000000' 00000003
+0x010 Lock 1 _EX_PUSH_LOCK

150 Windows Internals, Sixth Edition, Part 1

+0x018 TypeIndex : 0x7 '

+0x019 TraceFlags 0"’
+0x01a InfoMask 0"
+0x01b Flags : 0x2 '

+0x020 ObjectCreateInfo : Oxfffff800'01c53a80 _OBJECT_CREATE_INFORMATION
+0x020 QuotaBlockCharged : Oxfffff800'01c53a80

+0x028 SecurityDescriptor : Oxfffff8a0'00004b29

+0x030 Body : _QUAD

Now look at the object type data structure by obtaining its address from the
ObTypelndexTable table for the entry associated with the Typelndex field of the object header
data structure:

Tkd> ?? ((nt!_OBJECT_TYPE**)@@(nt!0bTypeIndexTable))[((nt!_OBJECT_

HEADER*) Oxfffffa800279cab0)->TypeIndex]
struct _OBJECT_TYPE * Oxfffffa80'02755b60

+0x000 Typelist : _LIST_ENTRY [Oxfffffa80'02755b60 - Oxfffffa80'02755b60]
+0x010 Name : _UNICODE_STRING "Process"

+0x020 DefaultObject : (nul1l)

+0x028 Index 1 0x70x7 "'

+0x02c TotalNumberOfObjects : 0x380x38
+0x030 TotalNumberOfHandles : 0x1320x132
+0x034 HighWaterNumberOfObjects : 0x3d
+0x038 HighWaterNumberOfHandles : 0x13c

+0x040 TypelInfo : _OBJECT_TYPE_INITIALIZER

+0x0b0 Typelock : _EX_PUSH_LOCK

+0x0b8 Key : 0x6367250

+0x0c0 CallbackList : _LIST_ENTRY [Oxfffffa80'02755c20 - Oxfffffa80'02755c20]

The output shows that the object type structure includes the name of the object type, tracks
the total number of active objects of that type, and tracks the peak number of handles and
objects of that type. The CallbackList also keeps track of any object manager filtering callbacks
that are associated with this object type. The Typelnfo field stores the pointer to the data struc-
ture that stores attributes common to all objects of the object type as well as pointers to the
object type’s methods:

Tkd> ?? ((nt!_OBJECT_TYPE*)Oxfffffa8002755b60)->TypeInfo*)0Oxfffffa8002755b60)->Typelnfo
+0x000 Length : 0x70
+0x002 ObjectTypeFlags : Ox4a ']’
+0x002 Caselnsensitive : 0y0
+0x002 UnnamedObjectsOnly : Oyl
+0x002 UseDefaultObject : 0y0
+0x002 SecurityRequired : Oyl
+0x002 MaintainHandleCount : 0y0
+0x002 MaintainTypeList : 0y0
+0x002 SupportsObjectCallbacks : Oyl

+0x004 ObjectTypeCode 0

+0x008 InvalidAttributes : 0xb0

+0x00c GenericMapping : _GENERIC_MAPPING
+0x01c ValidAccessMask : Ox1fffff

+0x020 RetainAccess : 0x101000

+0x024 Pool1Type : 0 (NonPagedPool)

+0x028 DefaultPagedPoolCharge : 0x1000

System Mechanisms 151

+0x02c DefaultNonPagedPoolCharge : 0x528

+0x030 DumpProcedure HEGIIRD)

+0x038 OpenProcedure : Oxfffff800'01d98d58 long nt!PspProcessOpen+0

+0x040 CloseProcedure : Oxfffff800'01d833c4 void nt!PspProcessClose+0

+0x048 DeleteProcedure : Oxfffff800'01d83090 void nt!PspProcessDelete+0
+0x050 ParseProcedure t (nu1D)

+0x058 SecurityProcedure : Oxfffff800'01d8bb50 Tong nt!SeDefaultObjectMethod+0

+0x060 QueryNameProcedure : (null)
+0x068 OkayToCloseProcedure : (null)

Type objects can't be manipulated from user mode because the object manager supplies no
services for them. However, some of the attributes they define are visible through certain native
services and through Windows API routines. The information stored in the type initializers is described
in Table 3-14.

TABLE 3-14 Type Initializer Fields

Attribute Purpose

Type name The name for objects of this type (“process,” “event,” “port,” and so on).

Pool type Indicates whether objects of this type should be allocated from paged or
nonpaged memory.

Default quota charges Default paged and nonpaged pool values to charge to process quotas.

Valid access mask The types of access a thread can request when opening a handle to an object of
this type (“read,” “write,” “terminate,” “suspend,” and so on).

Generic access rights mapping A mapping between the four generic access rights (read, write, execute, and all)

to the type-specific access rights.

Flags Indicate whether objects must never have names (such as process objects),
whether their names are case-sensitive, whether they require a security descriptor,
whether they support object-filtering callbacks, and whether a handle database
(handle information subheader) and/or a type-list linkage (creator information
subheader) should be maintained. The use default object flag also defines the
behavior for the default object field shown later in this table.

Object type code Used to describe the type of object this is (versus comparing with a well-known
name value). File objects set this to I, synchronization objects set this to 2,

and thread objects set this to 4. This field is also used by ALPC to store handle
attribute information associated with a message.

Invalid attributes Specifies object attribute flags (shown earlier in Table 3-12) that are invalid for this
object type.
Default object Specifies the internal object manager event that should be used during waits for

this object, if the object type creator requested one. Note that certain objects,
such as File objects and ALPC port objects already contain their own embedded
dispatcher object; in this case, this field is an offset into the object body. For ex-
ample, the event inside the FILE_OBJECT structure is embedded in a field called
Event.

Methods One or more routines that the object manager calls automatically at certain
points in an object’s lifetime.

152 Windows Internals, Sixth Edition, Part 1

Synchronization, one of the attributes visible to Windows applications, refers to a thread’s ability
to synchronize its execution by waiting for an object to change from one state to another. A thread
can synchronize with executive job, process, thread, file, event, semaphore, mutex, and timer objects.
Other executive objects don't support synchronization. An object’s ability to support synchronization
is based on three possibilities:

m The executive object is a wrapper for a dispatcher object and contains a dispatcher header, a
kernel structure that is covered in the section “Low-IRQL Synchronization” later in this chapter.

m The creator of the object type requested a default object, and the object manager provided
one.

m The executive object has an embedded dispatcher object, such as an event somewhere inside
the object body, and the object’s owner supplied its offset to the object manager when
registering the object type (described in Table 3-14).

Object Methods

The last attribute in Table 3-14, methods, comprises a set of internal routines that are similar to C++
constructors and destructors—that is, routines that are automatically called when an object is created
or destroyed. The object manager extends this idea by calling an object method in other situations
as well, such as when someone opens or closes a handle to an object or when someone attempts to
change the protection on an object. Some object types specify methods whereas others don't, de-
pending on how the object type is to be used.

When an executive component creates a new object type, it can register one or more methods
with the object manager. Thereafter, the object manager calls the methods at well-defined points in
the lifetime of objects of that type, usually when an object is created, deleted, or modified in some
way. The methods that the object manager supports are listed in Table 3-15.

The reason for these object methods is to address the fact that, as you've seen, certain object
operations are generic (close, duplicate, security, and so on). Fully generalizing these generic routines
would have required the designers of the object manager to anticipate all object types. However, the
routines to create an object type are exported by the kernel, enabling external kernel components to
create their own object types. Although this functionality is not documented for driver developers,
it is internally used by Win32k.sys to define WindowStation and Desktop objects. Through object-
method extensibility, Win32k.sys defines its routines for handling operations such as create and query.

One exception to this rule is the security routine, which does, unless otherwise instructed, default
to SeDefaultObjectMethod. This routine does not need to know the internal structure of the object
because it deals only with the security descriptor for the object, and you've seen that the pointer to
the security descriptor is stored in the generic object header, not inside the object body. However, if
an object does require its own additional security checks, it can define a custom security routine. The
other reason for having a generic security method is to avoid complexity, because most objects rely
on the security reference monitor to manage their security.

System Mechanisms 153

TABLE 3-15 Object Methods

Method When Method Is Called

Open When an object handle is opened

Close When an object handle is closed

Delete Before the object manager deletes an object

Query name When a thread requests the name of an object, such as a file, that exists in a secondary object
namespace

Parse When the object manager is searching for an object name that exists in a secondary object
namespace

Dump Not used

Okay to close When the object manager is instructed to close a handle

Security When a process reads or changes the protection of an object, such as a file, that exists in a
secondary object namespace

The object manager calls the open method whenever it creates a handle to an object, which it
does when an object is created or opened. The WindowStation and Desktop objects provide an open
method; for example, the WindowStation object type requires an open method so that Win32k.sys
can share a piece of memory with the process that serves as a desktop-related memory pool.

An example of the use of a close method occurs in the I/O system. The I/O manager registers
a close method for the file object type, and the object manager calls the close method each time
it closes a file object handle. This close method checks whether the process that is closing the file
handle owns any outstanding locks on the file and, if so, removes them. Checking for file locks isn't
something the object manager itself can or should do.

The object manager calls a delete method, if one is registered, before it deletes a temporary
object from memory. The memory manager, for example, registers a delete method for the section
object type that frees the physical pages being used by the section. It also verifies that any internal
data structures the memory manager has allocated for a section are deleted before the section object
is deleted. Once again, the object manager can’t do this work because it knows nothing about the
internal workings of the memory manager. Delete methods for other types of objects perform similar
functions.

The parse method (and similarly, the query name method) allows the object manager to relinquish
control of finding an object to a secondary object manager if it finds an object that exists outside
the object manager namespace. When the object manager looks up an object name, it suspends its
search when it encounters an object in the path that has an associated parse method. The object
manager calls the parse method, passing to it the remainder of the object name it is looking for.
There are two namespaces in Windows in addition to the object manager’s: the registry namespace,
which the configuration manager implements, and the file system namespace, which the I/O manager
implements with the aid of file system drivers. (See Chapter 4, “Management Mechanisms,” for more
information on the configuration manager and Chapter 8 in Part 2 for more details about the 1/0
manager and file system drivers.)

154 Windows Internals, Sixth Edition, Part 1

For example, when a process opens a handle to the object named \Device\HarddiskVolumel\docs
\resume.doc, the object manager traverses its name tree until it reaches the device object named
HarddiskVVolumel. It sees that a parse method is associated with this object, and it calls the method,
passing to it the rest of the object name it was searching for—in this case, the string docs\resume.doc.
The parse method for device objects is an I/0 routine because the I/O manager defines the device
object type and registers a parse method for it. The I/O manager’s parse routine takes the name
string and passes it to the appropriate file system, which finds the file on the disk and opens it.

The security method, which the 1/0 system also uses, is similar to the parse method. It is called
whenever a thread tries to query or change the security information protecting a file. This information
is different for files than for other objects because security information is stored in the file itself rather
than in memory. The I/O system, therefore, must be called to find the security information and read
or change it.

Finally, the okay-to-close method is used as an additional layer of protection around the mali-
cious—or incorrect—closing of handles being used for system purposes. For example, each process
has a handle to the Desktop object or objects on which its thread or threads have windows visible.
Under the standard security model, it is possible for those threads to close their handles to their
desktops because the process has full control of its own objects. In this scenario, the threads end up
without a desktop associated with them—a violation of the windowing model. Win32k.sys registers
an okay-to-close routine for the Desktop and WindowStation objects to prevent this behavior.

Object Handles and the Process Handle Table

When a process creates or opens an object by name, it receives a handle that represents its access

to the object. Referring to an object by its handle is faster than using its name because the object
manager can skip the name lookup and find the object directly. Processes can also acquire handles to
objects by inheriting handles at process creation time (if the creator specifies the inherit handle flag
on the CreateProcess call and the handle was marked as inheritable, either at the time it was cre-
ated or afterward by using the Windows SetHandlelnformation function) or by receiving a duplicated
handle from another process. (See the Windows DuplicateHandle function.)

All user-mode processes must own a handle to an object before their threads can use the object.
Using handles to manipulate system resources isn't a new idea. C and Pascal (an older programming
language similar to Delphi) run-time libraries, for example, return handles to opened files. Handles
serve as indirect pointers to system resources; this indirection keeps application programs from
fiddling directly with system data structures.

Object handles provide additional benefits. First, except for what they refer to, there is no
difference between a file handle, an event handle, and a process handle. This similarity provides a
consistent interface to reference objects, regardless of their type. Second, the object manager has
the exclusive right to create handles and to locate an object that a handle refers to. This means that
the object manager can scrutinize every user-mode action that affects an object to see whether the
security profile of the caller allows the operation requested on the object in question.

System Mechanisms 155

Note Executive components and device drivers can access objects directly because they
are running in kernel mode and therefore have access to the object structures in system
memory. However, they must declare their usage of the object by incrementing the refer-
ence count so that the object won't be de-allocated while it's still being used. (See the
section “Object Retention” later in this chapter for more details.) To successfully make use
of this object, however, device drivers need to know the internal structure definition of the
object, and this is not provided for most objects. Instead, device drivers are encouraged to
use the appropriate kernel APIs to modify or read information from the object. For exam-
ple, although device drivers can get a pointer to the Process object (EPROCESS), the struc-
ture is opaque, and Ps* APIs must be used. For other objects, the type itself is opaque (such
as most executive objects that wrap a dispatcher object—for example, events or mutexes).
For these objects, drivers must use the same system calls that user-mode applications end
up calling (such as ZwCreateEvent) and use handles instead of object pointers.

Uj EXPERIMENT: Viewing Open Handles

Run Process Explorer, and make sure the lower pane is enabled and configured to show open
handles. (Click on View, Lower Pane View, and then Handles). Then open a command prompt
and view the handle table for the new Cmd.exe process. You should see an open file handle to
the current directory. For example, assuming the current directory is C:\Users\Administrator,
Process Explorer shows the following:

¥ Process Explorer - Sysinternals: www.sysinternals.com [ALEXIONESCUDGER\Administrator] [[=@][=]
File Options View Process Find Handle Users Help

@ =085 #e | | [Hi 1]
Process = FID CPU Private Bytes Working Set Company Name il

laudodg exe 3584 13912K 13,456 K Microsoft Corporation U

2l cmd Exe 3144 1888 K 2,156 K Microsoft Corporation
= [ncoherence exe 2020 628K 804 K Parallels Holdings, Ltd. an... -
Type MName = Handle Access
Directory “KnownDils Ded (00000003
File: C:\Usersh\Administrator =3 (00100020
Key HKLM\SYSTEM\ControlSet 001\ Control\Nis".Sorting\ Versions 18 (00020019
Key HKLMMSYSTEM\ControlSet 001 Control.Session Manager @c1C (00000001
Window Station ‘\Sessions’1'\Windows \Window Stations\Win Stal 223 (000FO37F
Desktop \Defautt e2C :000FO1FF
Window Station ‘\Sessions’1'\Windows \Window Stations\Win Stal <30 (000FO37F
File C:A\Windows'System 32\en-US\emd exe mui O34 (c00120089
Key HKLM (38 (000FO03F
Thread cmd exe(3144): 2120 e3C 001FFFFF
Key HKCU ed0 (000FO03F
Key HKLM\SYSTEM\ControlSet D01\ Control\Nis'\Locale edd (00020019
Key HKLM\SYSTEM\ControlSet001'Control\Nis\Locale'\Atemate Sorts (bed8 (00020019
Key HKLM\SYSTEM\ControlSet 001\ Control\Nis'.Language Groups (edC (00020019
CPU Usage: 644% Commit Charge: 2807% Processes: 47 Physical Usage: 71.56%

Now pause Process Explorer by pressing the space bar or clicking on View, Update Speed
and choosing Pause. Then change the current directory with the cd command and press F5
to refresh the display. You will see in Process Explorer that the handle to the previous current
directory is closed and a new handle is opened to the new current directory. The previous
handle is highlighted in red and the new handle is highlighted in green.

156 Windows Internals, Sixth Edition, Part 1

Process Explorer’s differences-highlighting feature makes it easy to see changes in the
handle table. For example, if a process is leaking handles, viewing the handle table with Process
Explorer can quickly show what handle or handles are being opened but not closed. (Typically,
you see a long list of handles to the same object.) This information can help the programmer
find the handle leak.

Resource Monitor also shows open handles to named handles for the processes you select
by checking the boxes next to their names. Here are the command prompt’s open handles:

() Resource Menitor o[= | =
File Monitor Help
Overview| CPU | Memory | Disk | Network|
—
Processes B 225% CPU Usage [99% Maximum Frequency (= L) v\:li
Image PID Description status Thre... CPU Average CPU - Total
I CPU - Total
md.exe %843 Windows Comman.. Running 4 0 oc0
[] Amoumain.exe 10505 Amoumain Running 2 0 000 Service CU Usaae
[] audiodg.exe 12760 Running 10 o 035 - &
Services B 0% CPU Usage (v} ‘ cPUO
Associated Handles Search Handles P4 [~
cPul
Filtered by cmd.exe
Image PD Type Handle Name -
9 P cPU2
emd.exe 9348 Event \BaseNamedObjects\ShutdownMSIDLLY327630496155698
cmd.exe 9848 Event \KemelObjects\MaximumCommitCondition B
emd.exe 9848 File Ctalks\Taols = cpu3
emd.exe 9848 File (&) \System32\en-U! i dlil L |
cmd. exe 9348 File CAWindows\System32\en-US\mpr.dil.mui 2
emd.exe aR4R File CAWindows\Sustem3en-LISinransys, dllmui e IR | *

You can also display the open handle table by using the command-line Handle tool from
Sysinternals. For example, note the following partial output of Handle when examining the file
object handles located in the handle table for a Cmd.exe process before and after changing
the directory. By default, Handle filters out nonfile handles unless the —a switch is used, which
displays all the handles in the process, similar to Process Explorer.

C:\>handle -p cmd.exe

Handle v3.46
Copyright (C) 1997-2011 Mark Russinovich
Sysinternals - www.sysinternals.com

cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu
3C: File (R-D) C:\Windows\System32\en-US\KernelBase.d11.mui
44: File (RwW-) C:\

C:\>cd windows
C:\Windows>handle -p cmd.exe

Handle v3.46
Copyright (C) 1997-2011 Mark Russinovich
Sysinternals - www.sysinternals.com

cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu
3C: File (R-D) C:\Windows\System32\en-US\KernelBase.d11.mui

40: File (RW-) C:\Windows

System Mechanisms

157

An object handle is an index into a process-specific handle table, pointed to by the executive
process (EPROCESS) block (described in Chapter 5). The first handle index is 4, the second 8, and so
on. A process’ handle table contains pointers to all the objects that the process has opened a handle
to. Handle tables are implemented as a three-level scheme, similar to the way that the x86 memory
management unit implements virtual-to-physical address translation, giving a maximum of more than
16,000,000 handles per process. (See Chapter 10 in Part 2 for details about memory management in
x86 systems.)

Note With a three-table scheme, the top-level table can contain a page full of pointers to
mid-level tables, allowing for well over half a billion handles. However, to maintain compat-
ibility with Windows 2000’s handle scheme and inherent limitation of 16,777,216 handles,
the top-level table only contains up to a maximum of 32 pointers to the mid-level tables,
capping newer versions of Windows at the same limit.

Only the lowest-level handle table is allocated on process creation—the other levels are created
as needed. The subhandle table consists of as many entries as will fit in a page minus one entry that
is used for handle auditing. For example, for x86 systems a page is 4096 bytes, divided by the size
of a handle table entry (8 bytes), which is 512, minus 1, which is a total of 511 entries in the lowest-
level handle table. The mid-level handle table contains a full page of pointers to subhandle tables,
so the number of subhandle tables depends on the size of the page and the size of a pointer for the
platform. Figure 3-21 describes the handle table layout on Windows.

Process
Handle
table
Subhandle
table
Middle-level
pointers
Top-level
pointers

FIGURE 3-21 Windows process handle table architecture

158 Windows Internals, Sixth Edition, Part 1

5

-

EXPERIMENT: Creating the Maximum Number of Handles

The test program Testlimit from Sysinternals has an option to open handles to an object until it
cannot open any more handles. You can use this to see how many handles can be created in a
single process on your system. Because handle tables are allocated from paged pool, you might
run out of paged pool before you hit the maximum number of handles that can be created in a
single process. To see how many handles you can create on your system, follow these steps:

1.

Download the Testlimit executable file corresponding to the 32/64 bit Windows you
need from http.//live.sysinternals.com/Windowslnternals.

Run Process Explorer, click View and then System Information, and then click on the
Memory tab. Notice the current and maximum size of paged pool. (To display the
maximum pool size values, Process Explorer must be configured properly to access
the symbols for the kernel image, Ntoskrnl.exe.) Leave this system information display
running so that you can see pool utilization when you run the Testlimit program.

Open a command prompt.

Run the Testlimit program with the —h switch (do this by typing testlimit —h). When
Testlimit fails to open a new handle, it displays the total number of handles it was
able to create. If the number is less than approximately 16 million, you are probably
running out of paged pool before hitting the theoretical per-process handle limit.

Close the Command Prompt window; doing this kills the Testlimit process, thus closing
all the open handles.

As shown in Figure 3-22, on x86 systems, each handle entry consists of a structure with two 32-bit
members: a pointer to the object (with flags), and the granted access mask. On 64-bit systems, a
handle table entry is 12 bytes long: a 64-bit pointer to the object header and a 32-bit access mask.
(Access masks are described in Chapter 6, “Security.”)

Audit on close

Inheritable
| |— Lock

Pointer to object header All|L

|— Protect from close

Access mask P

|
32 bits

FIGURE 3-22 Structure of a handle table entry

System Mechanisms

159

The first flag is a lock bit, indicating whether the entry is currently in use. The second flag is the
inheritance designation—that is, it indicates whether processes created by this process will get a
copy of this handle in their handle tables. As already noted, handle inheritance can be specified on
handle creation or later with the SetHandleInformation function. The third flag indicates whether
closing the object should generate an audit message. (This flag isn't exposed to Windows—the object
manager uses it internally.) Finally, the protect-from-close bit, stored in an unused portion of the
access mask, indicates whether the caller is allowed to close this handle. (This flag can be set with the
NtSetInformationObject system call.)

System components and device drivers often need to open handles to objects that user-mode
applications shouldn't have access to. This is done by creating handles in the kernel handle table
(referenced internally with the name ObpKernelHandleTable). The handles in this table are acces-
sible only from kernel mode and in any process context. This means that a kernel-mode function can
reference the handle in any process context with no performance impact. The object manager recog-
nizes references to handles from the kernel handle table when the high bit of the handle is set—that
is, when references to kernel-handle-table handles have values greater than 0x80000000. The kernel
handle table also serves as the handle table for the System process, and all handles created by the
System process (such as code running in system threads) are automatically marked as kernel handles
because they live in the kernel handle table by definition.

EXPERIMENT: Viewing the Handle Table with the Kernel Debugger
The 'handle command in the kernel debugger takes three arguments:

'handle <handle index> <flags> <processid>

The handle index identifies the handle entry in the handle table. (Zero means "display all
handles.”) The first handle is index 4, the second 8, and so on. For example, typing 'handle 4
will show the first handle for the current process.

The flags you can specify are a bitmask, where bit 0 means “display only the information in
the handle entry,” bit 1 means "display free handles (not just used handles),” and bit 2 means
“display information about the object that the handle refers to.” The following command
displays full details about the handle table for process ID 0x62C:

Tkd> 'handle 0 7 62c

processor number 0, process 000000000000062c

Searching for Process with Cid == 62c

PROCESS fffffa80052a7060
SessionId: 1 Cid: 062c Peb: 7fffffdb000 ParentCid: 0558
DirBase: 7e401000 ObjectTable: fffff8a00381fc80 HandleCount: 111.
Image: windbg.exe

Handle table at fffff8a0038fa000 with 113 Entries in use
0000: free handle, Entry address fffff8a0038fa000, Next Entry 00000000fffffffe
0004: Object: fffff8a005022b70 GrantedAccess: 00000003 Entry: fffff8a0038fa010
Object: fffff8a005022b70 Type: (fffffa8002778f30) Directory
ObjectHeader: fffff8a005022b40fffff8a005022b40 (new version)
HandTeCount: 25 PointerCount: 63

160 Windows Internals, Sixth Edition, Part 1

Directory Object: fffff8a000004980 Name: KnownDl1s

0008: Object: fffffa8005226070 GrantedAccess: 00100020 Entry: fffff8a0038fa020

Object:

fffffa8005226070 Type: (fffffa80027b3080) File

ObjectHeader: fffffa8005226040fffffa8005226040 (new version)

HandleCount: 1 PointerCount: 1

Directory Object: 00000000 Name: \Program Files\Debugging Tools for Windows (x64)

{HarddiskVolume2}

EXPERIMENT: Searching for Open Files with the Kernel Debugger

Although you can use Process Explorer, Handle, and the OpenfFiles.exe utility to search for
open file handles, these tools are not available when looking at a crash dump or analyzing a

system remotely. You can instead use the /devhandles command to search for handles opened
to files on a specific volume. (See Chapter 8 in Part 2 for more information on devices, files, and

volumes.)

1.

First you need to pick the drive letter you are interested in and obtain the pointer to
its Device object. You can use the /object command as shown here:

1: kd> !object \Global??\C:
Object: fffff8a00016ea40 Type: (fffffa8000c38bb0) SymbolicLink
ObjectHeader: fffff8a00016eal0 (new version)
HandleCount: 0 PointerCount: 1
Directory Object: fffff8a000008060 Name: C:
Target String is '\Device\HarddiskVolumel'
Drive Letter Index is 3 (C:)

Next use the /object command to get the Device object of the target volume name:

1: kd> !object \Device\HarddiskVolumel
Object: fffffa8001bd3cd0 Type: (fffffa8000ca0750) Device

Now you can use the pointer of the Device object with the /devhandles command.
Each object shown points to a file:

Idevhandles fffffa8001bd3cd0
Checking handle table for process Oxfffffa8000c819e0
Kernel handle table at fffff8a000001830 with 434 entries 1in use

PROCESS fffffa8000c819e0
SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000
DirBase: 00187000 ObjectTable: fffff8a000001830 HandleCount: 434.
Image: System

0048: Object: fffffa8001d4f2a0 GrantedAccess: 0013008b Entry: fffff8a000003120
Object: fffffa8001d4f2a0 Type: (fffffa8000ca0360) File
ObjectHeader: fffffa8001d4f270 (new version)
HandTeCount: 1 PointerCount: 19
Directory Object: 00000000 Name: \Windows\System32\LogFiles\WMI\
RtBackup\EtwRTEventLog-Application.etl {HarddiskVolumel}

System Mechanisms

161

Reserve Objects

Because objects represent anything from events to files to interprocess messages, the ability for
applications and kernel code to create objects is essential to the normal and desired runtime behavior
of any piece of Windows code. If an object allocation fails, this usually causes anywhere from loss of
functionality (the process cannot open a file) to data loss or crashes (the process cannot allocate a
synchronization object). Worse, in certain situations, the reporting of errors that led to object creation
failure might themselves require new objects to be allocated. Windows implements two special
reserve objects to deal with such situations: the User APC reserve object and the 1/0 Completion
packet reserve object. Note that the reserve-object mechanism itself is fully extensible, and future
versions of Windows might add other reserve object types—from a broad view, the reserve object is a
mechanism enabling any kernel-mode data structure to be wrapped as an object (with an associated
handle, name, and security) for later use.

As was discussed in the APC section earlier in this chapter, APCs are used for operations such as
suspension, termination, and I/O completion, as well as communication between user-mode applica-
tions that want to provide asynchronous callbacks. When a user-mode application requests a User
APC to be targeted to another thread, it uses the QueueUserApc API in Kernelbase.dll, which calls
the NtQueueUserApcThread system call. In the kernel, this system call attempts to allocate a piece
of paged pool in which to store the KAPC control object structure associated with an APC. In low-
memory situations, this operation fails, preventing the delivery of the APC, which, depending on what
the APC was used for, could cause loss of data or functionality.

To prevent this, the user-mode application, can, on startup, use the NtAllocateReserveObject
system call to request the kernel to pre-allocate the KAPC structure. Then the application uses a
different system call, NtQueueUserApcThreadEx, that contains an extra parameter that is used to store
the handle to the reserve object. Instead of allocating a new structure, the kernel attempts to acquire
the reserve object (by setting its InUse bit to true) and use it until the KAPC object is not needed
anymore, at which point the reserve object is released back to the system. Currently, to prevent mis-
management of system resources by third-party developers, the reserve object APl is available only
internally through system calls for operating system components. For example, the RPC library uses
reserved APC objects to guarantee asynchronous callbacks will still be able to return in low-memory
situations.

A similar scenario can occur when applications need failure-free delivery of an I/O completion
port message, or packet. Typically, packets are sent with the PostQueuedCompletionStatus API
in Kernelbase.dll, which calls the NtSetloCompletion API. Similarly to the user APC, the kernel
must allocate an 1/0 manager structure to contain the completion-packet information, and if this
allocation fails, the packet cannot be created. With reserve objects, the application can use the
NtAllocateReserveObject AP| on startup to have the kernel pre-allocate the /0 completion packet,
and the NtSetloCompletionEx system call can be used to supply a handle to this reserve object,
guaranteeing a success path. Just like User APC reserve objects, this functionality is reserved for

162 Windows Internals, Sixth Edition, Part 1

system components and is used both by the RPC library and the Windows Peer-To-Peer BranchCache
service (see Chapter 7, "Networking,” for more information on networking) to guarantee completion
of asynchronous I/O operations.

Object Security

When you open a file, you must specify whether you intend to read or to write. If you try to write to a
file that is opened for read access, you get an error. Likewise, in the executive, when a process creates
an object or opens a handle to an existing object, the process must specify a set of desired access
rights—that is, what it wants to do with the object. It can request either a set of standard access rights
(such as read, write, and execute) that apply to all object types or specific access rights that vary
depending on the object type. For example, the process can request delete access or append access
to a file object. Similarly, it might require the ability to suspend or terminate a thread object.

When a process opens a handle to an object, the object manager calls the security reference
monitor, the kernel-mode portion of the security system, sending it the process’ set of desired access
rights. The security reference monitor checks whether the object’s security descriptor permits the
type of access the process is requesting. If it does, the reference monitor returns a set of granted
access rights that the process is allowed, and the object manager stores them in the object handle it
creates. How the security system determines who gets access to which objects is explored in Chapter 6.

Thereafter, whenever the process’ threads use the handle through a service call, the object
manager can quickly check whether the set of granted access rights stored in the handle corresponds
to the usage implied by the object service the threads have called. For example, if the caller asked for
read access to a section object but then calls a service to write to it, the service fails.

EXPERIMENT: Looking at Object Security

You can look at the various permissions on an object by using either Process Explorer, WinObj,
or AccessCheck, which are all tools from Sysinternals. Let's look at different ways you can display
the access control list (ACL) for an object:

m You can use WinObj to navigate to any object on the system, including object directories,
right-click on the object, and select Properties. For example, select the BaseNamedObjects
directory, select Properties, and click on the Security tab. You should see a dialog box
similar to the one shown next.

By examining the settings in the dialog box, you can see that the Everyone group doesn’t
have delete access to the directory, for example, but the SYSTEM account does (because
this is where session 0 services with SYSTEM privileges will store their objects).

System Mechanisms 163

BaseNamedObjects Properti (-8 [=sal
Details | Securty

GI’DLID or user names:

52 RESTRICTED
52, 5YSTEM

Add... Remove

Permissions for Everyone Allow Deny

Add Object

Add Subdirectory
Read

Write

Delete

fm.| »

For special permissions or advanced settings, click
Advanced.

Leam about access control and permissions

[ok][canca |

m Instead of using WinObj, you can view the handle table of a process using Process
Explorer, as shown in the experiment “"Viewing Open Handles" earlier in the chapter. Look
at the handle table for the Explorer.exe process. You should notice a Directory object
handle to the \Sessions\n\BaseNamedObjects directory. (We'll describe the per-session
namespace shortly.) You can double-click on the object handle and then click on the
Security tab and see a similar dialog box (with more users and rights granted). Process
Explorer cannot decode the specific object directory access rights, so all you'll see are
generic rights.

m Finally, you can use AccessCheck to query the security information of any object by using
the —o switch as shown in the following output. Note that using AccessCheck will also
show you the integrity level of the object. (See Chapter 6 for more information on integrity
levels and the security reference monitor.)

C:\Windows>accesschk -o \Sessions\1\BaseNamedObjects

Accesschk v5.02 - Reports effective permissions for securable objects
Copyright (C) 2006-2011 Mark Russinovich
Sysinternals - www.sysinternals.com

\sessions\2\BaseNamedObjects
Type: Directory
RW NT AUTHORITY\SYSTEM
RW NTDEV\markruss
RW NTDEV\S-1-5-5-0-5491067-markruss
RW BUILTIN\Administrators
R Everyone
NT AUTHORITY\RESTRICTED

164 Windows Internals, Sixth Edition, Part 1

Windows also supports Ex (Extended) versions of the APIs—CreateEventEx, CreateMutexEXx,
CreateSemaphoreEx—that add another argument for specifying the access mask. This makes it
possible for applications to properly use discretionary access control lists (DACLs) to secure their
objects without breaking their ability to use the create object APIs to open a handle to them. You
might be wondering why a client application would not simply use OpenEvent, which does support
a desired access argument. Using the open object APIs leads to an inherent race condition when
dealing with a failure in the open call—that is, when the client application has attempted to open
the event before it has been created. In most applications of this kind, the open API is followed by a
create API in the failure case. Unfortunately, there is no guaranteed way to make this create operation
atomic—in other words, to occur only once. Indeed, it would be possible for multiple threads
and/or processes to have executed the create API concurrently and all attempt to create the event at
the same time. This race condition and the extra complexity required to try and handle it makes using
the open object APIs an inappropriate solution to the problem, which is why the Ex APIs should be
used instead.

Object Retention

There are two types of objects: temporary and permanent. Most objects are temporary—that is,
they remain while they are in use and are freed when they are no longer needed. Permanent objects
remain until they are explicitly freed. Because most objects are temporary, the rest of this section
describes how the object manager implements object retention—that is, retaining temporary objects
only as long as they are in use and then deleting them. Because all user-mode processes that ac-
cess an object must first open a handle to it, the object manager can easily track how many of these
processes, and even which ones, are using an object. Tracking these handles represents one part of
implementing retention. The object manager implements object retention in two phases. The first
phase is called name retention, and it is controlled by the number of open handles to an object that
exist. Every time a process opens a handle to an object, the object manager increments the open
handle counter in the object’s header. As processes finish using the object and close their handles to
it, the object manager decrements the open handle counter. When the counter drops to 0, the object
manager deletes the object’s name from its global namespace. This deletion prevents processes from
opening a handle to the object.

The second phase of object retention is to stop retaining the objects themselves (that is, to delete
them) when they are no longer in use. Because operating system code usually accesses objects by
using pointers instead of handles, the object manager must also record how many object pointers it
has dispensed to operating system processes. It increments a reference count for an object each time
it gives out a pointer to the object; when kernel-mode components finish using the pointer, they call
the object manager to decrement the object’s reference count. The system also increments the refer-
ence count when it increments the handle count, and likewise decrements the reference count when
the handle count decrements, because a handle is also a reference to the object that must be tracked.

Figure 3-23 illustrates two event objects that are in use. Process A has the first event open.
Process B has both events open. In addition, the first event is being referenced by some kernel-mode
structure; thus, the reference count is 3. So even if Processes A and B closed their handles to the first
event object, it would continue to exist because its reference count is 1. However, when Process B
closes its handle to the second event object, the object would be deallocated.

System Mechanisms 165

So even after an object’s open handle counter reaches 0, the object’s reference count might
remain positive, indicating that the operating system is still using the object. Ultimately, when the
reference count drops to O, the object manager deletes the object from memory. This deletion has
to respect certain rules and also requires cooperation from the caller in certain cases. For example,
because objects can be present both in paged or nonpaged pool memory (depending on the settings
located in their object type), if a dereference occurs at an IRQL level of dispatch or higher and this
dereference causes the pointer count to drop to 0, the system would crash if it attempted to imme-
diately free the memory of a paged-pool object. (Recall that such access is illegal because the page
fault will never be serviced.) In this scenario, the object manager performs a deferred delete opera-
tion, queuing the operation on a worker thread running at passive level (IRQL 0). We'll describe more
about system worker threads later in this chapter.

Another scenario that requires deferred deletion is when dealing with Kernel Transaction Manager
(KTM) objects. In some scenarios, certain drivers might hold a lock related to this object, and
attempting to delete the object will result in the system attempting to acquire this lock. However,
the driver might never get the chance to release its lock, causing a deadlock. When dealing with
KTM objects, driver developers must use ObDereferenceObjectDeferDelete to force deferred dele-
tion regardless of IRQL level. Finally, the I/O manager also uses this mechanism as an optimization so
that certain 1/0Os can complete more quickly, instead of waiting for the object manager to delete the
object.

Process A System space

Handles

| | Handle table Event object

| — | HandleCount=2
ReferenceCount=3

Index

Other structure

DuplicateHandle —e

Process B

C 1]

Handle table Event object

HandleCount=1
ReferenceCount=1

FIGURE 3-23 Handles and reference counts

166 Windows Internals, Sixth Edition, Part 1

Because of the way object retention works, an application can ensure that an object and its name
remain in memory simply by keeping a handle open to the object. Programmers who write appli-
cations that contain two or more cooperating processes need not be concerned that one process
might delete an object before the other process has finished using it. In addition, closing an applica-
tion’s object handles won't cause an object to be deleted if the operating system is still using it. For
example, one process might create a second process to execute a program in the background; it
then immediately closes its handle to the process. Because the operating system needs the second
process to run the program, it maintains a reference to its process object. Only when the background
program finishes executing does the object manager decrement the second process’ reference count
and then delete it.

Because object leaks can be dangerous to the system by leaking kernel pool memory and
eventually causing systemwide memory starvation—and can also break applications in subtle ways—
Windows includes a number of debugging mechanisms that can be enabled to monitor, analyze, and
debug issues with handles and objects. Additionally, Debugging Tools for Windows come with two
extensions that tap into these mechanisms and provide easy graphical analysis. Table 3-16 describes
them.

TABLE 3-16 Debugging Mechanisms for Object Handles

Mechanism Enabled By Kernel Debugger Extension
Handle Tracing Kernel Stack Trace systemwide and/or per-process Ihtrace <handle value> <process ID>
Database with the User Stack Trace option checked with
Gflags.exe.
Object Reference Per-process-name(s), or per-object-type-pool-tag(s), | /obtrace <object pointer>
Tracing with Gflags.exe, under Object Reference Tracing.
Object Reference Drivers must call appropriate API. N/A
Tagging

Enabling the handle-tracing database is useful when attempting to understand the use of each
handle within an application or the system context. The /htrace debugger extension can display the
stack trace captured at the time a specified handle was opened. After you discover a handle leak, the
stack trace can pinpoint the code that is creating the handle, and it can be analyzed for a missing call
to a function such as CloseHandle.

The object-reference-tracing /obtrace extension monitors even more by showing the stack trace
for each new handle created as well as each time a handle is referenced by the kernel (and also each
time it is opened, duplicated, or inherited) and dereferenced. By analyzing these patterns, misuse
of an object at the system level can be more easily debugged. Additionally, these reference traces
provide a way to understand the behavior of the system when dealing with certain objects. Tracing
processes, for example, display references from all the drivers on the system that have registered call-
back notifications (such as Process Monitor) and help detect rogue or buggy third-party drivers that
might be referencing handles in kernel mode but never dereferencing them.

System Mechanisms 167

Note When enabling object-reference tracing for a specific object type, you can obtain
the name of its pool tag by looking at the key member of the OBJECT_TYPE structure

when using the dt command. Each object type on the system has a global variable that
references this structure—for example, PsProcessType. Alternatively, you can use the /object
command, which displays the pointer to this structure.

Unlike the previous two mechanisms, object-reference tagging is not a debugging feature that
must be enabled with global flags or the debugger, but rather a set of APIs that should be used by
device-driver developers to reference and dereference objects, including ObReferenceObjectWith-
Tag and ObDereferenceObjectWithTag. Similar to pool tagging (see Chapter 10 in Part 2 for more
information on pool tagging), these APIs allow developers to supply a four-character tag identifying
each reference/dereference pair. When using the /obtrace extension just described, the tag for each
reference or dereference operation is also shown, which avoids solely using the call stack as a mecha-
nism to identify where leaks or under-references might occur, especially if a given call is performed
thousands of times by the driver.

Resource Accounting

Resource accounting, like object retention, is closely related to the use of object handles. A positive
open handle count indicates that some process is using that resource. It also indicates that some
process is being charged for the memory the object occupies. When an object’s handle count and
reference count drop to O, the process that was using the object should no longer be charged for it.

Many operating systems use a quota system to limit processes’ access to system resources.
However, the types of quotas imposed on processes are sometimes diverse and complicated, and the
code to track the quotas is spread throughout the operating system. For example, in some operating
systems, an 1/0 component might record and limit the number of files a process can open, whereas a
memory component might impose a limit on the amount of memory a process’ threads can allocate.
A process component might limit users to some maximum number of new processes they can create
or a maximum number of threads within a process. Each of these limits is tracked and enforced in
different parts of the operating system.

In contrast, the Windows object manager provides a central facility for resource accounting. Each
object header contains an attribute called quota charges that records how much the object manager
subtracts from a process’ allotted paged and/or nonpaged pool quota when a thread in the process
opens a handle to the object.

Each process on Windows points to a quota structure that records the limits and current values
for nonpaged-pool, paged-pool, and page-file usage. These quotas default to 0 (no limit) but can be
specified by modifying registry values. (You need to add/edit NonPagedPoolQuota, PagedPoolQuota,
and PagingFileQuota under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory
Management.) Note that all the processes in an interactive session share the same quota block (and
there’s no documented way to create processes with their own quota blocks).

168 Windows Internals, Sixth Edition, Part 1

Object Names

An important consideration in creating a multitude of objects is the need to devise a successful
system for keeping track of them. The object manager requires the following information to help you
do so:

®m A way to distinguish one object from another
®m A method for finding and retrieving a particular object

The first requirement is served by allowing names to be assigned to objects. This is an extension
of what most operating systems provide—the ability to name selected resources, files, pipes, or a
block of shared memory, for example. The executive, in contrast, allows any resource represented by
an object to have a name. The second requirement, finding and retrieving an object, is also satisfied
by object names. If the object manager stores objects by name, it can find an object by looking up its
name.

Object names also satisfy a third requirement, which is to allow processes to share objects. The
executive's object namespace is a global one, visible to all processes in the system. One process
can create an object and place its name in the global namespace, and a second process can open a
handle to the object by specifying the object’s name. If an object isn't meant to be shared in this way,
its creator doesn't need to give it a name.

To increase efficiency, the object manager doesn't look up an object’s name each time someone
uses the object. Instead, it looks up a name under only two circumstances. The first is when a process
creates a named object: the object manager looks up the name to verify that it doesn't already exist
before storing the new name in the global namespace. The second is when a process opens a handle
to a named object: the object manager looks up the name, finds the object, and then returns an
object handle to the caller; thereafter, the caller uses the handle to refer to the object. When looking
up a name, the object manager allows the caller to select either a case-sensitive or case-insensitive
search, a feature that supports Subsystem for UNIX Applications and other environments that use
case-sensitive file names.

Object Directories

The object directory object is the object manager’'s means for supporting this hierarchical naming
structure. This object is analogous to a file system directory and contains the names of other objects,
possibly even other object directories. The object directory object maintains enough information to
translate these object names into pointers to the objects themselves. The object manager uses the
pointers to construct the object handles that it returns to user-mode callers. Both kernel-mode code
(including executive components and device drivers) and user-mode code (such as subsystems) can
create object directories in which to store objects. For example, the I/O manager creates an object
directory named \Device, which contains the names of objects representing 1/0 devices.

Where the names of objects are stored depends on the object type. Table 3-17 lists the
standard object directories found on all Windows systems and what types of objects have their
names stored there. Of the directories listed, only \BaseNamedObjects and \Global?? are visible to

System Mechanisms 169

standard Windows applications. (See the “Session Namespace” section later in this chapter for more
information.)

TABLE 3-17 Standard Object Directories

Directory Types of Object Names Stored

\ArcName Symbolic links mapping ARC-style paths to NT-style paths.

\BaseNamedObjects Global mutexes, events, semaphores, waitable timers, jobs, ALPC ports, symbolic
links, and section objects.

\Callback Callback objects.

\Device Device objects.

\Driver Driver objects.

\FileSystem File-system driver objects and file-system-recognizer device objects. The Filter
Manager also creates its own device objects under the Filters subkey.

\GLOBAL?? MS-DOS device names. (The \Sessions\O\DosDevices\<LUID>\Global directories are
symbolic links to this directory.)

\KernelObjects Contains event objects that signal low resource conditions, memory errors, the
completion of certain operating system tasks, as well as objects representing
Sessions.

\KnownDlls Section names and path for known DLLs (DLLs mapped by the system at startup
time).

\KnownDIIs32 On a 64-bit Windows installation, \KnownDIIs contains the native 64-bit binaries, so

this directory is used instead to store Wow64 32-bit versions of those DLLs.

\NIs Section names for mapped national language support tables.

\ObjectTypes Names of types of objects.

\PSXSS If Subsystem for UNIX Applications is enabled (through installation of the SUA
component), this contains ALPC ports used by Subsystem for UNIX Applications.

\RPC Control ALPC ports used by remote procedure calls (RPCs), and events used by Conhost.exe
as part of the console isolation mechanism.

\Security ALPC ports and events used by names of objects specific to the security subsystem.

\Sessions Per-session namespace directory. (See the next subsection.)

\UMDFCommunicationPorts ALPC ports used by the User-Mode Driver Framework (UMDF).

\Windows Windows subsystem ALPC ports, shared section, and window stations.

Because the base kernel objects such as mutexes, events, semaphores, waitable timers, and sec-
tions have their names stored in a single object directory, no two of these objects can have the same
name, even if they are of a different type. This restriction emphasizes the need to choose names care-
fully so that they don't collide with other names. For example, you could prefix names with a GUID
and/or combine the name with the user’s security identifier (SID).

Object names are global to a single computer (or to all processors on a multiprocessor computer),
but they're not visible across a network. However, the object manager's parse method makes it pos-
sible to access named objects that exist on other computers. For example, the I/O manager, which
supplies file-object services, extends the functions of the object manager to remote files. When asked

170 Windows Internals, Sixth Edition, Part 1

-}
—a

[
-

to open a remote file object, the object manager calls a parse method, which allows the I/O manager
to intercept the request and deliver it to a network redirector, a driver that accesses files across the
network. Server code on the remote Windows system calls the object manager and the I/0O manager
on that system to find the file object and return the information back across the network.

One security consideration to keep in mind when dealing with named objects is the possibility of
object name squatting. Although object names in different sessions are protected from each other,
there's no standard protection inside the current session namespace that can be set with the stan-
dard Windows API. This makes it possible for an unprivileged application running in the same session
as a privileged application to access its objects, as described earlier in the object security subsec-
tion. Unfortunately, even if the object creator used a proper DACL to secure the object, this doesn't
help against the squatting attack, in which the unprivileged application creates the object before the
privileged application, thus denying access to the legitimate application.

Windows exposes the concept of a private namespace to alleviate this issue. It allows user-mode
applications to create object directories through the CreatePrivateNamespace APl and associate these
directories with boundary descriptors, which are special data structures protecting the directories.
These descriptors contain SIDs describing which security principals are allowed access to the object
directory. In this manner, a privileged application can be sure that unprivileged applications will not
be able to conduct a denial-of-service attack against its objects. (This doesn't stop a privileged ap-
plication from doing the same, however, but this point is moot.) Additionally, a boundary descriptor
can also contain an integrity level, protecting objects possibly belonging to the same user account as
the application, based on the integrity level of the process. (See Chapter 6 for more information on
integrity levels.)

EXPERIMENT: Looking at the Base Named Objects

You can see the list of base objects that have names with the WinObj tool from Sysinternals.
Run Winobj.exe., and click on \BaseNamedObjects, as shown here:

L2 WinObj - Sysinternals: www.sysinternals.com E@
File View Help
4-luh Name ¢ Type SymLink o
bl ArcName /i EVENT_READYROOT/CIMV2SCIM EVENT ... Event
: BaseNamedObjects A\ EVENT_READYROOT/CIMV2WHI SELF-IN... Event
1 Ezl\litf:k /b FirstWinlogonCheck Event i
Driver iFntCache-e4330f99-fd(f-4f9d-8?23-ef14c... Section E|
. FileSystem £} FontCachePort ALPC Port o
i) GLOBAL?? % FwiSgmSession101457921_5-1-5-18 Mutant
| KemelObjects lEGIDbaI SymbelicLink \BaseMNamedObjects
| KnownDlls /0 HomeGroupStateEvent {82700142-260E-4... Event
| NLS /A IPSEC_GP_REFRESH_EVENT Event
| ObjectTypes A IPSEC_POLICY CHAMGE_EVENT Event
. RPC Control A0 IPSEC_POLICY_CHANGE_NOTIFY Event
| Security /2 LanmanServerNetworklnitialized Event
b, Sessions %LOADPERF_MUTEX Mutant
. UMDFCommunicationPorts [#Lacal SymbolicLink \BaseNamedObjects
. Windows A\ LSA_RPC_SERVER_ACTIVE Event
& MMF BITS s Section <
‘\BaseMamedObjects\IPSEC_POLICY_CHANGE_MOTIFY

System Mechanisms

The named objects are shown on the right. The icons indicate the object type:
m Mutexes are indicated with a lock sign.
m Sections (Windows file-mapping objects) are shown as memory chips.
m Events are shown as exclamation points.
m Semaphores are indicated with an icon that resembles a traffic signal.
m Symbolic links have icons that are curved arrows.
m Folders indicate object directories.

®m Gears indicate other objects, such as ALPC ports.

@[ﬁ EXPERIMENT: Tampering with Single Instancing

Applications such as Windows Media Player and those in Microsoft Office are common
examples of single-instancing enforcement through named objects. Notice that when launching
the Wmplayer.exe executable, Windows Media Player appears only once—every other launch
simply results in the window coming back into focus. You can tamper with the handle list by
using Process Explorer to turn the computer into a media mixer! Here's how:

1. Launch Windows Media Player and Process Explorer to view the handle table (by
clicking View, Lower Pane View, and then Handles). You should see a handle whose
name column contains CheckForOtherlnstanceMutex.

i Process Explorer - Sysi Is: www.sysi Is.com [ALEXIONESCUD6E\Administrator] =N Eoh(
File Options View Process Find Handle Users Help

H @208 x| #a&d [| i |

Process FID CPU Private Bytes Working Set Company Mame -
27,624 K Microsoft Corporation [
=" wmpnetwk exe 2912 <0.01 hE20K 8,052 K Microsoft Corporation -
T)q;e Mame Handle Access -
Key HKLM\SOFTWARE \Microsoft\Windows NT\CumrentVersion'AppCompat Flags 760 (0000000
Mutart “\Sessions'1\BaseNamedObjects'\Microsoft_WMP_70_CheckForCtherinstance Mutex Qb4 D01FOOD
Mutart “Sessions’.1"BaseMNamedObjects"\MICROSOFT_WMDM_MUTEX 388 (x001FO001 |:|

Mutart “BaseMamedObjects’__7_c:_users_administrator_appdata_local_microsoft_media player_... x3C4 D01FO001
Mutart “BaseMamedObjects’__7_c:_users_administrator_appdata_local_microsoft_media player_... 3C8 D01FD001
Mutant “BaseMamedObjects’__ 7 _c:_users_administrator_appdata_local_microsoft_media player_... (458 D01FD001

CPU Usage: 6.88% Commit Charge: 31.01% Processes: 55 Physical Usage: 81.31%

2. Right-click on the handle, and select Close Handle. Confirm the action when asked.

3. Now run Windows Media Player again. Notice that this time a second process is

created.

172 Windows Internals, Sixth Edition, Part 1

4. Go ahead and play a different song in each instance. You can also use the Sound Mixer
in the system tray (click on the Volume icon) to select which of the two processes will
have greater volume, effectively creating a mixing environment.

Instead of closing a handle to a named object, an application could have run on its own
before Windows Media Player and created an object with the same name. In this scenario,
Windows Media Player would never run, fooled into believing it was already running on the
system.

Symbolic Links In certain file systems (on NTFS and some UNIX systems, for example), a symbolic
link lets a user create a file name or a directory name that, when used, is translated by the operating
system into a different file or directory name. Using a symbolic link is a simple method for allowing
users to indirectly share a file or the contents of a directory, creating a cross-link between different
directories in the ordinarily hierarchical directory structure.

The object manager implements an object called a symbolic link object, which performs a similar
function for object names in its object namespace. A symbolic link can occur anywhere within an
object name string. When a caller refers to a symbolic link object’s name, the object manager tra-
verses its object namespace until it reaches the symbolic link object. It looks inside the symbolic link
and finds a string that it substitutes for the symbolic link name. It then restarts its name lookup.

One place in which the executive uses symbolic link objects is in translating MS-DOS-style device
names into Windows internal device names. In Windows, a user refers to hard disk drives using the
names C:, D:, and so on and serial ports as COM1, COM2, and so on. The Windows subsystem makes
these symbolic link objects protected, global data by placing them in the object manager namespace
under the \Global?? directory.

Session Namespace

Services have access to the global namespace, a namespace that serves as the first instance of the
namespace. Additional sessions are given a session-private view of the namespace known as a local
namespace. The parts of the namespace that are localized for each session include \DosDevices,
\Windows, and \BaseNamedObjects. Making separate copies of the same parts of the namespace is
known as instancing the namespace. Instancing \DosDevices makes it possible for each user to have
different network drive letters and Windows objects such as serial ports. On Windows, the global
\DosDevices directory is named \Global?? and is the directory to which \DosDevices points, and
local \DosDevices directories are identified by the logon session ID.

The \Windows directory is where Win32k.sys inserts the interactive window station created by
Winlogon, \WinSta0. A Terminal Services environment can support multiple interactive users, but
each user needs an individual version of WinSta0 to preserve the illusion that he is accessing the
predefined interactive window station in Windows. Finally, applications and the system create shared
objects in \BaseNamedObjects, including events, mutexes, and memory sections. If two users are run-
ning an application that creates a named object, each user session must have a private version of the

System Mechanisms 173

object so that the two instances of the application don't interfere with one another by accessing the
same object.

The object manager implements a local namespace by creating the private versions of the three
directories mentioned under a directory associated with the user’s session under \Sessions\n (where n
is the session identifier). When a Windows application in remote session two creates a named event,
for example, the object manager transparently redirects the object’s name from \BaseNamedObjects
to \Sessions\2\BaseNamedObjects.

All object-manager functions related to namespace management are aware of the instanced
directories and participate in providing the illusion that all sessions use the same namespace.
Windows subsystem DLLs prefix names passed by Windows applications that reference objects in
\DosDevices with \?? (for example, C:\Windows becomes \??\C:\Windows). When the object manager
sees the special \?? prefix, the steps it takes depends on the version of Windows, but it always relies
on a field named DeviceMap in the executive process object (EPROCESS, which is described further in
Chapter 5) that points to a data structure shared by other processes in the same session.

The DosDevicesDirectory field of the DeviceMap structure points at the object manager
directory that represents the process’ local \DosDevices. When the object manager sees a refer-
ence to \??, it locates the process’ local \DosDevices by using the DosDevicesDirectory field of the
DeviceMap. If the object manager doesn't find the object in that directory, it checks the DeviceMap
field of the directory object. If it's valid, it looks for the object in the directory pointed to by the
GlobalDosDevicesDirectory field of the DeviceMap structure, which is always \Global??.

Under certain circumstances, applications that are session—aware need to access objects in the
global session even if the application is running in another session. The application might want to
do this to synchronize with instances of itself running in other remote sessions or with the console
session (that is, session 0). For these cases, the object manager provides the special override “\Global”
that an application can prefix to any object name to access the global namespace. For example, an
application in session two opening an object named \Global\ApplicationInitialized is directed to
\BaseNamedObjects\ApplicationInitialized instead of \Sessions\2\BaseNamedObjects
\Applicationlnitialized.

An application that wants to access an object in the global \DosDevices directory does not need
to use the \Global prefix as long as the object doesn't exist in its local \DosDevices directory. This is
because the object manager automatically looks in the global directory for the object if it doesn't find
it in the local directory. However, an application can force checking the global directory by using
\GLOBALROOT.

Session directories are isolated from each other, and administrative privileges are required to
create a global object (except for section objects). A special privilege named create global object is
verified before allowing such operations.

174 Windows Internals, Sixth Edition, Part 1

EXPERIMENT: Viewing Namespace Instancing

You can see the separation between the session 0 namespace and other session namespaces
as soon as you log in. The reason you can is that the first console user is logged in to session 1
(while services run in session 0). Run Winobj.exe, and click on the \Sessions directory. You'll see
a subdirectory with a numeric name for each active session. If you open one of these directo-
ries, you'll see subdirectories named \DosDevices, \Windows, and \BaseNamedObjects, which
are the local namespace subdirectories of the session. The following screen shot shows a local
namespace:

e —— [= o =)
File View Help
""" . KernelObjects || Name « Type SymlLink o
""" i KnownDlls ﬂ DBWinMutex Mutant
""" : NLTC' DINPUTWINMM Event
S:JCESDT:E:T 3 Dwm-T1BC-ApiPort-7C1D ALPC Port
_____ | Security i ;DmeUmpos.edE\.rent_l Event =
[} Sessions %ESENT_Perf_lerary_Lock_PID_Qcc Mutant ‘E‘
. 0 /0 EventShutDownCSRSS Event b
4. DosDevices @Global Symboliclink ‘\BaseMNamedObjects
| 00000000-000003e4 @Local Symboliclink \Sessions\1\BaseMamed...
| 00000000-000003e5 |E ﬂ Lsa_Perf_Library_Lock PID 8cc Mutant
. 00000000-00011 cfb ﬂ MICROSOFT_WMDM_MUTEX Mutant
a -l ﬂ Microsoft WMP_70_CheckForOtherlnsta... Mutant
b BaseMamedOhbjects ﬁMidiMapper_modLongMessage_Reant Mutant
- DosDevices MSCTF.Asm. MutexDefaultl Mutant
J Windows M MSCTF.AsmCacheReady.Defaultl Event
=1y WindowsStations MSCTF.CtfActivated.Defaultl Event
----- . BNOLINKS = || A\ MSCTF.CtfDeactivated.Defaultl Event i
Sessions\1iBaseMNamed Objects\ESENT_Perf_Library_Lock PID 9cc

Next run Process Explorer and select a process in your session (such as Explorer.exe), and
then view the handle table (by clicking View, Lower Pane View, and then Handles). You should
see a handle to \Windows\WindowStations\WinSta0 underneath \Sessions\n, where n is the
session ID.

i Process Explorer - Sysi Is: www.sysi Is.com [ALEXIONESCUD6E\Administrator] =N Eoh(
File Options View Process Find Handle Users Help
d @ =208 % d& | [I s i |
Process = FID CPU Private Bytes Working Set Company Mame -
B i csrss.exe 436 039 20604 K 15,444 K Microsoft Corporation [
(27 dwm exe 1636 <0.01 3.880K 4,028 K Microsoft Corporation
[=ENE=feplorerexe 1680 219 50228 K 60,984 K Microsoft Corporation
| Intemupts n/a 035 0K 0K -
Type = Mame Handle Access *
Thread explorer.exe(1680): 1684 Dc11F4 xDD1FFFFF
Thread explorer.exe(1680): 3052 01350 (xDD1FFFFF
Thread explorer.exe(1680): 1052 01388 eDD1FFFFF
WindowStation “\Sessions'1\Windows"Window Stations\WinStal 028 (x000FO37F ||
WindowStation “Sessions1"Windows"Window Stations \WinStal 30 (00DOFO37F -
CPU Usage: 818% Commit Charge: 30.74% Processes: 54 Physical Usage: 80.23%

System Mechanisms 175

Object Filtering

Windows includes a filtering model in the object manager, similar to the file system minifilter model
described in Chapter 8 in Part 2. One of the primary benefits of this filtering model is the ability to use
the altitude concept that these existing filtering technologies use, which means that multiple drivers
can filter object-manager events at appropriate locations in the filtering stack. Additionally, drivers are
permitted to intercept calls such as NtOpenThread and NtOpenProcess and even to modify the access
masks being requested from the process manager. This allows protection against certain operations
on an open handle—however, an open operation cannot be entirely blocked because doing so would
too closely resemble a malicious operation (processes that could never be managed).

Furthermore, drivers are able to take advantage of both pre and post callbacks, allowing them to
prepare for a certain operation before it occurs, as well as to react or finalize information after the
operation has occurred. These callbacks can be specified for each operation (currently, only open,
create, and duplicate are supported) and be specific for each object type (currently, only process and
thread objects are supported). For each callback, drivers can specify their own internal context value,
which can be returned across all calls to the driver or across a pre/post pair. These callbacks can be
registered with the ObRegisterCallbacks APl and unregistered with the ObUnregisterCallbacks API—it
is the responsibility of the driver to ensure deregistration happens.

Use of the APIs is restricted to images that have certain characteristics:

m The image must be signed, even on 32-bit computers, according to the same rules set forth
in the Kernel Mode Code Signing (KMCS) policy. (Code integrity will be discussed later in
this chapter.) The image must be compiled with the /integritycheck linker flag, which sets the
IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY value in the PE header. This instructs the
memory manager to check the signature of the image regardless of any other defaults that
might not normally result in a check.

m The image must be signed with a catalog containing cryptographic per-page hashes of the
executable code. This allows the system to detect changes to the image after it has been
loaded in memory.

Before executing a callback, the object manager calls the MmVerifyCallbackFunction on the target
function pointer, which in turn locates the loader data table entry associated with the module owning
this address, and verifies whether or not the LDRP_IMAGE_INTEGRITY_FORCED flag is set. (See the
“Loaded Module Database” section in this chapter for more information.)

Synchronization

The concept of mutual exclusion is a crucial one in operating systems development. It refers to the
guarantee that one, and only one, thread can access a particular resource at a time. Mutual exclusion
is necessary when a resource doesn't lend itself to shared access or when sharing would result in an
unpredictable outcome. For example, if two threads copy a file to a printer port at the same time,
their output could be interspersed. Similarly, if one thread reads a memory location while another
one writes to it, the first thread will receive unpredictable data. In general, writable resources can't

176 Windows Internals, Sixth Edition, Part 1

be shared without restrictions, whereas resources that aren't subject to modification can be shared.
Figure 3-24 illustrates what happens when two threads running on different processors both write
data to a circular queue.

Time
Processor A Processor B
Get queue tail
Insert data at current location
Get queue tail
Increment tail pointer
Insert data at current location /*ERROR*/
Increment tail pointer
v

FIGURE 3-24 Incorrect sharing of memory

Because the second thread obtained the value of the queue tail pointer before the first thread
finished updating it, the second thread inserted its data into the same location that the first thread
used, overwriting data and leaving one queue location empty. Even though Figure 3-24 illustrates
what could happen on a multiprocessor system, the same error could occur on a single-processor
system if the operating system performed a context switch to the second thread before the first
thread updated the queue tail pointer.

Sections of code that access a nonshareable resource are called critical sections. To ensure correct
code, only one thread at a time can execute in a critical section. While one thread is writing to a file,
updating a database, or modifying a shared variable, no other thread can be allowed to access the
same resource. The pseudocode shown in Figure 3-24 is a critical section that incorrectly accesses a
shared data structure without mutual exclusion.

The issue of mutual exclusion, although important for all operating systems, is especially important
(and intricate) for a tightly coupled, symmetric multiprocessing (SMP) operating system such as
Windows, in which the same system code runs simultaneously on more than one processor, sharing
certain data structures stored in global memory. In Windows, it is the kernel’s job to provide mecha-
nisms that system code can use to prevent two threads from modifying the same structure at the
same time. The kernel provides mutual-exclusion primitives that it and the rest of the executive use to
synchronize their access to global data structures.

Because the scheduler synchronizes access to its data structures at DPC/dispatch level IRQL, the
kernel and executive cannot rely on synchronization mechanisms that would result in a page fault or
reschedule operation to synchronize access to data structures when the IRQL is DPC/dispatch level
or higher (levels known as an elevated or high IRQL). In the following sections, you'll find out how the
kernel and executive use mutual exclusion to protect their global data structures when the IRQL is

System Mechanisms 177

high and what mutual-exclusion and synchronization mechanisms the kernel and executive use when
the IRQL is low (below DPC/dispatch level).

High-IRQL Synchronization

At various stages during its execution, the kernel must guarantee that one, and only one, processor at
a time is executing within a critical section. Kernel critical sections are the code segments that modify
a global data structure such as the kernel's dispatcher database or its DPC queue. The operating sys-
tem can’t function correctly unless the kernel can guarantee that threads access these data structures
in a mutually exclusive manner.

The biggest area of concern is interrupts. For example, the kernel might be updating a global data
structure when an interrupt occurs whose interrupt-handling routine also modifies the structure.
Simple single-processor operating systems sometimes prevent such a scenario by disabling all inter-
rupts each time they access global data, but the Windows kernel has a more sophisticated solution.
Before using a global resource, the kernel temporarily masks the interrupts whose interrupt handlers
also use the resource. It does so by raising the processor’s IRQL to the highest level used by any
potential interrupt source that accesses the global data. For example, an interrupt at DPC/dispatch
level causes the dispatcher, which uses the dispatcher database, to run. Therefore, any other part of
the kernel that uses the dispatcher database raises the IRQL to DPC/dispatch level, masking
DPC/dispatch-level interrupts before using the dispatcher database.

This strategy is fine for a single-processor system, but it's inadequate for a multiprocessor
configuration. Raising the IRQL on one processor doesn't prevent an interrupt from occurring on
another processor. The kernel also needs to guarantee mutually exclusive access across several
processors.

Interlocked Operations

The simplest form of synchronization mechanisms rely on hardware support for multiprocessor-

safe manipulation of integer values and for performing comparisons. They include functions such as
InterlockedIncrement, InterlockedDecrement, InterlockedExchange, and InterlockedCompareExchange.
The InterlockedDecrement function, for example, uses the x86 lock instruction prefix (for example, lock
xadd) to lock the multiprocessor bus during the subtraction operation so that another processor that's
also modifying the memory location being decremented won't be able to modify it between the
decrementing processor’s read of the original value and its write of the decremented value. This form
of basic synchronization is used by the kernel and drivers. In today’s Microsoft compiler suite, these
functions are called intrinsic because the code for them is generated in an inline assembler, directly
during the compilation phase, instead of going through a function call. (It's likely that pushing the
parameters onto the stack, calling the function, copying the parameters into registers, and then pop-
ping the parameters off the stack and returning to the caller would be a more expensive operation
than the actual work the function is supposed to do in the first place.)

178 Windows Internals, Sixth Edition, Part 1

Spinlocks

The mechanism the kernel uses to achieve multiprocessor mutual exclusion is called a spinlock. A
spinlock is a locking primitive associated with a global data structure such as the DPC queue shown in

Figure 3-25.

Processor A Processor B

Do Do
Try to acquire
DPC queue
spinlock

Until SUCCESS

Try to acquire
DPC queue
spinlock

Until SUCCESS

Begin Begin
Remove DPC from queue Add DPC from queue
End DPC queue End
Release DPC queue spinlock Release DPC queue spinlock

[Critical section

FIGURE 3-25 Using a spinlock

Before entering either critical section shown in Figure 3-25, the kernel must acquire the spinlock
associated with the protected DPC queue. If the spinlock isnt free, the kernel keeps trying to acquire
the lock until it succeeds. The spinlock gets its name from the fact that the kernel (and thus, the
processor) waits, “spinning,” until it gets the lock.

Spinlocks, like the data structures they protect, reside in nonpaged memory mapped into the
system address space. The code to acquire and release a spinlock is written in assembly language for
speed and to exploit whatever locking mechanism the underlying processor architecture provides. On
many architectures, spinlocks are implemented with a hardware-supported test-and-set operation,
which tests the value of a lock variable and acquires the lock in one atomic instruction. Testing and
acquiring the lock in one instruction prevents a second thread from grabbing the lock between the
time the first thread tests the variable and the time it acquires the lock. Additionally, the lock instruc-
tion mentioned earlier can also be used on the test-and-set operation, resulting in the combined /ock
bts assembly operation, which also locks the multiprocessor bus; otherwise, it would be possible for
more than one processor to atomically perform the operation. (Without the /ock, the operation is
guaranteed to be atomic only on the current processor.)

All kernel-mode spinlocks in Windows have an associated IRQL that is always DPC/dispatch level or
higher. Thus, when a thread is trying to acquire a spinlock, all other activity at the spinlock’s IRQL or
lower ceases on that processor. Because thread dispatching happens at DPC/dispatch level, a thread
that holds a spinlock is never preempted because the IRQL masks the dispatching mechanisms. This
masking allows code executing in a critical section protected by a spinlock to continue executing so

System Mechanisms 179

that it will release the lock quickly. The kernel uses spinlocks with great care, minimizing the num-

ber of instructions it executes while it holds a spinlock. Any processor that attempts to acquire the

spinlock will essentially be busy, waiting indefinitely, consuming power (a busy wait results in 100%
CPU usage) and performing no actual work.

On x86 and x64 processors, a special pause assembly instruction can be inserted in busy wait
loops. This instruction offers a hint to the processor that the loop instructions it is processing are part
of a spinlock (or a similar construct) acquisition loop. The instruction provides three benefits:

m |t significantly reduces power usage by delaying the core ever so slightly instead of
continuously looping.

m On HyperThreaded cores, it allows the CPU to realize that the “work” being done by the
spinning logical core is not terribly important and awards more CPU time to the second logical
core instead.

m Because a busy wait loop results in a storm of read requests coming to the bus from the
waiting thread (which might be generated out of order), the CPU attempts to correct for viola-
tions of memory order as soon as it detects a write (that is, when the owning thread releases
the lock). Thus, as soon as the spinlock is released, the CPU reorders any pending memory
read operations to ensure proper ordering. This reordering results in a large penalty in system
performance and can be avoided with the pause instruction.

The kernel makes spinlocks available to other parts of the executive through a set of kernel
functions, including KeAcquireSpinLock and KeReleaseSpinLock. Device drivers, for example, require
spinlocks to guarantee that device registers and other global data structures are accessed by only
one part of a device driver (and from only one processor) at a time. Spinlocks are not for use by
user programs—user programs should use the objects described in the next section. Device drivers
also need to protect access to their own data structures from interrupts associated with themselves.
Because the spinlock APIs typically raise the IRQL only to DPC/dispatch level, this isn't enough to
protect against interrupts. For this reason, the kernel also exports the KeAcquirelnterruptSpinLock
and KeReleaselnterruptSpinLock APIs that take as a parameter the KINTERRUPT object discussed at
the beginning of this chapter. The system looks inside the interrupt object for the associated DIRQL
with the interrupt and raises the IRQL to the appropriate level to ensure correct access to structures
shared with the ISR. Devices can use the KeSynchronizeExecution API to synchronize an entire function
with an ISR, instead of just a critical section. In all cases, the code protected by an interrupt spinlock
must execute extremely quickly—any delay causes higher-than-normal interrupt latency and will have
significant negative performance effects.

Kernel spinlocks carry with them restrictions for code that uses them. Because spinlocks always
have an IRQL of DPC/dispatch level or higher, as explained earlier, code holding a spinlock will crash
the system if it attempts to make the scheduler perform a dispatch operation or if it causes a page
fault.

180 Windows Internals, Sixth Edition, Part 1

~a

il)
==

Queued Spinlocks

To increase the scalability of spinlocks, a special type of spinlock, called a queued spinlock, is used

in most circumstances instead of a standard spinlock. A queued spinlock works like this: When a
processor wants to acquire a queued spinlock that is currently held, it places its identifier in a queue
associated with the spinlock. When the processor that's holding the spinlock releases it, it hands the
lock over to the first processor identified in the queue. In the meantime, a processor waiting for a
busy spinlock checks the status not of the spinlock itself but of a per-processor flag that the processor
ahead of it in the queue sets to indicate that the waiting processor’s turn has arrived.

The fact that queued spinlocks result in spinning on per-processor flags rather than global
spinlocks has two effects. The first is that the multiprocessor’s bus isn't as heavily trafficked by
interprocessor synchronization. The second is that instead of a random processor in a waiting group
acquiring a spinlock, the queued spinlock enforces first-in, first-out (FIFO) ordering to the lock. FIFO
ordering means more consistent performance across processors accessing the same locks.

Windows defines a number of global queued spinlocks by storing pointers to them in an array
contained in each processor's processor region control block (PRCB). A global spinlock can be acquired
by calling KeAcquireQueuedSpinLock with the index into the PRCB array at which the pointer to the
spinlock is stored. The number of global spinlocks has grown in each release of the operating system,
and the table of index definitions for them is published in the WDK header file Wdm.h. Note, how-
ever, that acquiring one of these queued spinlocks from a device driver is an unsupported and heavily
frowned-upon operation. These locks are reserved for the kernel’s own internal use.

EXPERIMENT: Viewing Global Queued Spinlocks

You can view the state of the global queued spinlocks (the ones pointed to by the queued
spinlock array in each processor’s PCR) by using the /glocks kernel debugger command. In

the following example, the page frame number (PFN) database queued spinlock is held by
processor 1, and the other queued spinlocks are not acquired. (The PFN database is described
in Chapter 10 in Part 2.)

Tkd> !glocks
Key: O = Owner, 1-n = Wait order, blank = not owned/waiting, C = Corrupt

Processor Number

Lock Name 0 1
KE - Unused Spare
MM - Expansion
MM - Unused Spare
MM - System Space
cC - Vacb
CcC - Master

System Mechanisms 181

Instack Queued Spinlocks

Device drivers can use dynamically allocated queued spinlocks with the
KeAcquirelnStackQueuedSpinLock and KeReleaselnStackQueuedSpinLock functions. Several
components—including the cache manager, executive pool manager, and NTFS—take advantage
of these types of locks instead of using global queued spinlocks.

KeAcquirelnStackQueuedSpinLock takes a pointer to a spinlock data structure and a spinlock queue
handle. The spinlock handle is actually a data structure in which the kernel stores information about
the lock’s status, including the lock’s ownership and the queue of processors that might be waiting for
the lock to become available. For this reason, the handle shouldn't be a global variable. It is usually a
stack variable, guaranteeing locality to the caller thread and is responsible for the InStack part of the
spinlock and APl name.

Executive Interlocked Operations

The kernel supplies a number of simple synchronization functions constructed on spinlocks for
more advanced operations, such as adding and removing entries from singly and doubly linked lists.
Examples include ExInterlockedPopEntryList and ExinterlockedPushEntrylList for singly linked lists,

and ExInterlockedInsertHeadList and ExInterlockedRemoveHeadList for doubly linked lists. All these
functions require a standard spinlock as a parameter and are used throughout the kernel and device
drivers.

Instead of relying on the standard APIs to acquire and release the spinlock parameter, these
functions place the code required inline and also use a different ordering scheme. Whereas the Ke
spinlock APIs first test and set the bit to see whether the lock is released and then atomically do a
locked test-and-set operation to actually make the acquisition, these routines disable interrupts on
the processor and immediately attempt an atomic test-and-set. If the initial attempt fails, interrupts
are enabled again, and the standard busy waiting algorithm continues until the test-and-set operation
returns 0O—in which case, the whole function is restarted again. Because of these subtle differences, a
spinlock used for the executive interlocked functions must not be used with the standard kernel APIs
discussed previously. Naturally, noninterlocked list operations must not be mixed with interlocked
operations.

Note Certain executive interlocked operations silently ignore the spinlock when possible.
For example, the ExInterlockedIincrementLong or ExinterlockedCompareExchange APIs actu-
ally use the same lock prefix used by the standard interlocked functions and the intrinsic
functions. These functions were useful on older systems (or non-x86 systems) where the
lock operation was not suitable or available. For this reason, these calls are now deprecated
in favor of the intrinsic functions.

182 Windows Internals, Sixth Edition, Part 1

Low-IRQL Synchronization

Executive software outside the kernel also needs to synchronize access to global data structures in a

multiprocessor environment. For example, the memory manager has only one page frame database,

which it accesses as a global data structure, and device drivers need to ensure that they can gain ex-

clusive access to their devices. By calling kernel functions, the executive can create a spinlock, acquire
it, and release it.

Spinlocks only partially fill the executive’'s needs for synchronization mechanisms, however.
Because waiting for a spinlock literally stalls a processor, spinlocks can be used only under the
following strictly limited circumstances:

m The protected resource must be accessed quickly and without complicated interactions with
other code.

m The critical section code can't be paged out of memory, can't make references to pageable
data, can't call external procedures (including system services), and can’t generate interrupts
or exceptions.

These restrictions are confining and can't be met under all circumstances. Furthermore, the
executive needs to perform other types of synchronization in addition to mutual exclusion, and it
must also provide synchronization mechanisms to user mode.

There are several additional synchronization mechanisms for use when spinlocks are not suitable:
m Kernel dispatcher objects

m Fast mutexes and guarded mutexes

m Pushlocks

= Executive resources

Additionally, user-mode code, which also executes at low IRQL, must be able to have its own
locking primitives. Windows supports various user-mode-specific primitives:

m Condition variables (CondVars)

m Slim Reader-Writer Locks (SRW Locks)
® Run-once initialization (InitOnce)

m Critical sections

We'll take a look at the user-mode primitives and their underlying kernel-mode support later; for
now, we'll focus on kernel-mode objects. Table 3-18 serves as a reference that compares and contrasts
the capabilities of these mechanisms and their interaction with kernel-mode APC delivery.

System Mechanisms 183

TABLE 3-18 Kernel Synchronization Mechanisms

Disables Disables Supports
Exposed for Normal Special Supports Shared and
Use by Device | Kernel-Mode Kernel-Mode | Recursive Exclusive
Drivers APCs APCs Acquisition Acquisition
Kernel dispatcher Yes Yes No Yes No
mutexes
Kernel dispatcher Yes No No No No
semaphores or events
Fast mutexes Yes Yes Yes No No
Guarded mutexes Yes Yes Yes No No
Pushlocks No No No No Yes
Executive resources Yes No No Yes Yes

Kernel Dispatcher Objects

The kernel furnishes additional synchronization mechanisms to the executive in the form of kernel
objects, known collectively as dispatcher objects. The Windows API-visible synchronization objects
acquire their synchronization capabilities from these kernel dispatcher objects. Each Windows
API-visible object that supports synchronization encapsulates at least one kernel dispatcher object.
The executive's synchronization semantics are visible to Windows programmers through the
WaitForSingleObject and WaitForMultipleObjects functions, which the Windows subsystem imple-
ments by calling analogous system services that the object manager supplies. A thread in a Windows
application can synchronize with a variety of objects, including a Windows process, thread, event,
semaphore, mutex, waitable timer, I/O completion port, ALPC port, registry key, or file object. In
fact, almost all objects exposed by the kernel can be waited on. Some of these are proper dispatcher
objects, while others are larger objects that have a dispatcher object within them (such as ports, keys,
or files). Table 3-19 shows the proper dispatcher objects, so any other object that the Windows API
allows waiting on probably internally contains one of those primitives.

One other type of executive synchronization object worth noting is called an executive resource.
Executive resources provide exclusive access (like a mutex) as well as shared read access (multiple
readers sharing read-only access to a structure). However, they're available only to kernel-mode
code and thus are not accessible from the Windows API. The remaining subsections describe the
implementation details of waiting for dispatcher objects.

Waiting for Dispatcher Objects

A thread can synchronize with a dispatcher object by waiting for the object’s handle. Doing so causes
the kernel to put the thread in a wait state.

At any given moment, a synchronization object is in one of two states: signaled state or
nonsignaled state. A thread can't resume its execution until its wait is satisfied, a condition that occurs

184 Windows Internals, Sixth Edition, Part 1

when the dispatcher object whose handle the thread is waiting for also undergoes a state change,
from the nonsignaled state to the signaled state (when another thread sets an event object, for
example). To synchronize with an object, a thread calls one of the wait system services that the object
manager supplies, passing a handle to the object it wants to synchronize with. The thread can wait for
one or several objects and can also specify that its wait should be canceled if it hasn't ended within a
certain amount of time. Whenever the kernel sets an object to the signaled state, one of the kernel’s
signal routines checks to see whether any threads are waiting for the object and not also waiting for
other objects to become signaled. If there are, the kernel releases one or more of the threads from
their waiting state so that they can continue executing.

The following example of setting an event illustrates how synchronization interacts with thread
dispatching:

m A user-mode thread waits for an event object’s handle.

m The kernel changes the thread’s scheduling state to waiting and then adds the thread to a list
of threads waiting for the event.

® Another thread sets the event.

m The kernel marches down the list of threads waiting for the event. If a thread'’s conditions for
waiting are satisfied (see the following note), the kernel takes the thread out of the waiting
state. If it is a variable-priority thread, the kernel might also boost its execution priority. (For
details on thread scheduling, see Chapter 5.)

Note Some threads might be waiting for more than one object, so they continue waiting,
unless they specified a WaitAny wait, which will wake them up as soon as one object
(instead of all) is signaled.

What Signals an Object?

The signaled state is defined differently for different objects. A thread object is in the nonsignaled
state during its lifetime and is set to the signaled state by the kernel when the thread terminates.
Similarly, the kernel sets a process object to the signaled state when the process’ last thread termi-
nates. In contrast, the timer object, like an alarm, is set to “go off” at a certain time. When its time
expires, the kernel sets the timer object to the signaled state.

When choosing a synchronization mechanism, a program must take into account the rules
governing the behavior of different synchronization objects. Whether a thread’s wait ends when
an object is set to the signaled state varies with the type of object the thread is waiting for, as
Table 3-19 illustrates.

System Mechanisms 185

TABLE 3-19 Definitions of the Signaled State

Object Type

Process

Thread

Event (notification type)

Event (synchronization type)

Gate (locking type)

Gate (signaling type)

Keyed event

Semaphore

Timer (notification type)

Timer (synchronization type)

Mutex

Queue

Set to Signaled State When
Last thread terminates
Thread terminates

Thread sets the event

Thread sets the event

Thread signals the gate

Thread signals the type

Thread sets event with a key

Semaphore count drops by 1

Set time arrives, or time interval
expires

Set time arrives, or time interval
expires

Thread releases the mutex

Item is placed on queue

Effect on Waiting Threads
All are released.
All are released.
All are released.

One thread is released and might receive a
boost; the event object is reset.

First waiting thread is released and receives a
boost.

First waiting thread is released.

Thread that’s waiting for the key and which is
of the same process as the signaler is released.

One thread is released.
All are released.

One thread is released.

One thread is released and takes ownership of
the mutex.

One thread is released.

When an object is set to the signaled state, waiting threads are generally released from their wait
states immediately. Some of the kernel dispatcher objects and the system events that induce their
state changes are shown in Figure 3-26.

For example, a notification event object (called a manual reset event in the Windows API) is used
to announce the occurrence of some event. When the event object is set to the signaled state, all
threads waiting for the event are released. The exception is any thread that is waiting for more than
one object at a time; such a thread might be required to continue waiting until additional objects

reach the signaled state.

In contrast to an event object, a mutex object has ownership associated with it (unless it was
acquired during a DPC). It is used to gain mutually exclusive access to a resource, and only one thread
at a time can hold the mutex. When the mutex object becomes free, the kernel sets it to the signaled
state and then selects one waiting thread to execute, while also inheriting any priority boost that had
been applied. (See Chapter 5 for more information on priority boosting.) The thread selected by the
kernel acquires the mutex object, and all other threads continue waiting.

A mutex object can also be abandoned: this occurs when the thread currently owning it becomes
terminated. When a thread terminate, the kernel enumerates all mutexes owned by the thread and
sets them to the abandoned state, which, in terms of signaling logic, is treated as a signaled state in
that ownership of the mutex is transferred to a waiting thread.

186 Windows Internals, Sixth Edition, Part 1

Dispatcher object

Mutex (kernel-
mode use only)

Mutex (exported to
user mode)

Semaphore

Event

Event pair

Timer

Thread

System events and
resulting state change

Owning thread
releases the mutex.

—,

Nonsignaled Signaled

N~

Resumed thread
acquires the mutex.

Owning thread or other
thread releases the mutex.

—

Nonsignaled Signaled

N~

Resumed thread
acquires the mutex.

One thread releases the
semaphore, freeing a resource.

—

Nonsignaled Signaled

N~

A thread acquires the semaphore.
More resources are not available.

A thread sets the event.

—

Nonsignaled Signaled

N~

Kernel resumes one
or more threads.

Dedicated thread sets
one event in the event pair.

—

Nonsignaled Signaled

N~

Kernel resumes the
other dedicated thread.

Timer expires.

—

Nonsignaled Signaled

N~

A thread (re)initializes
the timer.

Thread terminates.

—,

Nonsignaled Signaled

N~

A thread reinitializes
the thread object.

FIGURE 3-26 Selected kernel dispatcher objects

Effect of signaled state
on waiting threads

Kernel resumes one
waiting thread.

Kernel resumes one
waiting thread.

Kernel resumes one
or more waiting threads.

Kernel resumes one
or more waiting threads.

Kernel resumes waiting
dedicated thread.

Kernel resumes all
waiting threads.

Kernel resumes all
waiting threads.

System Mechanisms

187

This brief discussion wasn’t meant to enumerate all the reasons and applications for using the
various executive objects but rather to list their basic functionality and synchronization behavior. For
information on how to put these objects to use in Windows programs, see the Windows reference
documentation on synchronization objects or Jeffrey Richter and Christophe Nasarre's book Windows
via C/C++.

Data Structures

Three data structures are key to tracking who is waiting, how they are waiting, what they are waiting
for, and which state the entire wait operation is at. These three structures are the dispatcher header,
the wait block, and the wait status register. The former two structures are publicly defined in the WDK
include file Wdm.h, while the latter is not documented.

The dispatcher header is a packed structure because it needs to hold lots of information in a fixed-
size structure. (See the upcoming "EXPERIMENT: Looking at Wait Queues” section to see the definition
of the dispatcher header data structure.) One of the main tricks is to define mutually exclusive flags at
the same memory location (offset) in the structure. By using the Type field, the kernel knows which of
these fields actually applies. For example, a mutex can be abandoned, but a timer can be absolute or
relative. Similarly, a timer can be inserted into the timer list, but the Debug Active field makes sense
only for processes. On the other hand, the dispatcher header does contain information generic for
any dispatcher object: the object type, signaled state, and a list of the threads waiting for that object.

The wait block represents a thread waiting for an object. Each thread that is in a wait state has a list
of the wait blocks that represent the objects the thread is waiting for. Each dispatcher object has a list
of the wait blocks that represent which threads are waiting for the object. This list is kept so that when
a dispatcher object is signaled, the kernel can quickly determine who is waiting for that object. Finally,
because the balance-set-manager thread running on each CPU (see Chapter 5 for more information
about the balance set manager) needs to analyze the time that each thread has been waiting for (in
order to decide whether or not to page out the kernel stack), each PRCB has a list of waiting threads.

The wait block has a pointer to the object being waited for, a pointer to the thread waiting for the
object, and a pointer to the next wait block (if the thread is waiting for more than one object). It also
records the type of wait (any or all) as well as the position of that entry in the array of handles passed
by the thread on the WaitForMultipleObjects call (position O if the thread was waiting for only one
object). The wait type is very important during wait satisfaction, because it determines whether or not
all the wait blocks belonging to the thread waiting on the signaled object should be processed: for a
wait any, the dispatcher does not care what the state of the other objects is because at least one (the
current one) of the objects is now signaled. On the other hand, for a wait all, the dispatcher can wake
the thread only if all the other objects are also in a signaled state, which requires traversing the wait
blocks and associated objects.

The wait block also contains a volatile wait block state, which defines the current state of this wait
block in the transactional wait operation it is currently being engaged in. The different states, their
meaning, and their effects in the wait logic code, are explained in Table 3-20.

188 Windows Internals, Sixth Edition, Part 1

TABLE 3-20 Wait Block States

State

WaitBlockActive (2)

WaitBlockInactive (3)

WaitBlockBypassStart (0)

Meaning

This wait block is actively linked to
an object as part of a thread that is
in a wait state.

The thread wait associated with this
wait block has been satisfied (or the
timeout has already expired while
setting it up).

A signal is being delivered to the
thread while the wait has not yet

Effect

During wait satisfaction, this wait block will
be unlinked from the wait block list.

During wait satisfaction, this wait block will
not be unlinked from the wait block list be-
cause the wait satisfaction must have aleady
unlinked during its active state.

During wait satisfaction (which would be
immediate, before the thread enters the true

been committed. wait state), the waiting thread must synchro-
nize with the signaler because there is a risk
that the wait object might be on the stack—
marking the wait block as inactive would
cause the waiter to unwind the stack while

the signaler might still be accessing it.

The thread wait associated with this
wait block has now been properly
synchronized (the wait satisfaction
has completed), and the bypass
scenario is now completed.

WaitBlockBypassComplete (1) The wait block is now essentially treated the

same as an inactive wait block (ignored).

Because the overall state of the thread (or any of the objects it is being required to start waiting
on) can change while wait operations are still being set up (because there is nothing blocking another
thread executing on a different logical processor from attempting to signal one of the objects, or
possibly alerting the thread, or even sending it an APC), the kernel dispatcher needs to keep track
of two additional pieces of data for each waiting thread: the current fine-grained wait state of the
thread, as well as any pending state changes that could modify the result of the attempted wait
operation.

When a thread is instructed to wait for a given object (such as due to a WaitForSingleObject call), it
first attempts to enter the in-progress wait state (WaitinProgress) by beginning the wait. This opera-
tion succeeds if there are no pending alerts to the thread at the moment (based on the alertability of
the wait and the current processor mode of the wait, which determine whether or not the alert can
preempt the wait). If there is an alert, the wait is not even entered at all, and the caller receives the
appropriate status code; otherwise, the thread now enters the WaitInProgress state, at which point the
main thread state is set to Waiting, and the wait reason and wait time are recorded, with any timeout
specified also being registered.

Once the wait is in progress, the thread can initialize the wait blocks as needed (and mark them
as WaitBlockActive in the process) and then proceed to lock all the objects that are part of this wait.
Because each object has its own lock, it is important that the kernel be able to maintain a consistent
locking ordering scheme when multiple processors might be analyzing a wait chain consisting of
many objects (caused by a WaitForMultipleObjects call). The kernel uses a technique known as address
ordering to achieve this: because each object has a distinct and static kernel-mode address, the
objects can be ordered in monotonically increasing address order, guaranteeing that locks are always
acquired and released in the same order by all callers. This means that the caller-supplied array of
objects will be duplicated and sorted accordingly.
189

System Mechanisms

The next step is to check for immediate satisfaction of the wait, such as when a thread is being told
to wait on a mutex that has already been released or an event that is already signaled. In such cases,
the wait is immediately satisfied, which involves unlinking the associated wait blocks (however, in
this case, no wait blocks have yet been inserted) and performing a wait exit (processing any pending
scheduler operations marked in the wait status register). If this shortcut fails, the kernel next attempts
to check whether the timeout specified for the wait (if any) has actually already expired. In this case,
the wait is not “satisfied” but merely “timed out,” which results in slightly faster processing of the exit
code, albeit with the same result.

If none of these shortcuts were effective, the wait block is inserted into the thread’s wait list, and
the thread now attempts to commit its wait. (Meanwhile, the object lock or locks have been released,
allowing other processors to modify the state of any of the objects that the thread is now supposed
to attempt waiting on.) Assuming a noncontended scenario, where other processors are not interest-
ed in this thread or its wait objects, the wait switches into the committed state as long as there are no
pending changes marked by the wait status register. The commit operation links the waiting thread
in the PRCB list, activates an extra wait queue thread if needed, and inserts the timer associated with
the wait timeout, if any. Because potentially quite a lot of cycles have elapsed by this point, it is again
possible that the timeout has already elapsed. In this scenario, inserting the timer will cause immedi-
ate signaling of the thread, and thus a wait satisfaction on the timer, and the overall timeout of the
wait. Otherwise, in the much more common scenario, the CPU now context switches away to the next
thread that is ready for execution. (See Chapter 5 for more information on scheduling.)

In highly contended code paths on multiprocessor machines, it is possible and likely that the
thread attempting to commit its wait has experienced a change while its wait was still in progress.
One possible scenario is that one of the objects it was waiting on has just been signaled. As touched
upon earlier, this causes the associated wait block to enter the WaitBlockBypassStart state, and the
thread’s wait status register now shows the WaitAborted wait state. Another possible scenario is for
an alert or APC to have been issued to the waiting thread, which does not set the WaitAborted state
but enables one of the corresponding bits in the wait status register. Because APCs can break waits
(depending on the type of APC, wait mode, and alertability), the APC is delivered and the wait is
aborted. Other operations that will modify the wait status register without generating a full abort
cycle include modifications to the thread's priority or affinity, which will be processed when exiting
the wait due to failure to commit, as with the previous cases mentioned.

Figure 3-27 shows the relationship of dispatcher objects to wait blocks to threads to PRCB. In this
example, CPU 0 has two waiting (committed) threads: thread 1 is waiting for object B, and thread
2 is waiting for objects A and B. If object A is signaled, the kernel sees that because thread 2 is also
waiting for another object, thread 2 can't be readied for execution. On the other hand, if object B is
signaled, the kernel can ready thread 1 for execution right away because it isn't waiting for any other
objects. (Alternatively, if thread 1 was also waiting for other objects but its wait type was a WaitAny,
the kernel could still wake it up.)

190 Windows Internals, Sixth Edition, Part 1

Thread objects

Thread 1 Thread 2 |+— PRCB 0
Wait block list Wait block list |—' Wait list head
List entry List entry
Dispatcher objects
Size | Type
State] Wait blocks
——
Object A [~Wait list head— — List entry —
Object-type- Thread
specific data Object
Key | Type
Next link
Size | Type
State Thread 2 wait block
Object B [-Wait list head— — List entry | «———|— Listentry —
Object-type- Thread Thread
specific data Object Object
Key | Type Key | Type
Next link Next link
Thread 1 wait block Thread 2 wait block

FIGURE 3-27 Wait data structures

i il EXPERIMENT: Looking at Wait Queues

You can see the list of objects a thread is waiting for with the kernel debugger’s /thread com-
mand. For example, the following excerpt from the output of a /process command shows that
the thread is waiting for an event object:

kd> !process
§
THREAD fffffa8005292060 Cid 062c062c.0660 Teb: 000007fffffde000 Win32Thread:
fffff900c01c68f0 WAIT: (WrUserRequest) UserMode Non-Alertable
fffffa80047b8240 SynchronizationEvent

System Mechanisms

191

You can use the dt command to interpret the dispatcher header of the object like this:

Tkd> dt nt!_DISPATCHER_HEADER fffffa80047b8240

+0x000 Type

: 0x1 '

+0x001 TimerControlFlags : 0 "'

+0x001 Absolute
+0x001Coalescable
+0x001 KeepShifting

1 0y0

: 0y0

1 0y0

+0x001 EncodedTolerableDelay : 0y00000 (0)

+0x001 Abandoned
+0x001 Signalling

0"
0"

+0x002 ThreadControlFlags : Ox6 "'

+0x002 CpuThrottled
+0x002 CycleProfiling

+0x002 CounterProfiling :

+0x002 Reserved
+0x002 Hand

+0x002 Size

+0x003 TimerMiscFlags
+0x003 Index

+0x003 Inserted
+0x003 Expired
+0x003 DebugActive
+0x003 ActiveDR7
+0x003 Instrumented
+0x003 Reserved?2
+0x003 UmsScheduled
+0x003 UmsPrimary
+0x003 DpcActive
+0x000 Lock

+0x004 SignalState
+0x008 WaitListHead

1 0y0

1 Oyl

Oyl

1 0y00000 (0)
1 0x6 "'

1 0x6

0"

: 0y000000 (0)
1 0y0

1 0y0

0"

1 0y0

1 0y0

: 0y0000

1 0y0

1 0y0

0"

1 393217

0

: _LIST_ENTRY [Oxfffffa80'047b8248 - Oxfffffa80'047b8248]

You should ignore any values that do not correspond to the given object type, because
they might be either incorrectly decoded by the debugger (because the wrong type or field is
being used) or simply contain stale or invalid data from a previous allocation value. There is no
defined correlation you can see between which fields apply to which object, other than by look-
ing at the Windows kernel source code or the WDK header files’ comments. For convenience,
Table 3-21 lists the dispatcher header flags and the objects to which they apply.

TABLE 3-21 Usage and Meaning of the Dispatcher Header Flags

Flag
Absolute

Coalescable

KeepShifting

EncodedTolerableDelay

Applies To
Timers

Periodic Timers

Coalescable Timers

Coalescable Timers

192 Windows Internals, Sixth Edition, Part 1

Meaning
The expiration time is absolute, not relative.

Indicates whether coalescing should be used for this
timer.

Indicates whether or not the kernel dispatcher should
continue attempting to shift the timer's expiration time.
When alignment is reached with the machine’s periodic
interval, this eventually becomes FALSE.

The maximum amount of tolerance (shifted as a power
of two) that the timer can support when running
outside of its expected periodicity.

Flag Applies To Meaning
Abandoned Mutexes The thread holding the mutex was terminated.

Signaling Gates A priority boost should be applied to the woken thread
when the gate is signaled.

CpuThrottled Threads CPU throttling has been enabled for this thread,
such as when running under DFSS mode (Distributed
Fair-Share Scheduler).

CycleProfiling Threads CPU cycle profiling has been enabled for this thread.

CounterProfiling Threads Hardware CPU performance counter monitoring/
profiling has been enabled for this thread.

Size All objects Size of the object divided by 4, to fit in a single byte.

Hand Timers Index into the timer handle table.

Index Timers Index into the timer expiration table.

Inserted Timers Set if the timer was inserted into the timer handle
table.

Expired Timers Set if the timer has already expired.

DebugActive Processes Specifies whether the process is being debugged.

ActiveDR7 Thread Hardware breakpoints are being used, so DR7 is active

and should be sanitized during context operations.

Instrumented Thread Specifies whether the thread has a user-mode
instrumentation callback (supported only on Windows
for x64 processors).

UmsScheduled Thread This thread is a UMS Worker (scheduled) thread.
UmsPrimary Thread This thread is a UMS Scheduler (primary) thread.
DpcActive Mutexes The mutex was acquired during a DPC.

Lock All objects Used for locking an object during wait operations

which need to modify its state or linkage; actually
corresponds to bit 7 (0x80) of the Type field.

Apart from these flags, the Type field contains the identifier for the object. This identifier
corresponds to a number in the KOBJECTS enumeration, which you can dump with the
debugger:

Tkd> dt nt!_KOBJECTS
EventNotificationObject = 0
EventSynchronizationObject = 1
MutantObject = 2
ProcessObject = 3
QueueObject = 4
SemaphoreObject = 5
ThreadObject = 6
GateObject = 7
TimerNotificationObject = 8
TimerSynchronizationObject = 9
Spare20bject = 10

System Mechanisms 193

Spare30bject = 11
Spare40Object = 12
Spare50bject = 13
Spare6Object = 14
Spare70bject = 15
Spare80bject = 16
Spare90bject = 17
ApcObject = 18
DpcObject = 19
DeviceQueueObject
EventPairObject
InterruptObject
ProfileObject = 23
ThreadedDpcObject = 24
MaximumKernelObject = 25

20

21
22

When the wait list head pointers are identical, there are either zero threads or one thread
waiting on this object. Dumping a wait block for an object that is part of a multiple wait from a
thread, or that multiple threads are waiting on, can yield the following:

dt nt!_KWAIT_BLOCK Oxfffffa80'053cf628

+0x000 WaitListEntry : _LIST_ENTRY [Oxfffffa80'02efe568 - Oxfffffa80'02803468]
+0x010 Thread 1 Oxfffffa80'053cf520 _KTHREAD

+0x018 Object : Oxfffffa80'02803460

+0x020 NextWaitBlock : Oxfffffa80'053cf628 _KWAIT_BLOCK

+0x028 WaitKey : 0

+0x02a WaitType Ox1 '

+0x02b BlockState : 0x2 '

+0x02c Sparelong : 8

If the wait list has more than one entry, you can execute the same command on the second
pointer value in the WaitListEntry field of each wait block (by executing /thread on the thread
pointer in the wait block) to traverse the list and see what other threads are waiting for the ob-
ject. This would indicate more than one thread waiting on this object. On the other hand, when
dealing with an object that's part of a collection of objects being waited on by a single thread,
you have to parse the NextWaitBlock field instead.

Keyed Events

A synchronization object called a keyed event bears special mention because of the role it plays

in user-mode-exclusive synchronization primitives. Keyed events were originally implemented to
help processes deal with low-memory situations when using critical sections, which are user-mode
synchronization objects that we'll see more about shortly. A keyed event, which is not documented,
allows a thread to specify a "key” for which it waits, where the thread wakes when another thread of
the same process signals the event with the same key.

If there is contention, EnterCriticalSection dynamically allocates an event object, and the thread
wanting to acquire the critical section waits for the thread that owns the critical section to signal
it in LeaveCriticalSection. Unfortunately, this introduces a new problem. Without keyed events, the
system could be critically out of memory and critical-section acquisition could fail because the system

194 Windows Internals, Sixth Edition, Part 1

was unable to allocate the event object required. The low-memory condition itself might have been
caused by the application trying to acquire the critical section, so the system would deadlock in this
situation. Low memory isn’t the only scenario that could cause this to fail: a less likely scenario is
handle exhaustion. If the process reaches its 16-million-handle limit, the new handle for the event
object could fail.

The failure caused by low-memory conditions typically are an exception from the code responsible
for acquiring the critical section. Unfortunately, the result is also a damaged critical section,
which makes the situation hard to debug and makes the object useless for a reacquisition at-
tempt. Attempting a LeaveCriticalSection results in another event-object allocation attempt, further
generating exceptions and corrupting the structure.

Allocating a global standard event object would not fix the issue because standard event primitives
can be used only for a single object. Each critical section in the process still requires its own event
object, so the same problem would resurface. The implementation of keyed events allows multiple
critical sections (waiters) to use the same global (per-process) keyed event handle. This allows the
critical section functions to operate properly even when memory is temporarily low.

When a thread signals a keyed event or performs a wait on it, it uses a unique identifier called a
key, which identifies the instance of the keyed event (an association of the keyed event to a single
critical section). When the owner thread releases the keyed event by signaling it, only a single
thread waiting on the key is woken up (the same behavior as synchronization events, in contrast to
notification events). Additionally, only the waiters in the current process are awakened, so the key is
even isolated across processes, meaning that there is actually only a single keyed event object for the
entire system. When a critical section uses the keyed event, EnterCriticalSection sets the key as the
address of the critical section and performs a wait.

When EnterCriticalSection calls NtWaitForKeyedEvent to perform a wait on the keyed event, it
can now give a NULL handle as parameter for the keyed event, telling the kernel that it was unable
to create a keyed event. The kernel recognizes this behavior and uses a global keyed event named
ExpCritSecOutOfMemoryEvent. The primary benefit is that processes don't need to waste a handle for
a named keyed event anymore because the kernel keeps track of the object and its references.

However, keyed events are more than just fallback objects for low-memory conditions. When
multiple waiters are waiting on the same key and need to be woken up, the key is actually signaled
multiple times, which requires the object to keep a list of all the waiters so that it can perform a
“wake" operation on each of them. (Recall that the result of signaling a keyed event is the same
as that of signaling a synchronization event.) However, a thread can signal a keyed event without
any threads on the waiter list. In this scenario, the signaling thread instead waits on the event itself.
Without this fallback, a signaling thread could signal the keyed event during the time that the user-
mode code saw the keyed event as unsignaled and attempt a wait. The wait might have come after
the signaling thread signaled the keyed event, resulting in a missed pulse, so the waiting thread would
deadlock. By forcing the signaling thread to wait in this scenario, it actually signals the keyed event
only when someone is looking (waiting).

System Mechanisms 195

Note When the keyed-event wait code itself needs to perform a wait, it uses a
built-in semaphore located in the kernel-mode thread object (ETHREAD) called
KeyedWaitSemaphore. (This semaphore actually shares its location with the ALPC wait
semaphore.) See Chapter 5 for more information on thread objects.

Keyed events, however, do not replace standard event objects in the critical section implemen-
tation. The initial reason, during the Windows XP timeframe, was that keyed events do not offer
scalable performance in heavy-usage scenarios. Recall that all the algorithms described were meant
to be used only in critical, low-memory scenarios, when performance and scalability aren’t all that
important. To replace the standard event object would place strain on keyed events that they weren't
implemented to handle. The primary performance bottleneck was that keyed events maintained the
list of waiters described in a doubly linked list. This kind of list has poor traversal speed, meaning
the time required to loop through the list. In this case, this time depended on the number of waiter
threads. Because the object is global, dozens of threads could be on the list, requiring long traversal
times every single time a key was set or waited on.

Note The head of the list is kept in the keyed event object, while the threads are actually
linked through the KeyedWaitChain field (which is actually shared with the thread’s exit
time, stored as a LARGE_INTEGER, the same size as a doubly linked list) in the kernel-mode
thread object (ETHREAD). See Chapter 5 for more information on this object.

Windows improves keyed-event performance by using a hash table instead of a linked list to hold
the waiter threads. This optimization allows Windows to include three new lightweight user-mode
synchronization primitives (to be discussed shortly) that all depend on the keyed event. Critical
sections, however, still continue to use event objects, primarily for application compatibility and
debugging, because the event object and internals are well known and documented, while keyed
events are opaque and not exposed to the Win32 API.

Fast Mutexes and Guarded Mutexes

Fast mutexes, which are also known as executive mutexes, usually offer better performance than
mutex objects because, although they are built on dispatcher event objects, they perform a wait
through the dispatcher only if the fast mutex is contended—unlike a standard mutex, which al-
ways attempts the acquisition through the dispatcher. This gives the fast mutex especially good
performance in a multiprocessor environment. Fast mutexes are used widely in device drivers.

However, fast mutexes are suitable only when normal kernel-mode APC (described earlier
in this chapter) delivery can be disabled. The executive defines two functions for acquiring
them: ExAcquireFastMutex and ExAcquireFastMutexUnsafe. The former function blocks all APC
delivery by raising the IRQL of the processor to APC level. The latter expects to be called with
normal kernel-mode APC delivery disabled, which can be done by raising the IRQL to APC level.
ExTryToAcquireFastMutex performs similarly to the first, but it does not actually wait if the fast mutex

196 Windows Internals, Sixth Edition, Part 1

is already held, returning FALSE instead. Another limitation of fast mutexes is that they can't be
acquired recursively, like mutex objects can.

Guarded mutexes are essentially the same as fast mutexes (although they use a different
synchronization object, the KGATE, internally). They are acquired with the KeAcquireGuardedMutex
and KeAcquireGuardedMutexUnsafe functions, but instead of disabling APCs by raising the IRQL to
APC level, they disable all kernel-mode APC delivery by calling KeEnterGuardedRegion. Similarly to
fast mutexes, a KeTryToAcquireGuardedMutex method also exists. Recall that a guarded region, un-
like a critical region, disables both special and normal kernel-mode APCs, which allows the guarded
mutex to avoid raising the IRQL.

Three differences make guarded mutexes faster than fast mutexes:

®m By avoiding raising the IRQL, the kernel can avoid talking to the local APIC of every processor
on the bus, which is a significant operation on large SMP systems. On uniprocessor systems,
this isn’t a problem because of lazy IRQL evaluation, but lowering the IRQL might still require
accessing the PIC.

m The gate primitive is an optimized version of the event. By not having both synchronization
and notification versions and by being the exclusive object that a thread can wait on, the code
for acquiring and releasing a gate is heavily optimized. Gates even have their own dispatcher
lock instead of acquiring the entire dispatcher database.

m In the noncontended case, the acquisition and release of a guarded mutex works on a
single bit, with an atomic bit test-and-reset operation instead of the more complex integer
operations fast mutexes perform.

Note The code for a fast mutex is also optimized to account for almost all these
optimizations—it uses the same atomic lock operation, and the event object is actually a
gate object (although by dumping the type in the kernel debugger, you would still see an
event object structure; this is actually a compatibility lie). However, fast mutexes still raise
the IRQL instead of using guarded regions.

Because the flag responsible for special kernel APC delivery disabling (and the guarded-region
functionality) was not added until Windows Server 2003, many drivers do not take advantage of
guarded mutexes. Doing so would raise compatibility issues with earlier versions of Windows, which
require a recompiled driver making use only of fast mutexes. Internally, however, the Windows kernel
has replaced almost all uses of fast mutexes with guarded mutexes because the two have identical
semantics and can be easily interchanged.

Another problem related to the guarded mutex was the kernel function KeAreApcsDisabled. Prior
to Windows Server 2003, this function indicated whether normal APCs were disabled by checking
whether the code was running inside a critical section. In Windows Server 2003, this function was
changed to indicate whether the code was in a critical, or guarded, region, changing the functionality
to also return TRUE if special kernel APCs are also disabled.

System Mechanisms 197

Because there are certain operations that drivers should not perform when special kernel APCs are
disabled, it makes sense to call KeGetCurrentirgl to check whether the IRQL is APC level or not, which
is the only way special kernel APCs could have been disabled. However, because the memory man-
ager makes use of guarded mutexes instead, this check fails because guarded mutexes do not raise
IRQL. Drivers should instead call KeAreAllApcsDisabled for this purpose. This function checks whether
special kernel APCs are disabled and/or whether the IRQL is APC level—the sure-fire way to detect
both guarded mutexes and fast mutexes.

Executive Resources

Executive resources are a synchronization mechanism that supports shared and exclusive access;
like fast mutexes, they require that normal kernel-mode APC delivery be disabled before they are
acquired. They are also built on dispatcher objects that are used only when there is contention.
Executive resources are used throughout the system, especially in file-system drivers, because such
drivers tend to have long-lasting wait periods in which 1/0 should still be allowed to some extent
(such as reads).

Threads waiting to acquire an executive resource for shared access wait for a semaphore
associated with the resource, and threads waiting to acquire an executive resource for exclusive access
wait for an event. A semaphore with unlimited count is used for shared waiters because they can all
be woken and granted access to the resource when an exclusive holder releases the resource simply
by signaling the semaphore. When a thread waits for exclusive access of a resource that is currently
owned, it waits on a synchronization event object because only one of the waiters will wake when the
event is signaled. In the earlier section on synchronization events, it was mentioned that some event
unwait operations can actually cause a priority boost: this scenario occurs when executive resources
are used, which is one reason why they also track ownership like mutexes do. (See Chapter 5 for more
information on the executive resource priority boost.)

Because of the flexibility that shared and exclusive access offer, there are a number of
functions for acquiring resources: ExAcquireResourceSharedLite, ExAcquireResourceExclusivelite,
ExAcquireSharedStarveExclusive, ExAcquireShareWaitForExclusive. These functions are documented in
the WDK.

EXPERIMENT: Listing Acquired Executive Resources

The kernel debugger !locks command searches paged pool for executive resource objects and
dumps their state. By default, the command lists only executive resources that are currently
owned, but the —d option lists all executive resources. Here is partial output of the command:
Tkd> !Tocks

#x%% DUMP OF ALL RESOURCE OBJECTS ##w*
KD: Scanning for held locks.

Resource @ 0x89929320 Exclusively owned
Contention Count = 3911396
Threads: 8952d030-01<*>

198 Windows Internals, Sixth Edition, Part 1

KD: Scanning for held Tocks...... ..t i e

Resource @ 0x89dala68 Shared 1 owning threads
Threads: 8a4cb533-01<*> *** Actual Thread 8a4cb530

Note that the contention count, which is extracted from the resource structure, records the

number of times threads have tried to acquire the resource and had to wait because it was
already owned.

You can examine the details of a specific resource object, including the thread that owns the
resource and any threads that are waiting for the resource, by specifying the —v switch and the
address of the resource:

Tkd> !Tocks -v 0x89929320

Resource @ 0x89929320 Exclusively owned
Contention Count = 3913573
Threads: 8952d030-01<*>

THREAD 8952d030 Cid 0Oacc.050c Teb: 7ffdf000 Win32Thread: fe82c4cO RUNNING on
processor 0
Not impersonating

DeviceMap 9aalbdb8

Owning Process 89elead8 Image: windbg.exe
Wait Start TickCount 24620588 Ticks: 12 (0:00:00:00.187)
Context Switch Count 772193

UserTime 00:00:02.293

KernelTime 00:00:09.828

Win32 Start Address windbg (0x006e63b8)
Stack Init a7eba000 Current a7eb9cl0 Base a7eba000 Limit a7eb7000 Call O
Priority 10 BasePriority 8 PriorityDecrement O IoPriority 2 PagePriority 5
Unable to get context for thread running on processor 1, HRESULT 0x80004001
1 total Tocks, 1 locks currently held

Pushlocks

Pushlocks are another optimized synchronization mechanism built on gate objects; like guarded
mutexes, they wait for a gate object only when there's contention on the lock. They offer advan-
tages over the guarded mutex in that they can be acquired in shared or exclusive mode. However,
their main advantage is their size: a resource object is 56 bytes, but a pushlock is pointer-size.
Unfortunately, they are not documented in the WDK and are therefore reserved for use by the
operating system (although the APIs are exported, so internal drivers do use them).

There are two types of pushlocks: normal and cache-aware. Normal pushlocks require only the
size of a pointer in storage (4 bytes on 32-bit systems, and 8 bytes on 64-bit systems). When a thread
acquires a normal pushlock, the pushlock code marks the pushlock as owned if it is not currently
owned. If the pushlock is owned exclusively or the thread wants to acquire the thread exclusively
and the pushlock is owned on a shared basis, the thread allocates a wait block on the thread's stack,
initializes a gate object in the wait block, and adds the wait block to the wait list associated with

System Mechanisms 199

the pushlock. When a thread releases a pushlock, the thread wakes a waiter, if any are present, by
signaling the event in the waiter’s wait block.

Because a pushlock is only pointer-sized, it actually contains a variety of bits to describe its state.
The meaning of those bits changes as the pushlock changes from being contended to noncontended.
In its initial state, the pushlock contains the following structure:

m One lock bit, set to 1 if the lock is acquired
= One waiting bit, set to 1 if the lock is contended and someone is waiting on it

= One waking bit, set to 1 if the lock is being granted to a thread and the waiter’s list needs to
be optimized

m One multiple shared bit, set to 1 if the pushlock is shared and currently acquired by more than
one thread

m 28 (on 32-bit Windows) or 60 (on 64-bit Windows) share count bits, containing the number of
threads that have acquired the pushlock

As discussed previously, when a thread acquires a pushlock exclusively while the pushlock is
already acquired by either multiple readers or a writer, the kernel allocates a pushlock wait block.
The structure of the pushlock value itself changes. The share count bits now become the pointer to
the wait block. Because this wait block is allocated on the stack and the header files contain a special
alignment directive to force it to be 16-byte aligned, the bottom 4 bits of any pushlock wait-block
structure will be all zeros. Therefore, those bits are ignored for the purposes of pointer dereferencing;
instead, the 4 bits shown earlier are combined with the pointer value. Because this alignment removes
the share count bits, the share count is now stored in the wait block instead.

A cache-aware pushlock adds layers to the normal (basic) pushlock by allocating a pushlock for
each processor in the system and associating it with the cache-aware pushlock. When a thread wants
to acquire a cache-aware pushlock for shared access, it simply acquires the pushlock allocated for its
current processor in shared mode; to acquire a cache-aware pushlock exclusively, the thread acquires
the pushlock for each processor in exclusive mode.

Other than a much smaller memory footprint, one of the large advantages that pushlocks have
over executive resources is that in the noncontended case they do not require lengthy accounting
and integer operations to perform acquisition or release. By being as small as a pointer, the kernel can
use atomic CPU instructions to perform these tasks. (lock cmpxchg is used, which atomically com-
pares and exchanges the old lock with a new lock.) If the atomic compare and exchange fails, the lock
contains values the caller did not expect (callers usually expect the lock to be unused or acquired as
shared), and a call is then made to the more complex contended version. To improve performance
even further, the kernel exposes the pushlock functionality as inline functions, meaning that no
function calls are ever generated during noncontended acquisition—the assembly code is directly
inserted in each function. This increases code size slightly, but it avoids the slowness of a function call.
Finally, pushlocks use several algorithmic tricks to avoid lock convoys (a situation that can occur when
multiple threads of the same priority are all waiting on a lock and little actual work gets done), and

200 Windows Internals, Sixth Edition, Part 1

they are also self-optimizing: the list of threads waiting on a pushlock will be periodically rearranged
to provide fairer behavior when the pushlock is released.

Areas in which pushlocks are used include the object manager, where they protect global object-
manager data structures and object security descriptors, and the memory manager, where their
cache-aware counterpart is used to protect Address Windowing Extension (AWE) data structures.

Deadlock Detection with Driver Verifier

A deadlock is a synchronization issue resulting from two threads or processors holding
resources that the other wants and neither yielding what it has. This situation might result

in system or process hangs. Driver Verifier, described in Chapter 8 in Part 2 and Chapter 9 in
Part 2, has an option to check for deadlocks involving spinlocks, fast mutexes, and mutexes. For
information on when to enable Driver Verifier to help resolve system hangs, see Chapter 14 in
Part 2.

Critical Sections

Critical sections are one of the main synchronization primitives that Windows provides to user-mode
applications on top of the kernel-based synchronization primitives. Critical sections and the other
user-mode primitives you'll see later have one major advantage over their kernel counterparts, which
is saving a round-trip to kernel mode in cases in which the lock is noncontended (which is typically
99 percent of the time or more). Contended cases still require calling the kernel, however, because

it is the only piece of the system that is able to perform the complex waking and dispatching logic
required to make these objects work.

Critical sections are able to remain in user mode by using a local bit to provide the main exclusive
locking logic, much like a spinlock. If the bit is O, the critical section can be acquired, and the owner
sets the bit to 1. This operation doesn't require calling the kernel but uses the interlocked CPU opera-
tions discussed earlier. Releasing the critical section behaves similarly, with bit state changing from
1 to 0 with an interlocked operation. On the other hand, as you can probably guess, when the bit is
already 1 and another caller attempts to acquire the critical section, the kernel must be called to put
the thread in a wait state.Finally, because critical sections are not kernel objects, they have certain
limitations. The primary one is that you cannot obtain a kernel handle to a critical section; as such,
no security, naming, or other object manager functionality can be applied to a critical section. Two
processes cannot use the same critical section to coordinate their operations, nor can duplication or
inheritance be used.

User-Mode Resources

User-mode resources also provide more fine-grained locking mechanisms than kernel primitives. A
resource can be acquired for shared mode or for exclusive mode, allowing it to function as a multiple-
reader (shared), single-writer (exclusive) lock for data structures such as databases. When a resource

is acquired in shared mode and other threads attempt to acquire the same resource, no trip to the

System Mechanisms 201

kernel is required because none of the threads will be waiting. Only when a thread attempts to
acquire the resource for exclusive access, or the resource is already locked by an exclusive owner, will
this be required.

To make use of the same dispatching and synchronization mechanism you saw in the kernel,
resources actually make use of existing kernel primitives. A resource data structure (RTL_RESOURCE)
contains handles to a kernel mutex as well as a kernel semaphore object. When the resource is ac-
quired exclusively by more than one thread, the resource uses the mutex because it permits only one
owner. When the resource is acquired in shared mode by more than one thread, the resource uses a
semaphore because it allows multiple owner counts. This level of detail is typically hidden from the
programmer, and these internal objects should never be used directly.

Resources were originally implemented to support the SAM (or Security Account Manager, which
is discussed in Chapter 6) and not exposed through the Windows API for standard applications. Slim
Reader-Writer Locks (SRW Locks), described next, were implemented in Windows Vista to expose a
similar locking primitive through a documented API, although some system components still use the
resource mechanism.

Condition Variables

Condition variables provide a Windows native implementation for synchronizing a set of threads

that are waiting on a specific result to a conditional test. Although this operation was possible with
other user-mode synchronization methods, there was no atomic mechanism to check the result of the
conditional test and to begin waiting on a change in the result. This required that additional synchro-
nization be used around such pieces of code.

A user-mode thread initializes a condition variable by calling InitializeConditionVariable to set up
the initial state. When it wants to initiate a wait on the variable, it can call SleepConditionVariableCs,
which uses a critical section (that the thread must have initialized) to wait for changes to the variable.
The setting thread must use WakeConditionVariable (or WakeAllConditionVariable) after it has modi-
fied the variable. (There is no automatic detection mechanism.) This call releases the critical section of
either one or all waiting threads, depending on which function was used.

Before condition variables, it was common to use either a notification event or a synchronization
event (recall that these are referred to as auto-reset or manual-reset in the Windows API) to signal
the change to a variable, such as the state of a worker queue. Waiting for a change required a critical
section to be acquired and then released, followed by a wait on an event. After the wait, the critical
section had to be re-acquired. During this series of acquisitions and releases, the thread might have
switched contexts, causing problems if one of the threads called PulseEvent (a similar problem to
the one that keyed events solve by forcing a wait for the signaling thread if there is no waiter). With
condition variables, acquisition of the critical section can be maintained by the application while
SleepConditionVariableCS is called and can be released only after the actual work is done. This makes
writing work-queue code (and similar implementations) much simpler and predictable.

Internally, condition variables can be thought of as a port of the existing pushlock algorithms
present in kernel mode, with the additional complexity of acquiring and releasing critical sections

202 Windows Internals, Sixth Edition, Part 1

in the SleepConditionVariableCS API. Condition variables are pointer-size (just like pushlocks), avoid
using the dispatcher (which requires a ring transition to kernel mode in this scenario, making the
advantage even more noticeable), automatically optimize the wait list during wait operations, and
protect against lock convoys. Additionally, condition variables make full use of keyed events instead of
the regular event object that developers would have used on their own, which makes even contended
cases more optimized.

Slim Reader-Writer Locks

Although condition variables are a synchronization mechanism, they are not fully primitive locking
objects. As you've seen, they still depend on the critical section lock, whose acquisition and release
uses standard dispatcher event objects, so trips through kernel mode can still happen and callers still
require the initialization of the large critical section object. If condition variables share a lot of similari-
ties with pushlocks, Slim Reader-Writer Locks (SRW Locks) are nearly identical. They are also pointer-
size, use atomic operations for acquisition and release, rearrange their waiter lists, protect against lock
convoys, and can be acquired both in shared and exclusive mode. Some differences from pushlocks,
however, include the fact that SRW Locks cannot be “upgraded” or converted from shared to exclu-
sive or vice versa. Additionally, they cannot be recursively acquired. Finally, SRW Locks are exclusive to
user-mode code, while pushlocks are exclusive to kernel-mode code, and the two cannot be shared
or exposed from one layer to the other.

Not only can SRW Locks entirely replace critical sections in application code, but they also offer
multiple-reader, single-writer functionality. SRW Locks must first be initialized with InitializeSRWLock,
after which they can be acquired or released in either exclusive or shared mode with the
appropriate APIs: AcquireSRWLockExclusive, ReleaseSRWLockExclusive, AcquireSRWLockShared, and
ReleaseSRW.LockShared.

Note Unlike most other Windows APIs, the SRW locking functions do not return with a
value—instead they generate exceptions if the lock could not be acquired. This makes
it obvious that an acquisition has failed so that code that assumes success will terminate
instead of potentially proceeding to corrupt user data.

The Windows SRW Locks do not prefer readers or writers, meaning that the performance for either
case should be the same. This makes them great replacements for critical sections, which are writer-
only or exclusive synchronization mechanisms, and they provide an optimized alternative to resources.
If SRW Locks were optimized for readers, they would be poor exclusive-only locks, but this isn't the
case. As a result, the design of the condition variable mechanism introduced earlier also allows for
the use of SRW Locks instead of critical sections, through the SleepConditionVariableSRW API. Finally,
SRW Locks also use keyed events instead of standard event objects, so the combination of condition
variables and SRW Locks results in scalable, pointer-size synchronization mechanisms with very few
trips to kernel mode—except in contended cases, which are optimized to take less time and memory
to wake and set because of the use of keyed events.

System Mechanisms 203

Run Once Initialization

The ability to guarantee the atomic execution of a piece of code responsible for performing some
sort of initialization task—such as allocating memory, initializing certain variables, or even creating
objects on demand—is a typical problem in multithreaded programming. In a piece of code that can
be called simultaneously by multiple threads (a good example is the D/IMain routine, which initializes
a DLL), there are several ways of attempting to ensure the correct, atomic, and unique execution of
initialization tasks.

In this scenario, Windows implements init once, or one-time initialization (also called run once
initialization internally). This mechanism allows for both synchronous (meaning that the other threads
must wait for initialization to complete) execution of a certain piece of code, as well as asynchronous
(meaning that the other threads can attempt to do their own initialization and race) execution. We'll
look at the logic behind asynchronous execution after explaining the synchronous mechanism.

In the synchronous case, the developer writes the piece of code that would normally execute after
double-checking the global variable in a dedicated function. Any information that this routine needs
can be passed through the parameter variable that the init-once routine accepts. Any output infor-
mation is returned through the context variable. (The status of the initialization itself is returned as
a Boolean.) All the developer has to do to ensure proper execution is call InitOnceExecuteOnce with
the parameter, context, and run-once function pointer after initializing an INIT_ONCE object with
InitOncelnitialize API. The system will take care of the rest.

For applications that want to use the asynchronous model instead, the threads call
InitOnceBegininitialize and receive a BOOLEAN pending status and the context described earlier. If
the pending status is FALSE, initialization has already taken place, and the thread uses the context
value for the result. (It's also possible for the function itself to return FALSE, meaning that initializa-
tion failed.) However, if the pending status comes back as TRUE, the thread should race to be the first
to create the object. The code that follows performs whatever initialization tasks are required, such
as creating objects or allocating memory. When this work is done, the thread calls InitOnceComplete
with the result of the work as the context and receives a BOOLEAN status. If the status is TRUE, the
thread won the race, and the object that it created or allocated is the one that will be the global
object. The thread can now save this object or return it to a caller, depending on the usage.

In the more complex scenario when the status is FALSE, this means that the thread lost the race.
The thread must undo all the work it did, such as deleting objects or freeing memory, and then call
InitOnceBegininitialize again. However, instead of requesting to start a race as it did initially, it uses
the INIT_ONCE_CHECK_ONLY flag, knowing that it has lost, and requests the winner’s context instead
(for example, the objects or memory that were created or allocated by the winner). This returns an-
other status, which can be TRUE, meaning that the context is valid and should be used or returned to
the caller, or FALSE, meaning that initialization failed and nobody has actually been able to perform
the work (such as in the case of a low-memory condition, perhaps).

In both cases, the mechanism for run-once initialization is similar to the mechanism for condition
variables and SRW Locks. The init once structure is pointer-size, and inline assembly versions of the

204 Windows Internals, Sixth Edition, Part 1

SRW acquisition/release code are used for the noncontended case, while keyed events are used when
contention has occurred (which happens when the mechanism is used in synchronous mode) and

the other threads must wait for initialization. In the asynchronous case, the locks are used in shared
mode, so multiple threads can perform initialization at the same time.

System Worker Threads

During system initialization, Windows creates several threads in the System process, called system
worker threads, which exist solely to perform work on behalf of other threads. In many cases, threads
executing at DPC/dispatch level need to execute functions that can be performed only at a lower
IRQL. For example, a DPC routine, which executes in an arbitrary thread context (because DPC execu-
tion can usurp any thread in the system) at DPC/dispatch level IRQL, might need to access paged pool
or wait for a dispatcher object used to synchronize execution with an application thread. Because a
DPC routine can't lower the IRQL, it must pass such processing to a thread that executes at an IRQL
below DPC/dispatch level.

Some device drivers and executive components create their own threads dedicated to processing
work at passive level; however, most use system worker threads instead, which avoids the unneces-
sary scheduling and memory overhead associated with having additional threads in the system. An
executive component requests a system worker thread's services by calling the executive functions
ExQueueWorkltem or loQueueWorkltem. Device drivers should use only the latter (because this
associates the work item with a Device object, allowing for greater accountability and the handling of
scenarios in which a driver unloads while its work item is active). These functions place a work item on
a queue dispatcher object where the threads look for work. (Queue dispatcher objects are described
in more detail in the section “I/O Completion Ports” in Chapter 8 in Part 2.)

The loQueueWorkltemEx, loSizeof Workltem, lolnitializeWorkltem, and loUninitializeWorkltem APls
act similarly, but they create an association with a driver’s Driver object or one of its Device objects.

Work items include a pointer to a routine and a parameter that the thread passes to the routine
when it processes the work item. The device driver or executive component that requires passive-level
execution implements the routine. For example, a DPC routine that must wait for a dispatcher object
can initialize a work item that points to the routine in the driver that waits for the dispatcher object,
and perhaps points to a pointer to the object. At some stage, a system worker thread will remove
the work item from its queue and execute the driver’s routine. When the driver's routine finishes, the
system worker thread checks to see whether there are more work items to process. If there aren’t any
more, the system worker thread blocks until a work item is placed on the queue. The DPC routine
might or might not have finished executing when the system worker thread processes its work item.

There are three types of system worker threads:

m Delayed worker threads execute at priority 12, process work items that aren’t considered
time-critical, and can have their stack paged out to a paging file while they wait for work

System Mechanisms 205

items. The object manager uses a delayed work item to perform deferred object deletion,
which deletes kernel objects after they have been scheduled for freeing.

m Critical worker threads execute at priority 13, process time-critical work items, and on
Windows Server systems have their stacks present in physical memory at all times.

= Asingle hypercritical worker thread executes at priority 15 and also keeps its stack in memory.
The process manager uses the hypercritical work item to execute the thread “reaper” function
that frees terminated threads.

The number of delayed and critical worker threads created by the executive's
ExpWorkerlnitialization function, which is called early in the boot process, depends on the
amount of memory present on the system and whether the system is a server. Table 3-22
shows the initial number of threads created on default configurations. You can specify that
ExplnitializeWorker create up to 16 additional delayed and 16 additional critical worker threads with
the AdditionalDelayedWorkerThreads and AdditionalCriticalWorkerThreads values under the registry
key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Executive.

TABLE 3-22 Initial Number of System Worker Threads

Work Queue Type Default Number of Threads
Delayed 7
Critical ‘ 5
Hypercritical ‘ 1

The executive tries to match the number of critical worker threads with changing workloads as
the system executes. Once every second, the executive function ExpWorkerThreadBalanceManager
determines whether it should create a new critical worker thread. The critical worker threads that are
created by ExpWorkerThreadBalanceManager are called dynamic worker threads, and all the following
conditions must be satisfied before such a thread is created:

m Work items exist in the critical work queue.

m The number of inactive critical worker threads (ones that are either blocked waiting for work
items or that have blocked on dispatcher objects while executing a work routine) must be less
than the number of processors on the system.

m There are fewer than 16 dynamic worker threads.

Dynamic worker threads exit after 10 minutes of inactivity. Thus, when the workload dictates, the
executive can create up to 16 dynamic worker threads.

206 Windows Internals, Sixth Edition, Part 1

=)

,\

EXPERIMENT: Listing System Worker Threads

You can use the /exqueue kernel debugger command to see a listing of system worker threads
classified by their type:

Tkd> !exqueue
Dumping ExWorkerQueue: 820FDE40

#%%% Critical WorkQueue(current = 0 maximum = 2)

THREAD 861160b8 (Cid 0004.001c Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613b020 Cid 0004.0020 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613bd78 (Cid 0004.0024 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613bad0 (Cid 0004.0028 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613b828 Cid 0004.002c Teb: 00000000 Win32Thread: 00000000 WAIT

#*#%% Delayed WorkQueue(current = 0 maximum = 2)

THREAD 8613b580 Cid 0004.0030 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613b2d8 (Cid 0004.0034 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613c020 (Cid 0004.0038 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613cd78 Cid 0004.003c Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613cad0 Cid 0004.0040 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613c828 (Cid 0004.0044 Teb: 00000000 Win32Thread: 00000000 WAIT
THREAD 8613c580 Cid 0004.0048 Teb: 00000000 Win32Thread: 00000000 WAIT

#**%% HyperCritical WorkQueue(current = 0 maximum = 2)
THREAD 8613c2d8 Cid 0004.004c Teb: 00000000 Win32Thread: 00000000 WAIT

Windows Global Flags

Windows has a set of flags stored in a systemwide global variable named NtGlobalFlag that enable
various internal debugging, tracing, and validation support in the operating system. The system vari-
able NtGlobalFlag is initialized from the registry key HKLM\SYSTEM\CurrentControlSet\Control
\Session Manager in the value GlobalFlag at system boot time. By default, this registry value is 0, so
it's likely that on your systems, you're not using any global flags. In addition, each image has a set of
global flags that also turn on internal tracing and validation code (although the bit layout of these
flags is entirely different from the systemwide global flags).

Fortunately, the debugging tools contains a utility named Gflags.exe you can use to view and
change the system global flags (either in the registry or in the running system) as well as image global
flags. Gflags has both a command-line and a GUI interface. To see the command-line flags, type
gflags /2. If you run the utility without any switches, the dialog box shown in Figure 3-28 is displayed.

System Mechanisms 207

Global Flags

System Registry | Kernel F\ags.\ Image Fi\e.\

I~ Etop on exception
[T Show loader snaps
[Debug inftial command

[Enable heap tail checking

[~ Enable heap free checking

[Enahble heap parameter checking
[~ Enable heap walidstion on call

™ Enable application verifisr

-
[Enable heap tagging
[Create user mode stack trace database
[Create kernel mode stack trace database
[Mairitain a list of ohjects for each type
[~ Enable heap tagaing by DLL

Kernel Special Pool Tag

¥ Hex

" Text

O werify Start (= Verity End

[” Enable debugging of Win32 subsystem

[Enahble loading of kernel debugaer symbols
[Disable paging of kernel stacks

[Enable system critical bresks

[~ Disable heap coalesce an free

[~ Enable close exception

[Enahle exception logging

[~ Enable object handle type tagaing
[Enable page heap
[Debug WINLOGON
[~ Buffer DhgPrint output
[Early critical section event creation
[Load DLLs top-down (i only)
[Ensble bad handles detection
[Disahle protected DLL verification
Ohject Reference Tracing
[~ Enable [
ool Tags [
Process [

Ok Cancel |

FIGURE 3-28 Setting system debugging options with Gflags

You can configure a variable's settings in the registry on the System Registry page or the current
value of a variable in system memory on the Kernel Flags page.

The Image File page requires you to fill in the file name of an executable image. Use this option
to change a set of global flags that apply to an individual image (rather than to the whole system). In
Figure 3-29, notice that the flags are different from the operating system ones shown in Figure 3-28.

Global Flags

System Registry | Kernel Flags Image Fils |

Image: (TAB to refresh) | ctesttest exe
[Stop on exception
[T Show loader snaps

W Enable heap tail checking

W Enable heap free checking

[Enable heap parameter checking
[~ Enable heap walidation on call

[Enable heap tagging
[T Create user mode stack trace detabase

[Enable heap tagging by DLL

[~ Load image using large pages if possidle

[Dissble stack extension

[~ Enable system critical breaks

[~ Disable heap coalesce an free

[~ Enable page heap

[Early critical section event creation

[Disable protected DLL verification
[lgnore asserts

Launch

==

[Debugger. [

[~ Stack Bacltrace: (Megs)

aK Cancel | Apply

FIGURE 3-29 Setting image global flags with Gflags

208 Windows Internals, Sixth Edition, Part 1

U[ﬂ EXPERIMENT: Viewing and Setting NtGlobalFlag

You can use the /gflag kernel debugger command to view and set the state of the NtGlobalFlag
kernel variable. The !gflag command lists all the flags that are enabled. You can use /gflag -? to
get the entire list of supported global flags.

Advanced Local Procedure Call

All modern operating systems require a mechanism for securely transferring data between one or
more processes in user mode, as well as between a service in the kernel and clients in user mode.
Typically, UNIX mechanisms such as mailslots, files, named pipes, and sockets are used for portability,
while other developers use window messages for graphical applications. Windows implements an in-
ternal IPC mechanism called Advanced Local Procedure Call, or ALPC, which is a high-speed, scalable,
and secured facility for message passing arbitrary-size messages. Although it is internal, and thus not
available for third-party developers, ALPC is widely used in various parts of Windows:

= Windows applications that use remote procedure call (RPC), a documented API, indirectly use
ALPC when they specify local-RPC over the ncalrpc transport, a form of RPC used to commu-
nicate between processes on the same system. Kernel-mode RPC, used by the network stack,
also uses ALPC.

m Whenever a Windows process and/or thread starts, as well as during any Windows subsystem
operation (such as all console 1/O), ALPC is used to communicate with the subsystem process
(CSRSS). All subsystems communicate with the session manager (SMSS) over ALPC.

® Winlogon uses ALPC to communicate with the local security authentication process, LSASS.

m The security reference monitor (an executive component explained in Chapter 6) uses ALPC to
communicate with the LSASS process.

®m The user-mode power manager and power monitor communicate with the kernel-mode
power manager over ALPC, such as whenever the LCD brightness is changed.

= Windows Error Reporting uses ALPC to receive context information from crashing processes.

m The User-Mode Driver Framework (UMDF) enables user-mode drivers to communicate using
ALPC.

Note ALPC is the replacement for an older IPC mechanism initially shipped with the very

first kernel design of Windows NT, called LPC, which is why certain variables, fields, and
functions might still refer to “LPC" today. Keep in mind that LPC is now emulated on top
of ALPC for compatibility and has been removed from the kernel (legacy system calls still
exist, which get wrapped into ALPC calls).

System Mechanisms 209

Connection Model

Typically, ALPCs are used between a server process and one or more client processes of that server.
An ALPC connection can be established between two or more user-mode processes or between a
kernel-mode component and one or more user-mode processes. ALPC exports a single executive
object called the port object to maintain the state needed for communication. Although this is just
one object, there are actually several kinds of ALPC ports that it can represent:

= Server connection port A named port that is a server connection request point. Clients can
connect to the server by connecting to this port.

= Server communication port An unnamed port a server uses to communicate with a
particular client. The server has one such port per active client.

m Client communication port An unnamed port a particular client thread uses to
communicate with a particular server.

m Unconnected communication port An unnamed port a client can use to communicate
locally with itself.

ALPC follows a connection and communication model that's somewhat reminiscent of BSD
socket programming. A server first creates a server connection port (NtAlpcCreatePort), while a
client attempts to connect to it (NtAlpcConnectPort). If the server was in a listening state, it re-
ceives a connection request message and can choose to accept it (NtAlpcAcceptPort). In doing
so, both the client and server communication ports are created, and each respective endpoint
process receives a handle to its communication port. Messages are then sent across this handle
(NtAlpcSendWaitReceiveMessage), typically in a dedicated thread, so that the server can continue
listening for connection requests on the original connection port (unless this server expects only one
client).

The server also has the ability to deny the connection, either for security reasons or simply due to
protocol or versioning issues. Because clients can send a custom payload with a connection request,
this is usually used by various services to ensure that the correct client, or only one client, is talking to
the server. If any anomalies are found, the server can reject the connection, and, optionally, return a
payload containing information on why the client was rejected (allowing the client to take corrective
action, if possible, or for debugging purposes).

Once a connection is made, a connection information structure (actually, a blob, as will be
described shortly) stores the linkage between all the different ports, as shown in Figure 3-30.

210 Windows Internals, Sixth Edition, Part 1

Client address Kernel address space Server address
space space

Connection port

—
Message [LJJ
queue
Client process Server process
Handle » Handle
Client , Server Handle
communication communication
—
port port
Client view | +—— —> | Server view
of section] of section
Shared
section

FIGURE 3-30 Use of ALPC ports

Message Model

Using ALPC, a client and thread using blocking messages each take turns performing a loop around
the NtAlpcSendWaitReplyPort system call, in which one side sends a request and waits for a reply
while the other side does the opposite. However, because ALPC supports asynchronous messages,
it's possible for either side not to block and choose instead to perform some other runtime task
and check for messages later (some of these methods will be described shortly). ALPC supports the
following three methods of exchanging payloads sent with a message:

m A message can be sent to another process through the standard double-buffering mechanism,
in which the kernel maintains a copy of the message (copying it from the source process),
switches to the target process, and copies the data from the kernel’s buffer. For compatibility,
if legacy LPC is being used, only messages up to 256 bytes can be sent this way, while ALPC
has the ability to allocate an extension buffer for messages up to ~64KB.

m A message can be stored in an ALPC section object from which the client and server processes
map views. (See Chapter 10 in Part 2 for more information on section mappings.)

System Mechanisms 211

m A message can be stored in a message zone, which is an Memory Descriptor List (MDL) that
backs the physical pages containing the data and that is mapped into the kernel’s address
space.

An important side effect of the ability to send asynchronuos messages is that a message can be
canceled—for example, when a request takes too long or the user has indicated that she wants to
cancel the operation it implements. ALPC supports this with the NtAlpcCancelMessage system call.

An ALPC message can be on one of four different queues implemented by the ALPC port object:
m Main queue A message has been sent, and the client is processing it.

m Pending queue A message has been sent and the caller is waiting for a reply, but the reply
has not yet been sent.

m Large message queue A message has been sent, but the caller's buffer was too small to
receive it. The caller gets another chance to allocate a larger buffer and request the message
payload again.

m Canceled queue A message that was sent to the port, but has since been canceled.

Note that a fifth queue, called the wait queue, does not link messages together; instead, it links all
the threads waiting on a message.

ﬂ EXPERIMENT: Viewing Subsystem ALPC Port Objects

You can see named ALPC port objects with the WinObj tool from Sysinternals. Run Winobj.exe,
and select the root directory. A gear icon identifies the port objects, as shown here:

]
)

£ WinOBj - Sysinternals: waw. sysinternals.com folfE ==
File View Help
atdeh Mame ¢ Type SymLink =
] ’;"NNB”" oh L AELPart ALPC Part
CETE a:" Jacts 18 gl Device
albac A\ CsrshSyncEvent Event
| Device
Brver [@oss Symboliclink \Device\DfsClient
| Fileystem [#|DosDevices Symboliclink V77

| GLOBALT?
KemnelObjects
| KnownDlls
KnawnDlls32
NLS
| ObjectTypes
PSXSS
| RPC Control
Security
Sessions
| UMDFCommunicationPorts
Windows

/1, DSYSDBG.Debug.Trace Mermory. 298
A\ EFSInitEvent

A\ LanmanServerfinnounceEvent

B LsaPerformance

icrosofthdalwareProtectionPart

icrosofthlhonPort
racsstpiPort

/O NETLOGON_SERWICE_STARTED
TN

owverbdonitorPort

owerPort

€4 ProcessMonitorPort

& REGISTRY

i\ SM_SERVICE_STARTED

icrosofthdalwareProtectionfsyncP..
icrosofthdalwareProtectionControl..,

icrosafthalwarePratectionVeryLa.

Euvent
Euvent
Euvent

Section

FilterCannecti...
FilterCannecti...
FilterCannecti...
FilterConnecti...
FilterConnecti...

ALPC Part
Euvent
Device
ALPC Part
ALPC Part

FilterCannecti...

Key
Event

m

212 Windows Internals, Sixth Edition, Part 1

You should see the ALPC ports used by the power manager, the security manager, and
other internal Windows services. If you want to see the ALPC port objects used by RPC, you can
select the \RPC Control directory. One of the primary users of ALPC, outside of Local RPC, is the
Windows subsystem, which uses ALPC to communicate with the Windows subsystem DLLs that
are present in all Windows processes. (Subsystem for UNIX Applications uses a similar mecha-
nism.) Because CSRSS loads once for each session, you will find its ALPC port objects under the
appropriate \Sessions\X\Windows directory, such as shown here:

I@‘_Winﬂbi - Sysinternals: www.sysinternals.com =lo x|
File View Help
B b Mame # |T pe |S rmLink |
- L Archlame £ ApiPart ALPC Port

| BaseMamedObjects (£ SbapiPort ALPC Port

. Callback B sharedsection Section

| Device

. Driver

[+~ | FileSystem
- L GLOBALP?

. KernelObjects

. Knownills

. KnownDlls32

. MLS
- | ChijectTypes
[| PSXS5
- . RPC Control
-) Security
[+ | Sessions
FH- 0
SRS

- || BaseMamedObjects

DosDevices

- Windows
. BMOLIMES
) UMDFCammunicationParts
- | windows
"l,SessiDns'l,l'l,W\ndows A

Asynchronous Operation

The synchronous model of ALPC is tied to the original LPC architecture in the early NT design, and

is similar to other blocking IPC mechanisms, such as Mach ports. Although it is simple to design, a
blocking IPC algorithm includes many possibilities for deadlock, and working around those scenarios
creates complex code that requires support for a more flexible asynchronous (nonblocking) model. As
such, ALPC was primarily designed to support asynchronous operation as well, which is a requirement
for scalable RPC and other uses, such as support for pending 1/0 in user-mode drivers. A basic feature
of ALPC, which wasn't originally present in LPC, is that blocking calls can have a timeout parameter.
This allows legacy applications to avoid certain deadlock scenarios.

However, ALPC is optimized for asynchronous messages and provides three different models for
asynchronous notifications. The first doesn't actually notify the client or server, but simply copies
the data payload. Under this model, it's up to the implementor to choose a reliable synchronization
method. For example, the client and the server can share a notification event object, or the client can
poll for data arrival. The data structure used by this model is the ALPC completion list (not to be con-
fused with the Windows I/O completion port). The ALPC completion list is an efficient, nonblocking

System Mechanisms 213

data structure that enables atomic passing of data between clients, and its internals are described
further in the "Performance” section.

The next notification model is a waiting model that uses the Windows completion-port mechanism
(on top of the ALPC completion list). This enables a thread to retrieve multiple payloads at once,
control the maximum number of concurrent requests, and take advantage of native completion-port
functionality. The user-mode thread pool (described later in this chapter) implementation provides
internal APIs that processes use to manage ALPC messages within the same infrastructure as worker
threads, which are implemented using this model. The RPC system in Windows, when using Local
RPC (over ncalrpc), also makes use of this functionality to provide efficient message delivery by taking
advantage of this kernel support.

Finally, because drivers can also use asynchronous ALPC, but do not typically support completion
ports at such a high-level, ALPC also provides a mechanism for a more basic, kernel-based noti-
fication using executive callback objects. A driver can register its own callback and context with
NtSetInformationAlpcPort, after which it will get called whenever a message is received. The
user-mode, power-manager interfaces in the kernel employ this mechanism for asynchronous LCD
backlight operation on laptops, for example.

Views, Regions, and Sections

Instead of sending message buffers between their two respective processes, a server and client can
choose a more efficient data-passing mechanism that is at the core of Windows' memory manager:
the section object. (More information is available in Chapter 10 in Part 2.) This allows a piece of
memory to be allocated as shared, and for both client and server to have a consistent, and equal,
view of this memory. In this scenario, as much data as can fit can be transferred, and data is merely
copied into one address range and immediately available in the other. Unfortunately, shared-memory
communication, such as LPC traditionally provided, has its share of drawbacks, especially when con-
sidering security ramifications. For one, because both client and server must have access to the shared
memory, an unprivileged client can use this to corrupt the server’s shared memory, and even build
executable payloads for potential exploits. Additionally, because the client knows the location of the
server's data, it can use this information to bypass ASLR protections. (See Chapter 8 in Part 2 for more
information.)

ALPC provides its own security on top of what's provided by section objects. With ALPC, a specific
ALPC section object must be created with the appropriate NtAlpcCreatePortSection API, which will
create the correct references to the port, as well as allow for automatic section garbage collection. (A
manual API also exists for deletion.) As the owner of the ALPC section object begins using the section,
the allocated chunks are created as ALPC regions, which represent a range of used addresses within
the section and add an extra reference to the message. Finally, within a range of shared memory, the
clients obtain views to this memory, which represents the local mapping within their address space.

Regions also support a couple of security options. First of all, regions can be mapped either using
a secure mode or an unsecure mode. In the secure mode, only two views (mappings) are allowed
to the region. This is typically used when a server wants to share data privately with a single client

214 Windows Internals, Sixth Edition, Part 1

process. Additionally, only one region for a given range of shared memory can be opened from
within the context of a given port. Finally, regions can also be marked with write-access protection,
which enables only one process context (the server) to have write access to the view (by using
MmSecureVirtualMemoryAgainstWrites). Other clients, meanwhile, will have read-only access only.
These settings mitigate many privilege-escalation attacks that could happen due to attacks on shared
memory, and they make ALPC more resilient than typical IPC mechanisms.

Attributes

ALPC provides more than simple message passing: it also enables specific contextual information to
be added to each message and have the kernel track the validity, lifetime, and implementation of that
information. Users of ALPC have the ability to assign their own custom context information as well.
Whether it's system-managed or user-managed, ALPC calls this data attributes. There are three of
these that the kernel manages:

m The security attribute, which holds key information to allow impersonation of clients, as well as
advanced ALPC security functionality (which is described later)

m The data view attribute, responsible for managing the different views associated with the
regions of an ALPC section

m The handle attribute, which contains information about which handles to associate with the
message (which is described in more detail later in the “Security” section).

Normally, these attributes are initially passed in by the server or client when the message is sent
and converted into the kernel’s own internal ALPC representation. If the ALPC user requests this data
back, it is exposed back securely. By implementing this kind of model and combining it with its own
internal handle table, described next, ALPC can keep critical data opaque between clients and servers,
while still maintaining the true pointers in kernel mode.

Finally, a fourth attribute is supported, called the context attribute. This attribute supports the
traditional, LPC-style, user-specific context pointer that could be associated with a given message,
and it is still supported for scenarios where custom data needs to be associated with a client/server
pair.

To define attributes correctly, a variety of APIs are available for internal ALPC consumers, such as
AlpcinitializeMessageAttribute and AlpcGetMessageAttribute.

Blobs, Handles, and Resources

Although the ALPC library exposes only one Object Manager object type (the port), it internally must
manage a number of data structures that allow it to perform the tasks required by its mechanisms.
For example, ALPC needs to allocate and track the messages associated with each port, as well as the
message attributes, which it must track for the duration of their lifetime. Instead of using the Object
Manager’s routines for data management, ALPC implements its own lightweight objects called blobs.
Just like objects, blobs can automatically be allocated and garbage collected, reference tracked, and

System Mechanisms 215

locked through synchronization. Additionally, blobs can have custom allocation and deallocation
callbacks, which let their owners control extra information that might need to be tracked for each
blob. Finally, ALPC also uses the executive’s handle table implementation (used for objects and
PIDs/TIDs) to have an ALPC-specific handle table, which allows ALPC to generate private handles for
blobs, instead of using pointers.

In the ALPC model, messages are blobs, for example, and their constructor generates a message
ID, which is itself a handle into ALPC's handle table. Other ALPC blobs include the following:

m The connection blob, which stores the client and server communication ports, as well as the
server connection port and ALPC handle table.

m The security blob, which stores the security data necessary to allow impersonation of a client.
It stores the security attribute.

m The section, region, and view blobs, which describe ALPC's shared-memory model. The view
blob is ultimately responsible for storing the data view attribute.

m The reserve blob, which implements support for ALPC Reserve Objects. (See the “Reserve
Objects” section in this chapter.)

m The handle data blob, which contains the information that enables ALPC's handle attribute
support.

Because blobs are allocated from pageable memory, they must carefully be tracked to ensure their
deletion at the appropriate time. For certain kinds of blobs, this is easy: for example, when an ALPC
message is freed, the blob used to contain it is also deleted. However, certain blobs can represent
numerous attributes attached to a single ALPC message, and the kernel must manage their lifetime
appropriately. For example, because a message can have multiple views associated with it (when
many clients have access to the same shared memory), the views must be tracked with the mes-
sages that reference them. ALPC implements this functionality by using a concept of resources. Each
message is associated with a resource list, and whenever a blob associated with a message (that isn't
a simple pointer) is allocated, it is also added as a resource of the message. In turn, the ALPC library
provides functionality for looking up, flushing, and deleting associated resources. Security blobs,
reserve blobs, and view blobs are all stored as resources.

Security

ALPC implements several security mechanisms, full security boundaries, and mitigations to prevent
attacks in case of generic IPC parsing bugs. At a base level, ALPC port objects are managed by the
same object manager interfaces that manage object security, preventing nonprivileged applica-
tions from obtaining handles to server ports with ACL. On top of that, ALPC provides a SID-based
trust model, inherited from the original LPC design. This model enables clients to validate the server
they are connecting to by relying on more than just the port name. With a secured port, the client

216 Windows Internals, Sixth Edition, Part 1

process submits to the kernel the SID of the server process it expects on the side of the endpoint. At
connection time, the kernel validates that the client is indeed connecting to the expected server, miti-
gating namespace squatting attacks where an untrusted server creates a port to spoof a server.

ALPC also allows both clients and servers to atomically and uniquely identify the thread and
process responsible for each message. It also supports the full Windows impersonation model
through the NtAlpcimpersonateClientThread API. Other APIs give an ALPC server the ability to query
the SIDs associated with all connected clients and to query the LUID (locally unique identifier) of the
client’s security token (which is further described in Chapter 6).

Performance

ALPC uses several strategies to enhance performance, primarily through its support of completion
lists, which were briefly described earlier. At the kernel level, a completion list is essentially a user MDL
that's been probed and locked and then mapped to an address. (For more information on Memory
Descriptor Lists, see Chapter 10 in Part 2.) Because it's associated with an MDL (which tracks physi-

cal pages), when a client sends a message to a server, the payload copy can happen directly at the
physical level, instead of requiring the kernel to double-buffer the message, as is common in other
IPC mechanisms.

The completion list itself is implemented as a 64-bit queue of completed entries, and both user-
mode and kernel-mode consumers can use an interlocked compare-exchange operation to insert and
remove entries from the queue. Furthermore, to simplify allocations, once an MDL has been initial-
ized, a bitmap is used to identify available areas of memory that can be used to hold new messages
that are still being queued. The bitmap algorithm also uses native lock instructions on the proces-
sor to provide atomic allocation and de-allocation of areas of physical memory that can be used by
completion lists.

Another ALPC performance optimization is the use of message zones. A message zone is simply a
pre-allocated kernel buffer (also backed by an MDL) in which a message can be stored until a server
or client retrieves it. A message zone associates a system address with the message, allowing it to be
made visible in any process address space. More importantly, in the case of asynchronous operation,
it does not require the complex setup of delayed payloads because no matter when the consumer
finally retrieves the message data, the message zone will still be valid. Both completion lists and
message zones can be set up with NtAlpcSetinformationPort.

A final optimization worth mentioning is that instead of copying data as soon as it is sent, the
kernel sets up the payload for a delayed copy, capturing only the needed information, but without
any copying. The message data is copied only when the receiver requests the message. Obviously, if a
message zone or shared memory is being used, there’s no advantage to this method, but in asyn-
chronous, kernel-buffer message passing, this can be used to optimize cancellations and high-traffic
scenarios.

System Mechanisms 217

Debugging and Tracing

On checked builds of the kernel, ALPC messages can be logged. All ALPC attributes, blobs, message
zones, and dispatch transactions can be individually logged, and undocumented !alpc commands in
WinDbg can dump the logs. On retail systems, IT administrators and troubleshooters can enable the
ALPC Event Tracing for Windows (ETW) logger to monitor ALPC messages. ETW events do not include
payload data, but they do contain connection, disconnection, and send/receive and wait/unblock
information. Finally, even on retail systems, certain /alpc commands obtain information on ALPC ports
and messages.

«@ EXPERIMENT: Dumping a Connection Port

In this experiment, you'll use the CSRSS API port for Windows processes running in Session 1,
which is the typical interactive session for the console user. Whenever a Windows application
launches, it connects to CSRSS's API port in the appropriate session.

1. Start by obtaining a pointer to the connection port with the /object command:

0: kd> !object \Sessions\1\Windows\ApiPort

Object: fffffa8004dc2090 Type: (fffffa80027a2ed0) ALPC Port
ObjectHeader: fffffa8004dc2060 (new version)
HandleCount: 1 PointerCount: 50
Directory Object: fffff8a001la5fb30 Name: ApiPort

2. Now dump information on the port object itself with !alpc /p. This will confirm, for
example, that CSRSS is the owner:

0: kd> !alpc /p fffffa8004dc2090
Port @ fffffa8004dc2090

Type : ALPC_CONNECTION_PORT
CommunicationInfo : fffff8a001a22560
ConnectionPort : fffffa8004dc2090

ClientCommunicationPort : 0000000000000000
ServerCommunicationPort : 0000000000000000

OwnerProcess : fffffa800502db30 (csrss.exe)
SequenceNo : 0x000003C9 (969)
CompletionPort : 0000000000000000
CompTletionList : 0000000000000000
MessageZone : 0000000000000000
ConnectionPending : No
ConnectionRefused : No

Disconnected : No

Closed : No

FlushOnClose : Yes
ReturnExtendedInfo : No

Waitable : No

Security : Static
Wow64CompletionList : No

218 Windows Internals, Sixth Edition, Part 1

Main queue 1is empty.

Large message queue is empty.
Pending queue is empty.
Canceled queue is empty.

You can see what clients are connected to the port, which will include all Windows
processes running in the session, with the undocumented /alpc /Ipc command. You will

also see the server and client communication ports associated with each connection

and any pending messages on any of the queues:

0: kd> talpc /1pc fffffa8004dc2090

Port @fffffa8004dc2090 has 14 connections

SRV: fffffa8004809c50 (m:0, p:0, 1:0) <-> CLI:

Process=fffffa8004ffcb30 ('winlogon.exe')

SRV: fffffa80054dfb30 (m:0, p:0, 1:0) <-> CLI:

Process=fffffa80054de060 ('dwm.exe')

SRV: fffffa8005394dd0 (m:0, p:0, 1:0) <-> CLI:

Process=fffffa80054e2290 ('winvnc.exe')
SRV: fffffa80053965d0 (m:0, p:0, 1:0)
Process=fffffa80054ed060 ('explorer.exe')
SRV: fffffa80045a8070 (m:0, p:0, 1:0)
Process=fffffa80045b1340 ('logonhlp.exe')
SRV: fffffa8005197940 (m:0, p:0, 1:0)
Process=fffffa80045da060 ('TSVNCache.exe')

SRV: fffffa800470b070 (m:0, p:0, 1:0) <-> CLI:

Process=fffffa8004713060 ('vmware-tray.ex')

SRV: fffffa80045d7670 (m:0, p:0, 1:0) <-> CLI:

Process=fffffa80056b8b30 ('WINWORD.EXE')

SRV: fffffa80050e0e60 (m:0, p:0, 1:0) <-> CLI:

Process=fffffa800478f060 ('Winobj.exe')

SRV: fffffa800482e670 (m:0, p:0, 1:0) <-> CLI:

Process=fffffa80056aab30 ('cmd.exe')

SRV: fffffa8005166e60 (m:0, p:0, 1:0) <-> CLI:

Process=fffffa8002823b30 ('conhost.exe')

SRV: fffffa80054a2070 (m:0, p:0, 1:0) <-> CLI:

Process=fffffa80055669e0 ('livekd.exe')

SRV: fffffa80056aa390 (m:0, p:0, 1:0) <-> CLI:

Process=fffffa80051b28b0 ('livekd64.exe')

SRV: fffffa8005551d90 (m:0, p:0, 1:0) <-> CLI:

Process=fffffa8002a69b30 ('kd.exe')

Note that if you have other sessions, you can repeat this experiment on those sessions

<-> CLI:

<-> CLI:

<-> CLI:

fffffa8004809e60

fffffa80054dfe60

fffffa80054e1440

fffffa8005396900

fffffa80045af070

fffffa800519a900

fffffa800470f330

fffffa80054b16f0

fffffa80056fee60

fffffa80047b7680

fffffa80051481e0

fffffa80056e6210

fffffa80055a6c00

fffffa80055bfc60

(m:

(m:

(m:

(m:

(m:

(m:

(m:

(m:

(m:

(m:

(m:

(m:

(m:

(m:

:0),

:0),

:0),

:0),

:0),

:0),

:0),

:0),

:0),

:0),

:0),

:0),

:0),

:0),

also (as well as with session 0, the system session). You will eventually get a list of
all the Windows processes on your machine. If you are using Subsystem for UNIX
Applications, you can also use this technique on the \PSXSS\ApiPort object.

System Mechanisms

219

Kernel Event Tracing

220

Various components of the Windows kernel and several core device drivers are instrumented to
record trace data of their operations for use in system troubleshooting. They rely on a common in-
frastructure in the kernel that provides trace data to the user-mode Event Tracing for Windows (ETW)
facility. An application that uses ETW falls into one or more of three categories:

m Controller A controller starts and stops logging sessions and manages buffer pools.
Example controllers include Reliability and Performance Monitor (see the "EXPERIMENT:
Tracing TCP/IP Activity with the Kernel Logger” section, later in this section) and XPerf from
the Windows Performance Toolkit (see the "EXPERIMENT: Monitoring Interrupt and DPC
Activity” section, earlier in this chapter).

= Provider A provider defines GUIDs (globally unique identifiers) for the event classes it can
produce traces for and registers them with ETW. The provider accepts commands from a
controller for starting and stopping traces of the event classes for which it's responsible.

m Consumer A consumer selects one or more trace sessions for which it wants to read trace
data. Consumers can receive the events in buffers in real time or in log files.

Windows includes dozens of user-mode providers, for everything from Active Directory to the
Service Control Manager to Explorer. ETW also defines a logging session with the name NT Kernel
Logger (also known as the kernel logger) for use by the kernel and core drivers. The providers for the
NT Kernel Logger are implemented by ETW code in Ntoskrnl.exe and the core drivers.

When a controller in user mode enables the kernel logger, the ETW library (which is implemented
in \Windows\System32\NtdlIl.dll) calls the NtTraceControl system function, telling the ETW code in
the kernel which event classes the controller wants to start tracing. If file logging is configured (as
opposed to in-memory logging to a buffer), the kernel creates a system thread in the system process
that creates a log file. When the kernel receives trace events from the enabled trace sources, it records
them to a buffer. If it was started, the file logging thread wakes up once per second to dump the
contents of the buffers to the log file.

Trace records generated by the kernel logger have a standard ETW trace event header, which
records time stamp, process, and thread IDs, as well as information on what class of event the record
corresponds to. Event classes can provide additional data specific to their events. For example,
disk event class trace records indicate the operation type (read or write), disk number at which the
operation is directed, and sector offset and length of the operation.

Some of the trace classes that can be enabled for the kernel logger and the component that
generates each class include the following:

m Disk I/0 Disk class driver

m File I/O File system drivers

Windows Internals, Sixth Edition, Part 1

m File I/0 Completion File system drivers

m Hardware Configuration Plug and Play manager (See Chapter 9 in Part 2 for information
on the Plug and Play manager.)

m Image Load/Unload The system image loader in the kernel

m Page Faults Memory manager (See Chapter 10 in Part 2 for more information on page
faults.)

= Hard Page Faults Memory manager

m Process Create/Delete Process manager (See Chapter 5 for more information on the
process manager.)

m Thread Create/Delete Process manager

m Registry Activity Configuration manager (See “The Registry” section in Chapter 4 for more
information on the configuration manager.)

m Network TCP/IP TCP/IP driver

m Process Counters Process manager

m Context Switches Kernel dispatcher

m Deferred Procedure Calls Kernel dispatcher
= Interrupts Kernel dispatcher

m System Calls Kernel dispatcher

= Sample Based Profiling Kernel dispatcher and HAL
m Driver Delays 1/O manager

= Splitl/O 1/0 manager

m Power Events Power manager

m ALPC Advanced local procedure call

m Scheduler and Synchronization Kernel dispatcher (See Chapter 5 for more information
about thread scheduling)

You can find more information on ETW and the kernel logger, including sample code for
controllers and consumers, in the Windows SDK.

System Mechanisms 221

U(Lﬂ EXPERIMENT: Tracing TCP/IP Activity with the Kernel Logger

To enable the kernel logger and have it generate a log file of TCP/IP activity, follow these steps:
1. Run the Performance Monitor, and click on Data Collector Sets, User Defined.
2. Right-click on User Defined, choose New, and select Data Collector Set.

3. When prompted, enter a name for the data collector set (for example, experiment),
and choose Create Manually (Advanced) before clicking Next.

4. In the dialog box that opens, select Create Data Logs, check Event Trace Data, and
then click Next. In the Providers area, click Add, and locate Windows Kernel Trace. In
the Properties list, select Keywords(Any), and then click Edit.

@ @ Create new Data Collector Set.
Which event trace providers would you like to enable?
Providers:
Windows Kernel Trace Add..
Properties:
Rioneits value | T
Keywords[Any] 00 |E |
Keywords[&11] 00 o
Lewel 000
Properties i
4| 1] 3
| Mext | [Einish] [Cancel]

5. From this list, select only Net for Network TCP/IP, and then click OK.

Praperty ==
(@) Aukornatic
Walue Description o
[diskinit Disk I0) entry
[pf Page Faults
[hF Hard page Faults
net Metwork TCP/IP]
[reqistry Registry details =
[alpe ALPC B
[T splitia Split 10
[T driver Driver delays -
4 1]
(") Manual
Q10000
o

222 Windows Internals, Sixth Edition, Part 1

6. Click Next to select a location where the files are saved. By default, this location is
C:\Perflogs\<User>\experiment\, if this is how you named the data collector set. Click
Next, and in the Run As edit box, enter the Administrator account name and set the
password to match it. Click Finish. You should now see a window similar to the one
shown here:
@j‘_. Performance Monitor EI@
@j‘_. File Action View Window Help = =
e’ | 2@ Ec=zHE PeAEdE
l@_\.l Performance MName Type Output
a . Menitoring Tools ol NT Kernel Trace
B8 Performance Monitor —
a [Data Collector Sets
4 3_, User Defined
¥ experiment
> [ms System
I'-\,i Event Trace Sessions
i Startup Event Trace Sessions
» [Reports
7. Right-click on “experiment” (or whatever name you gave your data collector set), and
then click Start. Now generate some network activity by opening a browser and visit-
ing a web site.
8. Right-click on the data collector set node again, and then click Stop.
9. Open a command prompt, and change to the C:\Perflogs\experiment\00001 directory
(or the directory into which you specified that the trace log file be stored).
10. Run tracerpt, and pass it the name of the trace log file:
tracerpt DataCollectorOl.etl -o dumpfile.csv -of CSV
11. Open dumpfile.csv in Microsoft Excel or in a text editor. You should see TCP and/or
UDP trace records like the following:
Teplp | SendiPv4 | OxFFFFFFFF | 1.286636+17 [0 |0 [1992 1388 | 157548628 | 17231.234.35 |80 | 49414 | 646659 | 646661
Udplp | RecviPva | oxrrrrrrre | 1.28663E+417 [0 [0 |4 50 | 172.31.239.255 | 172.31.233.110 [137 [137 o 0x0
Udplp | RecvPva | oxFrrrrFrF | 1.28663E+417 [0 [0 |4 50 | 172.31.239.255 | 172.31.234.162 [137 137 |0 0x0
Teplp | RecviPv4 | OxFFFFFFFF [1.28663E+17 |0 |0 | 1992 | 1425 | 15754.86.28 | 172.31.234.35 |80 |49414 |0 0x0
Teplp | RecviPV4 | OXFFFFFFFF [1.28663E+17 |0 |0 | 1992 |1380 | 157.54.86.28 | 172.31.234.35 |80 |49414 [0 0x0
Teplp | RecviPV4 | OXFFFFFFFF [1.28663E+17 |0 |0 | 1992 |45 | 157.54.86.28 | 172.31.234.35 |80 |49414 [0 0x0
Teplp | RecviPva | OxFFFFFFFF [1286636417 |0 |0 | 1992 | 1415 | 15754.86.28 | 172.31.234.35 |80 |49414 [0 0x0
Teplp | RecviPva | OxFFFFFFFF [1.286636+17 |0 |0 [1992 [740 | 15754.86.28 | 172.31.234.35 |80 |49414 |0 0x0
System Mechanisms 223

Wow64

224

Wow64 (Win32 emulation on 64-bit Windows) refers to the software that permits the execution
of 32-bit x86 applications on 64-bit Windows. It is implemented as a set of user-mode DLLs, with
some support from the kernel for creating 32-bit versions of what would normally only be 64-bit

data

structures, such as the process environment block (PEB) and thread environment block (TEB).

Changing Wow64 contexts through Get/SetThreadContext is also implemented by the kernel. Here
are the user-mode DLLs responsible for Wow64:

Wow64.dll Manages process and thread creation, and hooks exception-dispatching and
base system calls exported by Ntoskrnl.exe. It also implements file-system redirection and
registry redirection.

Wow64Cpu.dll Manages the 32-bit CPU context of each running thread inside Wow64, and
provides processor architecture-specific support for switching CPU mode from 32-bit to 64-bit
and vice versa.

Wow64Win.dll Intercepts the GUI system calls exported by Win32k.sys.

1A32Exec.bin and Wowia32x.dll on 1A64 systems Contain the IA-32 software emulator
and its interface library. Because Itanium processors cannot natively execute x86 32-bit in-
structions in an efficient manner (performance is worse than 30 percent), software emulation
(through binary translation) is required through the use of these two additional components.

The relationship of these DLLs is shown in Figure 3-31.

32-bit EXE, DLLs

Gdi32.dll | | 32-bit NtdlL.dll | | User32.dll |

Wow64cpu.dll

| Wow64.dll | |Wow64win.d|||

| 6a-bit Nallal |

| Ntoskrnl.exe | |Win32k.sys |

FIGURE 3-31 Wow64 architecture

Wow64 Process Address Space Layout

Wow64 processes can run with 2 GB or 4 GB of virtual space. If the image header has the
large-address-aware flag set, the memory manager reserves the user-mode address space above
the 4-GB boundary through the end of the user-mode boundary. If the image is not marked as large

Windows Internals, Sixth Edition, Part 1

address space aware, the memory manager reserves the user-mode address space above 2 GB. (For
more information on large-address-space support, see the section “x86 User Address Space Layouts”
in Chapter 10 in Part 2.)

System Calls

Wow64 hooks all the code paths where 32-bit code would transition to the native 64-bit system

or when the native system needs to call into 32-bit user-mode code. During process creation, the
process manager maps into the process address space the native 64-bit Ntdll.dll, as well as the 32-bit
Ntdll.dIl for Wow64 processes. When the loader initialization is called, it calls the Wow64 initialization
code inside Wow64.dIl. Wow64 then sets up the startup context required by the 32-bit Ntdll, switches
the CPU mode to 32-bits, and starts executing the 32-bit loader. From this point onward, execution
continues as if the process is running on a native 32-bit system.

Special 32-bit versions of NtdlIl.dll, User32.dll, and Gdi32.dll are located in the \Windows\Syswow64
folder (as well as certain other DLLs that perform interprocess communication, such as Rpcrt4.dll).
These call into Wow64 rather than issuing the native 32-bit system call instruction. Wow64 transitions
to native 64-bit mode, captures the parameters associated with the system call (converting 32-bit
pointers to 64-bit pointers), and issues the corresponding native 64-bit system call. When the native
system call returns, Wow64 converts any output parameters if necessary from 64-bit to 32-bit formats
before returning to 32-bit mode.

Exception Dispatching

Wow64 hooks exception dispatching through Ntdll's KiUserExceptionDispatcher. Whenever the 64-bit
kernel is about to dispatch an exception to a Wow64 process, Wow64 captures the native excep-
tion and context record in user mode and then prepares a 32-bit exception and context record and
dispatches it the same way the native 32-bit kernel would.

User APC Dispatching

Wow64 also hooks user-mode APC delivery through Ntdll's KiUserApcDispatcher. Whenever the
64-bit kernel is about to dispatch a user-mode APC to a Wow64 process, it maps the 32-bit APC
address to a higher range of 64-bit address space. The 64-bit Ntdll then captures the native APC and
context record in user mode and maps it back to a 32-bit address. It then prepares a 32-bit user-
mode APC and context record and dispatches it the same way the native 32-bit kernel would.

Console Support

Because console support is implemented in user mode by Csrss.exe, of which only a single native
binary exists, 32-bit applications would be unable to perform console 1/0 while on 64-bit Windows.
Similarly to how a special rpcrt4.dil exits to thunk 32-bit to 64-bit RPCs, the 32-bit Kernel.dll for
Wow64 contains special code to call into Wow, for thunking parameters during interaction with Csrss
and Conhost.exe.

System Mechanisms 225

226

User Callbacks

Wow64 intercepts all callbacks from the kernel into user mode. Wow64 treats such calls as system
calls; however, the data conversion is done in the reverse order: input parameters are converted
from 64 bits to 32 bits, and output parameters are converted when the callback returns from 32 bits
to 64 bits.

File System Redirection

To maintain application compatibility and to reduce the effort of porting applications from Win32

to 64-bit Windows, system directory names were kept the same. Therefore, the \Windows\System32
folder contains native 64-bit images. Wow64, as it hooks all the system calls, translates all the path-
related APIs and replaces the path name of the \Windows\System32 folder with \Windows\Syswow64.
Wow64 also redirects \Windows\LastGood to \Windows\LastGood\syswow64 and \Windows
\Regedit.exe to \Windows\syswow64\Regedit.exe. Through the use of system environment

variables, the %PROGRAMFILES% variable is also set to \Program Files (x86) for 32-bit applica-

tions, while it is set to \Program Files folder for 64-bit applications. CommonProgramFiles and
CommonProgramFiles (x86) also exist, which always point to the 32-bit location, while ProgramW6432
and CommonProgramW6432 point to the 64-bit locations unconditionally.

Note Because certain 32-bit applications might indeed be aware and able to deal with
64-bit images, a virtual directory, \Windows\Sysnative, allows any I/Os originating from

a 32-bit application to this directory to be exempted from file redirection. This directory
doesn’t actually exist—it is a virtual path that allows access to the real System32 directory,
even from an application running under Wow64.

There are a few subdirectories of \Windows\System32 that, for compatibility reasons, are exempted
from being redirected such that access attempts to them made by 32-bit applications actually access
the real one. These directories include the following:

m %windir%\system32\drivers\etc

m %windir%\system32\spool

m %windir%\system32\catroot and %windir%\system32\catroot2
m %windir%\system32\logfiles

m %windir%\system32\driverstore

Finally, Wow64 provides a mechanism to control the file system redirection built
into Wow64 on a per-thread basis through the Wow64DisableWow64FsRedirection and
Wow64RevertWow64FsRedirection functions. This mechanism can have issues with delay-loaded DLLs,
opening files through the common file dialog and even internationalization—because once redirec-
tion is disabled, the system no longer users it during internal loading either, and certain 64-bit-only
files would then fail to be found. Using the c:\windows\sysnative path or some of the other consistent
paths introduced earlier is usually a safer methodology for developers to use.

Windows Internals, Sixth Edition, Part 1

Registry Redirection

Applications and components store their configuration data in the registry. Components usually
write their configuration data in the registry when they are registered during installation. If the same
component is installed and registered both as a 32-bit binary and a 64-bit binary, the last component
registered will override the registration of the previous component because they both write to the
same location in the registry.

To help solve this problem transparently without introducing any code changes to 32-bit
components, the registry is split into two portions: Native and Wow64. By default, 32-bit components
access the 32-bit view and 64-bit components access the 64-bit view. This provides a safe execution
environment for 32-bit and 64-bit components and separates the 32-bit application state from the
64-bit one if it exists.

To implement this, Wow64 intercepts all the system calls that open registry keys and retranslates
the key path to point it to the Wow64 view of the registry. Wow64 splits the registry at these points:

= HKLM\SOFTWARE
m HKEY_CLASSES_ROOT

However, note that many of the subkeys are actually shared between 32-bit and 64-bit apps—that
is, not the entire hive is split.

Under each of these keys, Wow64 creates a key called Wow6432Node. Under this key is stored
32-bit configuration information. All other portions of the registry are shared between 32-bit and
64-bit applications (for example, HKLM\SYSTEM).

As an extra help, if a 32-bit application writes a REG_SZ or REG_EXPAND_SZ value that starts
with the data “%ProgramFiles%" or “%commonprogramfiles%” to the registry, Wow64 modifies the
actual values to "%ProgramFiles(x86)%" and "%commonprogramfiles(x86)%" to match the file sys-
tem redirection and layout explained earlier. The 32-bit application must write exactly these strings
using this case—any other data will be ignored and written normally. Finally, any key containing
“system32" is replaced with “syswow64" in all cases, regardless of flags and case sensitivity, unless
KEY_WOWG64_64KEY is used and the key is on the list of “reflected keys", which is available on MSDN.

For applications that need to explicitly specify a registry key for a certain view, the following
flags on the RegOpenKeyEx, RegCreateKeyEx, RegOpenKeyTransacted, RegCreateKeyTransacted, and
RegDeleteKeyEx functions permit this:

= KEY_WOW64_64KEY—Explicitly opens a 64-bit key from either a 32-bit or 64-bit application,
and disables the REG_SZ or REG_EXPAND_SZ interception explained earlier

= KEY_WOW®64_32KEY—Explicitly opens a 32-bit key from either a 32-bit or 64-bit application

I/0 Control Requests

Besides normal read and write operations, applications can communicate with some device drivers
through device I/O control functions using the Windows DeviceloControl API. The application might
specify an input and/or output buffer along with the call. If the buffer contains pointer-dependent

System Mechanisms 227

228

data and the process sending the control request is a Wow64 process, the view of the input and/or
output structure is different between the 32-bit application and the 64-bit driver, because pointers
are 4 bytes for 32-bit applications and 8 bytes for 64-bit applications. In this case, the kernel driver is
expected to convert the associated pointer-dependent structures. Drivers can call the lols32bitProcess
function to detect whether or not an 1/0 request originated from a Wow64 process. Look for
“Supporting 32-Bit I/O in Your 64-Bit Driver” on MSDN for more details.

16-Bit Installer Applications

Wow64 doesn't support running 16-bit applications. However, because many application installers
are 16-bit programs, Wow64 has special case code to make references to certain well-known 16-bit
installers work. These installers include the following:

m Microsoft ACME Setup version: 1.2, 2.6, 3.0, and 3.1
m [nstallShield version 5.x (where x is any minor version number)

Whenever a 16-bit process is about to be created using the CreateProcess() API, Ntvdm64.dll is
loaded and control is transferred to it to inspect whether the 16-bit executable is one of the sup-
ported installers. If it is, another CreateProcess is issued to launch a 32-bit version of the installer with
the same command-line arguments.

Printing

32-bit printer drivers cannot be used on 64-bit Windows. Print drivers must be ported to native 64-bit
versions. However, because printer drivers run in the user-mode address space of the requesting pro-
cess and only native 64-bit printer drivers are supported on 64-bit Windows, a special mechanism is
needed to support printing from 32-bit processes. This is done by redirecting all printing functions to
Splwow64.exe, the Wow64 RPC print server. Because Splwow64 is a 64-bit process, it can load 64-bit
printer drivers.

Restrictions

Wow64 does not support the execution of 16-bit applications (this is supported on 32-bit versions of
Windows) or the loading of 32-bit kernel-mode device drivers (they must be ported to native 64-bits).
Wow64 processes can load only 32-bit DLLs and can't load native 64-bit DLLs. Likewise, native 64-bit
processes can't load 32-bit DLLs. The one exception is the ability to load resource or data-only DLLs
cross-architecture, which is allowed because those DLLs contain only data, not code.

In addition to the above, due to page size differences, Wow64 on 1A64 systems does not support
the ReadFileScatter, WriteFileGather, GetWriteWatch, AVX registers, XSAVE, and AWE functions. Also,
hardware acceleration through DirectX is not available. (Software emulation is provided for Wow64
processes.)

Windows Internals, Sixth Edition, Part 1

User-Mode Debugging

Support for user-mode debugging is split into three different modules. The first one is located in

the executive itself and has the prefix Dbgk, which stands for Debugging Framework. It provides the
necessary internal functions for registering and listening for debug events, managing the debug
object, and packaging the information for consumption by its user-mode counterpart. The user-mode
component that talks directly to Dbgk is located in the native system library, Ntdll.dll, under a set of
APIs that begin with the prefix DbgUi. These APIs are responsible for wrapping the underlying debug
object implementation (which is opaque), and they allow all subsystem applications to use debug-
ging by wrapping their own APIs around the DbgUi implementation. Finally, the third component in
user-mode debugging belongs to the subsystem DLLs. It is the exposed, documented API (located in
KernelBase.dll for the Windows subsystem) that each subsystem supports for performing debugging
of other applications.

Kernel Support

The kernel supports user-mode debugging through an object mentioned earlier, the debug object. It
provides a series of system calls, most of which map directly to the Windows debugging API, typically
accessed through the DbgUi layer first. The debug object itself is a simple construct, composed of

a series of flags that determine state, an event to notify any waiters that debugger events are pres-
ent, a doubly linked list of debug events waiting to be processed, and a fast mutex used for locking
the object. This is all the information that the kernel requires for successfully receiving and sending
debugger events, and each debugged process has a debug port member in its structure pointing to
this debug object.

Once a process has an associated debug port, the events described in Table 3-23 can cause a
debug event to be inserted into the list of events.

TABLE 3-23 Kernel-Mode Debugging Events

Event Identifier Meaning Triggered By
DbgKmExceptionApi An exception has occurred. KiDispatchException during an exception that
occurred in user mode
DbgKmCreateThreadApi A new thread has been created. | Startup of a user-mode thread
DbgKmCreateProcessApi A new process has been Startup of a user-mode thread that is the first
created. thread in the process
DbgKmExitThreadApi A thread has exited. Death of a user-mode thread
DbgKmExitProcessApi A process has exited. Death of a user-mode thread that was the last
thread in the process
DbgKmLoadDIIApi A DLL was loaded. NtMapViewOfSection when the section is an
image file (could be an EXE as well)
DbgKmUnloadDIIApi A DLL was unloaded. NtUnmapViewOfSection when the section is
an image file (could be an EXE as well)
DbgKmeErrorReportApi An exception needs to be KiDispatchException during an exception that
forwarded to Windows Error occurred in user mode, after the debugger
Reporting (WER). was unable to handle it

System Mechanisms 229

230

Apart from the causes mentioned in the table, there are a couple of special triggering cases
outside the regular scenarios that occur at the time a debugger object first becomes associated with a
process. The first create process and create thread messages will be manually sent when the debugger
is attached, first for the process itself and its main thread and followed by create thread messages for
all the other threads in the process. Finally, load dll events for the executable being debugged
(Ntdll.dll) and then all the current DLLs loaded in the debugged process will be sent.

Once a debugger object has been associated with a process, all the threads in the process are
suspended. At this point, it is the debugger’s responsibility to start requesting that debug events be
sent through. Debuggers request that debug events be sent back to user mode by performing a wait
on the debug object. This call loops the list of debug events. As each request is removed from the list,
its contents are converted from the internal dbgk structure to the native structure that the next layer
up understands. As you'll see, this structure is different from the Win32 structure as well, and another
layer of conversion has to occur. Even after all pending debug messages have been processed by the
debugger, the kernel does not automatically resume the process. It is the debugger's responsibility to
call the ContinueDebugEvent function to resume execution.

Apart from some more complex handling of certain multithreading issues, the basic model for the
framework is a simple matter of producers—code in the kernel that generates the debug events in
the previous table—and consumers—the debugger waiting on these events and acknowledging their
receipt.

Native Support

Although the basic protocol for user-mode debugging is quite simple, it's not directly usable by
Windows applications—instead, it's wrapped by the DbgUi functions in Ntdll.dll. This abstraction is
required to allow native applications, as well as different subsystems, to use these routines (because
code inside Ntdll.dll has no dependencies). The functions that this component provides are mostly
analogous to the Windows API functions and related system calls. Internally, the code also provides
the functionality required to create a debug object associated with the thread. The handle to a debug
object that is created is never exposed. It is saved instead in the thread environment block (TEB) of
the debugger thread that performs the attachment. (For more information on the TEB, see Chapter 5.)
This value is saved in DbgSsReserved[1].

When a debugger attaches to a process, it expects the process to be broken into—that is, an int 3
(breakpoint) operation should have happened, generated by a thread injected into the process. If this
didn’t happen, the debugger would never actually be able to take control of the process and would
merely see debug events flying by. Ntdll.dll is responsible for creating and injecting that thread into
the target process.

Finally, Ntdll.dIl also provides APIs to convert the native structure for debug events into the
structure that the Windows APl understands.

Windows Internals, Sixth Edition, Part 1

EXPERIMENT: Viewing Debugger Objects

Although you've been using WinDbg to do kernel-mode debugging, you can also use it to
debug user-mode programs. Go ahead and try starting Notepad.exe with the debugger
attached using these steps:

1. Run WinDbg, and then click File, Open Executable.
2. Navigate to the \Windows\System32\ directory, and choose Notepad.exe.

3. You're not going to do any debugging, so simply ignore whatever might come up.
You can type g in the command window to instruct WinDbg to continue executing

Notepad.

Now run Process Explorer, and be sure the lower pane is enabled and configured to show
open handles. (Click on View, Lower Pane View, and then Handles.) You also want to look at
unnamed handles, so click on View, Show Unnamed Handles And Mappings.

Next, click on the Windbg.exe process and look at its handle table. You should see an open,
unnamed handle to a debug object. (You can organize the table by Type to find this entry more
readily.) You should see something like the following:

i Process Explorer - Sysi Is: www.sysi Is.com [ALEXIONESCUD6E\Administrator] =N Eoh(
File Options View Process Find | Handle | Users Help

CIEIEEEEIEEI [. e 1 A O i

Process PID CPU Private Bytes Working Set Description Company Mame -
@WINWORDB(E 3356 014 117484 K 133,288 K Microsoft Word Microsoft Corporation
[cmd exe 3584 2624 K 2,264 K Windows Command P Mi ft Corporation |
&2 Iwi 24,640 K Windows GUI symbolic debugger Microsoft Corporation B
notepad.eme 5596 528K 1,640 K MNotepad Microsoft Corporation -
Type = Mame Handle Access |~
ALPC Port 6<2F0 (¢001FO00T L
DebugObject 0<3E8 ([001FODDF
Desktop “\Default B34 DDOOFO1FF
Directory “WKnownDlls ed (00000003
Directory “Sessions' 1" BaseNamedObjects 58 (c00DODOOF -

CPU Usage: 460% Commit Charge: 28.09% Processes: 51 Physical Usage: 58.65%

You can try right-clicking on the handle and closing it. Notepad should disappear, and the
following message should appear in WinDbg:
ERROR: WaitForEvent failed, NTSTATUS 0xC0000354
This usually indicates that the debuggee has been
killed out from underneath the debugger.
You can use .tlist to see if the debuggee still exists.
WaitForEvent failed

In fact, if you look at the description for the NTSTATUS code given, you will find the text: "An
attempt to do an operation on a debug port failed because the port is in the process of being
deleted,” which is exactly what you've done by closing the handle.

System Mechanisms

231

As you can see, the native DbgUi interface doesn't do much work to support the framework except
for this abstraction. The most complicated task it does is the conversion between native and Win32
debugger structures. This involves several additional changes to the structures.

Windows Subsystem Support

The final component responsible for allowing debuggers such as Microsoft Visual Studio or WinDbg
to debug user-mode applications is in Kernel32.dll. It provides the documented Windows APIs. Apart
from this trivial conversion of one function name to another, there is one important management
job that this side of the debugging infrastructure is responsible for: managing the duplicated file and
thread handles.

Recall that each time a load DLL event is sent, a handle to the image file is duplicated by the kernel
and handed off in the event structure, as is the case with the handle to the process executable during
the create process event. During each wait call, Kernel32.dll checks whether this is an event that results
in new duplicated process and/or thread handles from the kernel (the two create events). If so, it
allocates a structure in which it stores the process ID, thread ID, and the thread and/or process handle
associated with the event. This structure is linked into the first DbgSsReserved array index in the TEB,
where we mentioned the debug object handle is stored. Likewise, Kernel32.dll also checks for exit
events. When it detects such an event, it “marks” the handles in the data structure.

Once the debugger is finished using the handles and performs the continue call, Kernel32.dll
parses these structures, looks for any handles whose threads have exited, and closes the handles for
the debugger. Otherwise, those threads and processes would actually never exit, because there would
always be open handles to them as long as the debugger was running.

Image Loader

When a process is started on the system, the kernel creates a process object to represent it (see
Chapter 5 for more information on processes) and performs various kernel-related initialization tasks.
However, these tasks do not result in the execution of the application, merely in the preparation of its
context and environment. In fact, unlike drivers, which are kernel-mode code, applications execute in
user mode. So most of the actual initialization work is done outside the kernel. This work is performed
by the image loader, also internally referred to as Ldr.

The image loader lives in the user-mode system DLL Ntdll.dll and not in the kernel library. There-
fore, it behaves just like standard code that is part of a DLL, and it is subject to the same restrictions
in terms of memory access and security rights. What makes this code special is the guaranty that it
will always be present in the running process (Ntdll.dll is always loaded) and that it is the first piece
of code to run in user mode as part of a new application. (When the system builds the initial context,
the program counter, or instruction pointer, is set to an initialization function inside Ntdll.dll. See
Chapter 5 for more information.)

232 Windows Internals, Sixth Edition, Part 1

v _
=0

Because the loader runs before the actual application code, it is usually invisible to users and de-
velopers. Additionally, although the loader’s initialization tasks are hidden, a program typically does
interact with its interfaces during the run time of a program—for example, whenever loading or un-
loading a DLL or querying the base address of one. Some of the main tasks the loader is responsible
for include these:

m [nitializing the user-mode state for the application, such as creating the initial heap and setting
up the thread-local storage (TLS) and fiber-local storage (FLS) slots

m Parsing the import table (IAT) of the application to look for all DLLs that it requires (and then
recursively parsing the IAT of each DLL), followed by parsing the export table of the DLLs to
make sure the function is actually present (Special forwarder entries can also redirect an export
to yet another DLL.)

m Loading and unloading DLLs at run time, as well as on demand, and maintaining a list of all
loaded modules (the module database)

= Allowing for run-time patching (called hotpatching) support, explained later in the chapter
m Handling manifest files

m Reading the application compatibility database for any shims, and loading the shim engine
DLL if required

m Enabling support for API sets and API redirection, a core part of the MinWin refactoring effort
m Enabling dynamic runtime compatibility mitigations through the SwitchBranch mechanism

As you can see, most of these tasks are critical to enabling an application to actually run its code;
without them, everything from calling external functions to using the heap would immediately fail.
After the process has been created, the loader calls a special native API to continue execution based
on a context frame located on the stack. This context frame, built by the kernel, contains the actual
entry point of the application. Therefore, because the loader doesn't use a standard call or jump into
the running application, you'll never see the loader initialization functions as part of the call tree in a
stack trace for a thread.

EXPERIMENT: Watching the Image Loader

In this experiment, you'll use global flags to enable a debugging feature called loader snaps.
This allows you to see debug output from the image loader while debugging application
startup.

1. From the directory where you've installed WinDbg, launch the Gflags.exe application,
and then click on the Image File tab.

2. Inthe Image field, type Notepad.exe, and then press the Tab key. This should enable
the check boxes. Select the Show Loader Snaps option, and then click OK to dismiss
the dialog box.

System Mechanisms 233

234

3.

Now follow the steps in the "EXPERIMENT: Viewing Debugger Objects” section to start
debugging the Notepad.exe application.

You should now see a couple of screens of debug information similar to that shown
here:

0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Initializing process 0x924

0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Beginning execution of
notepad.exe (C:\Windows\notepad.exe)

0924:0248 @ 116983652 - LdrpLoadD11 - INFO: Loading DLL "kernel132.d11" from path
"C:\Windows;C:\Windows\system32;C:\Windows\system;C:\Windows;

0924:0248 @ 116983652 - LdrpMapD11 - INFO: Mapped DLL "kernel32.d11" at address
76BD000

0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure
"BaseThreadInitThunk" by name

0924:0248 @ 116983652 - LdrpRunInitializeRoutines - INFO: Calling init routine
76C14592 for DLL "C:\Windows\system32\kerne132.d11"

0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure
"BaseQueryModuleData" by name

Eventually, the debugger breaks somewhere inside the loader code, at a special place
where the image loader checks whether a debugger is attached and fires a breakpoint.
If you press the G key to continue execution, you will see more messages from the
loader, and Notepad will appear.

Try interacting with Notepad and see how certain operations invoke the loader. A
good experiment is to open the Save/Open dialog. That demonstrates that the loader
not only runs at startup, but continuously responds to thread requests that can cause
delayed loads of other modules (which can then be unloaded after use).

Early Process Initialization

Because the loader is present in Ntdll.dll, which is a native DLL that's not associated with any
particular subsystem, all processes are subject to the same loader behavior (with some minor
differences). In Chapter 5, we'll look in detail at the steps that lead to the creation of a process in
kernel mode, as well as some of the work performed by the Windows function CreateProcess. Here,
however, we'll cover the work that takes place in user mode, independent of any subsystem, as soon
as the first user-mode instruction starts execution. When a process starts, the loader performs the

following steps:

1.

4.

Build the image path name for the application, and query the Image File Execution Options
key for the application, as well as the DEP and SEH validation linker settings.

Look inside the executable’s header to see whether it is a .NET application (specified by the
presence of a .NET-specific image directory).

Initialize the National Language Support (NLS for internationalization) tables for the process.

Initialize the Wow64 engine if the image is 32-bit and is running on 64-bit Windows.

Windows Internals, Sixth Edition, Part 1

5. Load any configuration options specified in the executable’s header. These options, which a
developer can define when compiling the application, control the behavior of the executable.

6. Set the affinity mask if one was specified in the executable header.
7. Initialize FLS and TLS.
8. Initialize the heap manager for the process, and create the first process heap.

9. Allocate an SxS (Side-by-Side Assembly)/Fusion activation context for the process. This allows
the system to use the appropriate DLL version file, instead of defaulting to the DLL that
shipped with the operating system. (See Chapter 5 for more information.)

10. Open the \KnownDlls object directory, and build the known DLL path. For a Wow64 process,
\KnownDIIs32 is used instead.

11. Determine the process’ current directory and default load path (used when loading images
and opening files).

12. Build the first loader data table entries for the application executable and Ntdll.dll, and insert
them into the module database.

At this point, the image loader is ready to start parsing the import table of the executable
belonging to the application and start loading any DLLs that were dynamically linked during the
compilation of the application. Because each imported DLL can also have its own import table, this
operation will continue recursively until all DLLs have been satisfied and all functions to be imported
have been found. As each DLL is loaded, the loader will keep state information for it and build the
module database.

DLL Name Resolution and Redirection

Name resolution is the process by which the system converts the name of a PE-format binary to a
physical file in situations where the caller has not specified or cannot specify a unique file identity.
Because the locations of various directories (the application directory, the system directory, and so
on) cannot be hardcoded at link time, this includes the resolution of all binary dependencies as well as
LoadLibrary operations in which the caller does not specify a full path.

When resolving binary dependencies, the basic Windows application model locates files in a search
path—a list of locations that is searched sequentially for a file with a matching base name—although
various system components override the search path mechanism in order to extend the default ap-
plication model. The notion of a search path is a holdover from the era of the command line, when an
application’s current directory was a meaningful notion; this is somewhat anachronistic for modern
GUI applications.

However, the placement of the current directory in this ordering allowed load operations on
system binaries to be overridden by placing malicious binaries with the same base name in the ap-
plication’s current directory. To prevent security risks associated with this behavior, a feature known as
safe DLL search mode was added to the path search computation and, starting with Windows XP SP2,

System Mechanisms 235

236

is enabled by default for all processes. Under safe search mode, the current directory is moved behind
the three system directories, resulting in the following path ordering:

1. The directory from which the application was launched

2. The native Windows system directory (for example, C:\Windows\System32)
3. The 16-bit Windows system directory (for example, C:\Windows\System)
4. The Windows directory (for example, C:\Windows)

5. The current directory at application launch time

6. Any directories specified by the %PATH% environment variable

The DLL search path is recomputed for each subsequent DLL load operation. The algorithm
used to compute the search path is the same as the one used to compute the default search path,
but the application can change specific path elements by editing the %PATH% variable using the
SetEnvironmentVariable AP, changing the current directory using the SetCurrentDirectory API, or
using the SetDlIDirectory API to specify a DLL directory for the process. When a DLL directory is
specified, the directory replaces the current directory in the search path and the loader ignores the
safe DLL search mode setting for the process.

Callers can also modify the DLL search path for specific load operations by supplying the
LOAD_WITH_ALTERED_SEARCH_PATH flag to the LoadLibraryEx APl. When this flag is supplied and
the DLL name supplied to the API specifies a full path string, the path containing the DLL file is used in
place of the application directory when computing the search path for the operation.

DLL Name Redirection

Before attempting to resolve a DLL name string to a file, the loader attempts to apply DLL name
redirection rules. These redirection rules are used to extend or override portions of the DLL
namespace—which normally corresponds to the Win32 file system namespace—to extend the
Windows application model. In order of application, they are

m MinWin API Set Redirection The APl set mechanism is designed to allow the Windows
team to change the binary that exports a given system APl in a manner that is transparent to
applications.

m .LOCAL Redirection The .LOCAL redirection mechanism allows applications to redirect all
loads of a specific DLL base name, regardless of whether a full path is specified, to a local copy
of the DLL in the application directory—either by creating a copy of the DLL with the same
base name followed by ./ocal (for example, MyLibrary.dll.local) or by creating a file folder with
the name .local under the application directory and placing a copy of the local DLL in the
folder (for example, C:\\Program Files\My App\.LOCAL\MyLibrary.dll). DLLs redirected by the
.LOCAL mechanism are handled identically to those redirected by SxS. (See the next bullet
point.) The loader honors .LOCAL redirection of DLLs only when the executable does not have
an associated manifest, either embedded or external.

Windows Internals, Sixth Edition, Part 1

m Fusion (SxS) Redirection Fusion (also referred to as side-by-side, or SxS) is an extension
to the Windows application model that allows components to express more detailed binary
dependency information (usually versioning information) by embedding binary resources
known as manifests. The Fusion mechanism was first used so that applications could load the
correct version of the Windows common controls package (comctl32.dll) after that binary was
split into different versions that could be installed alongside one another; other binaries have
since been versioned in the same fashion. As of Visual Studio 2005, applications built with the
Microsoft linker will use Fusion to locate the appropriate version of the C runtime libraries.

The Fusion runtime tool reads embedded dependency information from a binary’'s resource
section using the Windows resource loader, and it packages the dependency information into
lookup structures known as activation contexts. The system creates default activation contexts
at the system and process level at boot and process startup time, respectively; in addition,
each thread has an associated activation context stack, with the activation context structure
at the top of the stack considered active. The per-thread activation context stack is managed
both explicitly, via the ActivateActCtx and DeactivateActCtx APls, and implicitly by the system
at certain points, such as when the DLL main routine of a binary with embedded dependency
information is called. When a Fusion DLL name redirection lookup occurs, the system searches
for redirection information in the activation context at the head of the thread'’s activation con-
text stack, followed by the process and system activation contexts; if redirection information is
present, the file identity specified by the activation context is used for the load operation.

m Known DLL Redirection Known DLLs is a mechanism that maps specific DLL base names to
files in the system directory, preventing the DLL from being replaced with an alternate version
in a different location.

One edge case in the DLL path search algorithm is the DLL versioning check performed on
64-bit and WOW64 applications. If a DLL with a matching base name is located but is subse-
quently determined to have been compiled for the wrong machine architecture—for example,
a 64-bit image in a 32-bit application—the loader ignores the error and resumes the path
search operation, starting with the path element after the one used to locate the incorrect file.
This behavior is designed to allow applications to specify both 64-bit and 32-bit entries in the
global %PATH% environment variable.

EXPERIMENT: Observing DLL Load Search Order

You can use Sysinternals Process Monitor to watch how the loader searches for DLLs. When the
loader attempts to resolve a DLL dependency, you will see it perform CreateFile calls to probe
each location in the search sequence until either it finds the specified DLL or the load fails.

Here's the capture of the loader’s search when an executable named Myapp.exe has a static
dependency on a library named Mylibrary.dll. The executable is stored in C:\Myapp, but the
current working directory was C:\ when the executable was launched. For the sake of demon-
stration, the executable does not include a manifest (by default, Visual Studio has one) so that
the loader will check inside the C:\Myapp\Myapp.exe.local subdirectory that was created for the

System Mechanisms 237

238

experiment. To reduce noise, the Process Monitor filter includes the myapp.exe process and any
paths that contain the string “mylibrary.dll”.

Process Name

(Imyapp.exe
(Imyapp.exe
(Imyapp.exe
(Imyapp.exe
(Imyapp.exe
(Imyapp.exe
(Imyapp.exe
(Imyapp.exe
(Imyapp.exe

Operation
A CreateFile
B CreateFile
B CreateFile
B CreateFile
B CreateFile
B CreateFile
B CreateFile
BOuewBasiclnf...
Bclose File
B CreateFile
BhCreateFileMa. .
BOueryStandar...
BhCreateFileMa. .

Load Image
=h.CloseFile

Path Result
C\myappmyapp exe local'mylibrary dil MAME NOT FOUND
C:\myappmylibrary.dll NAME NOT FOUND
C:\myappmylibrary.dll NAME NOT FOUND
C:A\Windows\SysWOW64 \mylibrary.dll NAME NOT FOUND
C:\Windows'\system mylibrary dll MAME NOT FOUND
C:A\Windows \mylibrary.dll NAME NOT FOUND
C:\mylibrary.dll SUCCESS
C:\mylibrary.dll SUCCESS
C:\mylibrary.dll SUCCESS
C:\mylibrary.dll SUCCESS
C:\mylibrary.dll FILE LOCKED WITH ONL...
C:\mylibrary.dll SUCCESS
C:\mylibrary.dll SUCCESS
C:\mylibrary.dll SUCCESS
C:\mylibrary.dll SUCCESS

Note how the search order matches that described. First, the loader checks the .LOCAL
subdirectory, then the directory where the executable resides, then C:\Windows\System32
directory (because this is a 32-bit executable, that redirects to C:\Windows\SysWOW&64), then
the 16-bit Windows directory, then C:\Windows, and finally, the current directory at the time
the executable was launched. The Load Image event confirms that the loader successfully
resolved the import.

Loaded Module Database

The loader maintains a list of all modules (DLLs as well as the primary executable) that have been
loaded by a process. This information is stored in a per-process structure called the process
environment block, or PEB (see Chapter 5 for a full description of the PEB)—namely, in a substructure
identified by Ldr and called PEB_LDR_DATA. In the structure, the loader maintains three doubly-
linked lists, all containing the same information but ordered differently (either by load order, memory
location, or initialization order). These lists contain structures called loader data table entries
(LDR_DATA_TABLE_ENTRY) that store information about each module. Table 3-24 lists the various
pieces of information the loader maintains in an entry.

TABLE 3-24 Fields in a Loader Data Table Entry

Field
BaseDIIName

ContextInformation

DlIBase

EntryPoint

EntryPointActivationContext

Flags

Meaning
Name of the module itself, without the full path

Used by SwitchBranch (described later) to store the current Windows context GUID
associated with this module

Holds the base address at which the module was loaded
Contains the initial routine of the module (such as D/IMain)

Contains the SxS/Fusion activation context when calling initializers

Loader state flags for this module (See Table 3-25 for a description of the flags.)

Windows Internals, Sixth Edition, Part 1

Field

ForwarderLinks

FullDIIName
HashLinks

List Entry Links
LoadCount
LoadTime

OriginalBase

Patchinformation
ServiceTaglLinks
SizeOflmage
StaticLinks

TimeDateStamp

TlsIndex

Meaning

Linked list of modules that were loaded as a result of export table forwarders from
the module

Fully qualified path name of the module

Linked list used during process startup and shutdown for quicker lookups
Links this entry into each of the three ordered lists part of the loader database
Reference count for the module (that is, how many times it has been loaded)
Stores the system time value when this module was being loaded

Stores the original base address (set by the linker) of this module, enabling faster
processing of relocated import entries

Information that’s relevant during a hotpatch operation on this module

Linked list of services (see Chapter 4 for more information) referencing this module
Size of the module in memory

Linked list of modules loaded as a result of static references from this one

Time stamp written by the linker when the module was linked, which the loader
obtains from the module’s image PE header

Thread local storage slot associated with this module

One way to look at a process’ loader database is to use WinDbg and its formatted output of the
PEB. The next experiment shows you how to do this and how to look at the LDR_DATA_TABLE_ENTRY
structures on your own.

EXPERIMENT: Dumping the Loaded Modules Database

Before starting the experiment, perform the same steps as in the previous two experiments to
launch Notepad.exe with WinDbg as the debugger. When you get to the first prompt (where
you've been instructed to type g until now), follow these instructions:

1.

You can look at the PEB of the current process with the /peb command. For now, you're

interested only in the Ldr data that will be displayed. (See Chapter 5 for details about
other information stored in the PEB.)

0: kd> !peb
PEB at 000007fffffda000
InheritedAddressSpace: No
ReadImageFileExecOptions: No
BeingDebugged: No
ImageBaseAddress: 00000000ff590000
Ldr 0000000076e72640
Ldr.Initialized: Yes
Ldr.InInitializationOrderModulelList: 0000000000212880 . 0000000004731c20
Ldr.InLoadOrderModulelList: 0000000000212770 . 0000000004731c00

239

System Mechanisms

Ldr.InMemoryOrderModulelList: 0000000000212780 . 0000000004731c10
Base TimeStamp ModuTe
590000 4ce7al44 Nov 20 11:21:56 2010 C:\Windows\Explorer.EXE
76d40000 4ce7c8f9 Nov 20 14:11:21 2010 C:\Windows\SYSTEM32\ntd11.d11
76870000 4ce7c78b Nov 20 14:05:15 2010 C:\Windows\system32\kernel32.d11
7fefd2d0000 4ce7c78c Nov 20 14:05:16 2010 C:\Windows\system32\KERNELBASE.d11
7fefee20000 4aS5bde6b Jul 14 02:24:59 2009 C:\Windows\system32\ADVAPI32.d11

2. The address shown on the Ldr line is a pointer to the PEB_LDR_DATA structure
described earlier. Notice that WinDbg shows you the address of the three lists and
dumps the initialization order list for you, displaying the full path, time stamp, and
base address of each module.

3. You can also analyze each module entry on its own by going through the module list
and then dumping the data at each address, formatted as a LDR_DATA_TABLE_ENTRY
structure. Instead of doing this for each entry, however, WinDbg can do most of the
work by using the !list extension and the following syntax:

1Tist -t ntd11!_LIST_ENTRY.F1ink -x "dt ntd11!_LDR_DATA_TABLE_ENTRY @$extret\"
0000000076e72640

Note that the last number is variable: it depends on whatever is shown on your
machine under Ldr.InLoadOrderModuleList.

4. You should then see the entries for each module:

0:001> !Tist -t ntdl11!_LIST_ENTRY.Flink -x "dt ntd11!_LDR_DATA_TABLE_ENTRY
@$extret\" 001lclcf8
+0x000 InLoadOrderLinks : _LIST_ENTRY [Ox1cld68 - 0x76fd4ccc]
+0x008 InMemoryOrderLinks : _LIST_ENTRY [O0x1cld70 - Ox76fd4cd4]
+0x010 InInitializationOrderLinks : _LIST_ENTRY [Ox0 - 0x0]

+0x018 D11Base : 0x00d80000

+0x01c EntryPoint : 0x00d831ed

+0x020 SizeOfImage : 0x28000

+0x024 Ful1DT11Name : _UNICODE_STRING "C:\Windows\notepad.exe"
+0x02c BaseDT1Name : _UNICODE_STRING "notepad.exe"

+0x034 Flags : 0x4010

Although this section covers the user-mode loader in Ntdll.dll, note that the kernel also
employs its own loader for drivers and dependent DLLs, with a similar loader entry struc-
ture. Likewise, the kernel-mode loader has its own database of such entries, which is directly
accessible through the PsActiveModuleList global data variable. To dump the kernel’s loaded
module database, you can use a similar /list command as shown in the preceding experiment by
replacing the pointer at the end of the command with “nt!PsActiveModuleList”.

Looking at the list in this raw format gives you some extra insight into the loader’s internals,
such as the flags field, which contains state information that /peb on its own would not show
you. See Table 3-25 for their meaning. Because both the kernel and user-mode loaders use this
structure, some flags apply only to kernel-mode drivers, while others apply only to user-mode
applications (such as .NET state).

240 Windows Internals, Sixth Edition, Part 1

TABLE 3-25 Loader Data Table Entry Flags

Flag
LDRP_STATIC_LINK (0x2)

LDRP_IMAGE_DLL (0x4)

LDRP_IMAGE_INTEGRITY_FORCED (0x20)

LDRP_LOAD_IN_PROGRESS (0x1000)

LDRP_UNLOAD_IN_PROGRESS (0x2000)

LDRP_ENTRY_PROCESSED (0x4000)
LDRP_ENTRY_INSERTED (0x8000)

LDRP_FAILED_BUILTIN_LOAD (0x20000)
LDRP_DONT_CALL_FOR_THREADS (0x40000)

LDRP_PROCESS_ATTACH_CALLED (0x80000)

LDRP_DEBUG_SYMBOLS_LOADED (0x100000)

LDRP_IMAGE_NOT_AT_BASE (0x200000)

LDRP_COR_IMAGE (0x400000)
LDRP_COR_OWNS_UNMAP (0x800000)

LDRP_SYSTEM_MAPPED (0x1000000)

LDRP_IMAGE_VERIFYING (0x2000000)

LDRP_DRIVER_DEPENDENT_DLL (0x4000000)

LDRP_ENTRY_NATIVE (0x8000000)

LDRP_REDIRECTED (0x10000000)

LDRP_NON_PAGED_DEBUG_INFO (0x20000000)

LDRP_MM_LOADED (0x40000000)

LDRP_COMPAT_DATABASE_PROCESSED (0x80000000)

Meaning

This module is referenced by an import table and is
required.

The module is an image DLL (and not a data DLL or
executable).

The module was linked with /FORCEINTEGRITY
(contains IMAGE_DLLCHARACTERISTICS_FORCE_
INTEGRITY_in its PE header).

This module is currently being loaded.

This module is currently being unloaded.

The loader has finished processing this module.

The loader has finished inserting this entry into the
loaded module database.

Indicates this boot driver failed to load.

Do not send DLL_THREAD_ATTACH/DETACH
notifications to this DLL.

This DLL has been sent the DLL_PROCESS_ATTACH
notification.

The debug symbols for this module have been
loaded by the kernel or user debugger.

This image was relocated from its original base
address.

This module is a .NET application.

This module should be unmapped by the .NET
runtime.

This module is mapped into kernel address space
with System PTEs (versus being in the initial boot
loader’s memory).

This module is currently being verified by Driver
Verifier.

This module is a DLL that is in a driver’s import
table.

This module was compiled for Windows 2000 or
later. It's used by Driver Verifier as an indication that
a driver might be suspect.

The manifest file specified a redirected file for this
DLL.

The debug information for this module is in non-
paged memory.

This module was loaded by the kernel loader
through MmLoadSystemimage.

The shim engine has processed this DLL.

System Mechanisms 241

Import Parsing

Now that we've explained the way the loader keeps track of all the modules loaded for a process, you
can continue analyzing the startup initialization tasks performed by the loader. During this step, the
loader will do the following:

1.

2.

7.

Load each DLL referenced in the import table of the process’ executable image.

Check whether the DLL has already been loaded by checking the module database. If it
doesn't find it in the list, the loader opens the DLL and maps it into memory.

During the mapping operation, the loader first looks at the various paths where it should
attempt to find this DLL, as well as whether this DLL is a "known DLL,” meaning that the sys-
tem has already loaded it at startup and provided a global memory mapped file for accessing
it. Certain deviations from the standard lookup algorithm can also occur, either through the
use of a .local file (which forces the loader to use DLLs in the local path) or through a manifest
file, which can specify a redirected DLL to use to guarantee a specific version.

After the DLL has been found on disk and mapped, the loader checks whether the kernel has
loaded it somewhere else—this is called relocation. If the loader detects relocation, it parses
the relocation information in the DLL and performs the operations required. If no relocation
information is present, DLL loading fails.

The loader then creates a loader data table entry for this DLL and inserts it into the database.

After a DLL has been mapped, the process is repeated for this DLL to parse its import table
and all its dependencies.

After each DLL is loaded, the loader parses the IAT to look for specific functions that are being
imported. Usually this is done by name, but it can also be done by ordinal (an index number).
For each name, the loader parses the export table of the imported DLL and tries to locate a
match. If no match is found, the operation is aborted.

The import table of an image can also be bound. This means that at link time, the developers
already assigned static addresses pointing to imported functions in external DLLs. This
removes the need to do the lookup for each name, but it assumes that the DLLs the appli-
cation will use will always be located at the same address. Because Windows uses address
space randomization (see Chapter 10 in Part 2 for more information on Address Space Load
Randomization, or ASLR), this is usually not the case for system applications and libraries.

The export table of an imported DLL can use a forwarder entry, meaning that the actual
function is implemented in another DLL. This must essentially be treated like an import or
dependency, so after parsing the export table, each DLL referenced by a forwarder is also
loaded and the loader goes back to step 1.

After all imported DLLs (and their own dependencies, or imports) have been loaded, all the
required imported functions have been looked up and found, and all forwarders also have been
loaded and processed, the step is complete: all dependencies that were defined at compile time by

242 Windows Internals, Sixth Edition, Part 1

the application and its various DLLs have now been fulfilled. During execution, delayed dependencies
(called delay load), as well as run-time operations (such as calling LoadLibrary) can call into the loader
and essentially repeat the same tasks. Note, however, that a failure in these steps will result in an error
launching the application if they are done during process startup. For example, attempting to run an
application that requires a function that isn't present in the current version of the operating system
can result in a message similar to the one in Figure 3-32.

notepad.exe - Entry Point Mot Found x|

@W% The procedure entry point CreateDialogParamm could not be located

in the dynarnic link library USER32.dI1.

FIGURE 3-32 Dialog box shown when a required (imported) function is not present in a DLL

Post-Import Process Initialization

After the required dependencies have been loaded, several initialization tasks must be performed to
fully finalize launching the application. In this phase, the loader will do the following:

1.

Check if the application is a .NET application, and redirect execution to the .NET runtime entry
point instead, assuming the image has been validated by the framework.

Check if the application itself requires relocation, and process the relocation entries for the
application. If the application cannot be relocated, or does not have relocation information,
the loading will fail.

Check if the application makes use of TLS, and look in the application executable for the TLS
entries it needs to allocate and configure.

If this is a Windows application, the Windows subsystem thread-initialization thunk code is
located after loading kernel32.dll, and the Authz/AppLocker enforcement is enabled. (See
Chapter 6 for more information on Software Restriction Policies.) If Kernel32.dll is not found,
the system is presumably assumed to be running in MinWin and only Kernelbase.dll is loaded.

Any static imports are now loaded.

At this point, the initial debugger breakpoint will be hit when using a debugger such as
WinDbg. This is where you had to type g to continue execution in the earlier experiments.

Make sure that the application will be able to run properly if the system is a multiprocessor
system.

Set up the default data execution prevention (DEP) options, including for exception-chain
validation, also called “software” DEP. (See Chapter 10 in Part 2 for more information on DEP.)

System Mechanisms 243

9. Check whether this application requires any application compatibility work, and load the shim
engine if required.

10. Detect if this application is protected by SecuROM, SafeDisc, and other kinds of wrapper or
protection utilities that could have issues with DEP (and reconfigure DEP settings in those
cases).

11. Run the initializers for all the loaded modules.

12. Run the post-initialization Shim Engine callback if the module is being shimmed for
application compatibility.

13. Run the associated subsystem DLL post-process initialization routine registered in the PEB. For
Windows applications, this does Terminal Services—specific checks, for example.

Running the initializers is the last main step in the loader’s work. This is the step that calls the
DIIMain routine for each DLL (allowing each DLL to perform its own initialization work, which might
even include loading new DLLs at run time) as well as processes the TLS initializers of each DLL. This
is one of the last steps in which loading an application can fail. If all the loaded DLLs do not return a
successful return code after finishing their DIIMain routines, the loader aborts starting the application.
As a very last step, the loader calls the TLS initializer of the actual application.

SwitchBack

As each new version of Windows fixes bugs such as race conditions and incorrect parameter
validation checks in existing API functions, an application-compatibility risk is created for each
change, no matter how minor. Windows makes use of a technology called SwitchBack, implemented
in the loader, which enables software developers to embed a GUID specific to the Windows version
they are targeting in their executable’s associated manifest. For example, if a developer wants to take
advantage of improvements added in Windows 7 to a given API, she would include the Windows 7
GUID in her manifest, while if a developer has a legacy application that depends on Windows Vista—
specific behavior, she would put the Windows Vista GUID in the manifest instead. SwitchBack parses
this information and correlates it with embedded information in SwitchBack-compatible DLLs (in the
.sb_data image section) to decide which version of an affected API should be called by the module.
Because SwitchBack works at the loaded-module level, it enables a process to have both legacy and
current DLLs concurrently calling the same API, yet observing different results.

Windows currently defines two GUIDs that represent either Windows Vista or Windows 7
compatibility settings:

m {e2011457-1546-43c5-a5fe-008deee3d3f0} for Windows Vista
® {35138b9a-5d96-4fbd-8e2d-a2440225f93a} for Windows 7

These GUIDs must be present in the application’s manifest file under the SupportedOS ID present
in a compatibility attribute entry. (If the application manifest does not contain a GUID, Windows

244 Windows Internals, Sixth Edition, Part 1

Vista is chosen as the default compatibility mode.) Running under the Windows 7 context affects the
following components:

m RPC components use the Windows thread pool instead of a private implementation.
m DirectDraw Lock cannot be acquired on the primary buffer.

m Blitting on the desktop is not allowed without a clipping window.

®m Arace condition in GetOverlappedResult is fixed.

Whenever a Windows API is affected by changes that might break compatibility, the function'’s
entry code calls the ShSwitchProcedure to invoke the SwitchBack logic. It passes along a pointer to
the SwitchBack Module Table, which contains information about the SwitchBack mechanisms em-
ployed in the module. The table also contains a pointer to an array of entries for each SwitchBack
point. This table contains a description of each branch-point that identifies it with a symbolic name
and a comprehensive description, along with an associated mitigation tag. Typically, there will be
two branch-points in a module, one for Windows Vista behavior, and one for Windows 7 behavior.
For each branch-point, the required SwitchBack context is given—it is this context that determines
which of the two (or more) branches is taken at runtime. Finally, each of these descriptors contains a
function pointer to the actual code that each branch should execute. If the application is running with
the Windows 7 GUID, this will be part of its SwitchBack context, and the SbSelectProcedure API, upon
parsing the module table, will perform a match operation. It finds the module entry descriptor for the
context and proceeds to call the function pointer included in the descriptor.

SwitchBack uses ETW to trace the selection of given SwitchBack contexts and branch-points and
feeds the data into the Windows AIT (Application Impact Telemetry) logger. This data can be peri-
odically collected by Microsoft to determine the extent to which each compatibility entry is being
used, identify the applications using it (a full stack trace is provided in the log), and notify third-party
vendors.

As mentioned, the compatibility level of the application is stored in its manifest. At load time, the
loader parses the manifest file, creates a context data structure, and caches it in the pContextData
member of the process environment block. (For more information on the PEB, see Chapter 5.) This
context data contains the associated compatibility GUIDs that this process is executing under and
determines which version of the branch-points in the called APIs that employ SwitchBack will be
executed.

API Sets

While SwitchBack uses API redirection for specific application-compatibility scenarios, there is a

much more pervasive redirection mechanism used in Windows for all applications, called AP/ Sets. Its
purpose is to enable fine-grained categorization of Windows APIs into sub-DLLs instead of having
large multipurpose DLLs that span nearly thousands of APIs that might not be needed on all types of
Windows systems today and in the future. This technology, developed mainly to support the refactor-
ing of the bottom-most layers of the Windows architecture to separate it from higher layers, goes

System Mechanisms 245

hand in hand with the breakdown of Kernel32.dIl and Advapi32.dll (among others) into multiple,
virtual DLL files.

For example, the following graphic shows that Kernel32.dll, which is a core Windows library,
imports from many other DLLs, beginning with API-MS-WIN. Each of these DLLs contain a small
subset of the APIs that Kernel32 normally provides, but together they make up the entire API surface
exposed by Kernel32.dll. The CORE-STRING library, for instance, provides only the Windows base
string functions.

In splitting functions across discrete files, two objectives are achieved: first, doing this allows future
applications to link only with the API libraries that provide the functionality that they need, and
second, if Microsoft were to create a version of Windows that did not support, for example, Localiza-
tion (say a non-user-facing, English-only embedded system), it would be possible to simply remove
the sub-DLL and modify the API Set schema. This would result in a smaller Kernel32 binary, and any
applications that ran without requiring localization would still run.

With this technology, a “base” Windows system called “MinWin" is defined (and, at the source level,
built), with a minimum set of services that includes the kernel, core drivers (including file systems,
basic system processes such as CSRSS and the Service Control Manager, and a handful of Windows
services). Windows Embedded, with its Platform Builder, provides what might seem to be a similar
technology, as system builders are able to remove select “Windows components,” such as the shell, or
the network stack. However, removing components from Windows leaves dangling dependencies—
code paths that, if exercised, would fail because they depend on the removed components. MinWin's
dependencies, on the other hand, are entirely self-contained.

: Dependency Walker - [kernel32.dll] - |EI|1|
B File Edit Wiew Options Profile ‘Window Help _|ﬁ||1|
2 N ek |
= S R =l
= [Z1§ KERMEL32.DLL FI Ordinal ~ Hink Function Entry Poink
- % API-MS-WIN-CORE-RTLSUPPORT-LL-1-0.0LL =R 0{0x0000) | ComparestringEx 0x000007FF388C60860
- [Z18 NTDLL.DLL B3 |nja 1{0%0001) | CompareStringCrdinal | 0x000007FF38886E50
- [1§ KERMELBASE.DLL Bl |mja 2 (00002 | Comparestring' 0x000007FF 38882480
....... 1% API-MS-WIN-CORE-PROCESSTHREADS-L1-1-0.DLL B3 | ma 3 (0x0003) | FoldString'w 0x000007FF38869700
1% API-MS-WIN-CORE-HEAP-L1-1-0.DLL B3 |nia 4 (0x0004) | GetStringTypeExW 0x000007FF38853090
- % API-MS-WIN-CORE-MEMORY-L1-1-0,DLL ED |nia 5{0x0005) | GetStringTypeiy 0x000007FF35885EED
. 8 API-MS-WIN-CORE-HANDLE-L1-1-0.0LL Bl | njn 6 (00008 | MultiBvteTowideChar | 0x000007FF33582080
. I8 APT-MS-WIN-CORE-SYMCH-L1-1-0.0LL B3 [nia 7 (0x0007) | WideCharToMultiByte | 0x000007FF38851070
- [§ API-MS-WIN-CORE-FILE-L1-1-0.DLL
- % API-MS-WIN-CORE-IO-L1-1-0.DLL
------- (21§ API-M5-WIN-CORE-THREADPOOL-L1-1-0.DLL
(1§ API-MS-WIN-CORE-LIBRAR YLOADER-L1-1-0.0LL
+ I8 APLHIS-WIN CORE-NAVEDPIPE-L1-1-0.0LL E__ | ordinal Hirit Furiction ™ Entry Paint
- % API-MS-WIN-CORE-MISC-L1-1-0.0LL
_______ EE APT-MS-WIN-CORE-SYSTMFO-L1-1-0.0LL €0 |1 (0x0001) | 0(0x0000) | CompareStringEx 000001060
6) €0 | 2(0x0002) | 1 (0x0001) | CompareStringCrdinal | 0x00001060
BPT-MS-WIN-CORE-LOCALIZATION-L1-1-0.0LL
E: 0 | 3(0x0003) | 2 (0x0002) | CompareString' 0x00001060
- [0 APL-15-WIN-CORE-PROCESSENYIRONMENT-L1-1-0.DLL B0 |4 (000047 | 3 (0e0003) | FoldString 0x00001060
....... & LPT-MS-WIN- g L1-1-
EI: GRLRE W ORE o TRTNG, Dl DD B0 | 5(0%0005) | 4 (0x0004) | GetStringTypeExt | 000001060
EI: APL-MS-WIN-CORE-DEBUG-L1-1-0.DLL B |6 (0x0006) | 5 (0x0005) | GetStringType'w 000001060
i El: API-MS-WIN-CORE-ERRORHANDLING-L1-1-0.DLL &0 | 7 (0x0007) | 6 (0x0006) | MultiByteTowideChar | 0x00001060
- [§ API-MS-WIN-CORE-FIBERS-L1-1-0.0LL B0 | & (0x0008) | 7 (0x0007) | WideCharToMultiByte | 000001060
------- 1% API-MS-WIN-CORE-UTIL-L1-1-0.DLL
------- (1§ API-MS-WIN-CORE-PROFILE-L1-1-0.0LL
------- (1§ API-MS-WIN-SECURITY-BASE-L1-1-0.0LL
For Help, press F1 v

246 Windows Internals, Sixth Edition, Part 1

When the process manager initializes, it calls the PsplnitializeApiSetMap function, which is respon-
sible for creating a section object (using a standard section object) of the API Set redirection table,
which is stored in %SystemRoot%\System32\ApiSetSchema.dll. The DLL contains no executable code,
but it has a section called .apiset that contains API Set mapping data that maps virtual API Set DLLs
to logical DLLs that implement the APIs. Whenever a new process starts, the process manager maps
the section object into the process’ address space and sets the ApiSetMap field in the process’ PEB to
point to the base address where the section object was mapped.

In turn, the loader’s LdrpApplyFileNameRedirection function, which is normally responsible for the
Jlocal and SxS/Fusion manifest redirection that was mentioned earlier, also checks for API Set redirec-
tion data whenever a new import library that has a name starting with "API-" loads (either dynamically
or statically). The API Set table is organized by library with each entry describing in which logical DLL
the function can be found, and that DLL is what gets loaded. Although the schema data is a binary
format, you can dump its strings with the Sysinternals Strings tool to see which DLLs are currently
defined:

C:\Windows\System32>strings apisetschema.dll

MS-Win-Core-Console-L1-1-0
kerne132.d11MS-Win-Core-DateTime-L1-1-0
MS-Win-Core-Debug-L1-1-0
kernelbase.d11MS-Win-Core-DelayLoad-L1-1-0
MS-Win-Core-ErrorHandling-L1-1-0
MS-Win-Core-Fibers-L1-1-0
MS-Win-Core-File-L1-1-0
MS-Win-Core-Handle-L1-1-0
MS-Win-Core-Heap-L1-1-0
MS-Win-Core-Interlocked-L1-1-0
MS-Win-Core-IO-L1-1-0
MS-Win-Core-LibrarylLoader-L1-1-0
MS-Win-Core-Localization-L1-1-0
MS-Win-Core-LocalRegistry-L1-1-0
MS-Win-Core-Memory-L1-1-0
MS-Win-Core-Misc-L1-1-0
MS-Win-Core-NamedPipe-L1-1-0
MS-Win-Core-ProcessEnvironment-L1-1-0
MS-Win-Core-ProcessThreads-L1-1-0
MS-Win-Core-Profile-L1-1-0
MS-Win-Core-Rt1Support-L1-1-0
ntd11.d11

MS-Win-Core-String-L1-1-0

System Mechanisms 247

Hypervisor (Hyper-V)

One of the key technologies in the software industry—used by system administrators, developers,
and testers alike—is called virtualization, and it refers to the ability to run multiple operating systems
simultaneously on the same physical machine. One operating system, in which the virtualization soft-
ware is executing, is called the host, while the other operating systems are running as guests inside the
virtualization software. The usage scenarios for this model cover everything from being able to test
an application on different platforms to having fully virtual servers all actually running as part of the
same machine and managed through one central point.

Until recently, all the virtualization was done by the software itself, sometimes assisted by
hardware-level virtualization technology (called host-based virtualization). Thanks to hardware
virtualization, the CPU can do most of the notifications required for trapping instructions and virtual-
izing access to memory. These notifications, as well as the various configuration steps required for
allowing guest operating systems to run concurrently, must be handled by a piece of infrastructure
compatible with the CPU'’s virtualization support. Instead of relying on a piece of separate software
running inside a host operating system to perform these tasks, a thin piece of low-level system
software, which uses strictly hardware-assisted virtualization support, can be used—a hypervisor.
Figure 3-33 shows a simple architectural overview of these two kinds of systems.

Hosted virtualization Hypervisor virtualization
Guest 1 Guest 2 Guest 1 Guest 2
Host OS VMM* VMM**
Hardware Hardware
* Represents software product such as Virtual PC ** This VMM is the hypervisor.

FIGURE 3-33 Two architectures for virtualization

With Hyper-V, Windows server computers can install support for hypervisor-based virtualization as
a server role (as long as an edition with Hyper-V support is licensed). Because the hypervisor is part of
the operating system, managing the guests inside it, as well as interacting with them, is fully integrat-
ed in the operating system through standard management mechanisms such as WMI and services.
(See Chapter 4 for more information on these topics.)

Finally, apart from having a hypervisor that allows running other guests managed by a Windows
Server host, both client and server editions of Windows also ship with enlightenments, which are spe-
cial optimizations in the kernel and possibly device drivers that detect that the code is being run as
a guest under a hypervisor and perform certain tasks differently, or more efficiently, considering this
environment. We will look at some of these improvements later; for now, we'll take a look at the basic
architecture of the Windows virtualization stack, shown in Figure 3-34.

248 Windows Internals, Sixth Edition, Part 1

VM worker | |
processes

Applications Applications Applications Applications
WMI provider
Windows Windows Non- Xen-enabled
Server 2008 Server 2003, 2008 hypervisor-aware Linux kernel
Windows| | vsp Windows Linux VSC
kernel kernel
VSC
Emulation VMBus
IHV
VMBus | | drivers VMBus Hypercall adapter

Windows hypervisor

"Designed for Windows" server hardware

FIGURE 3-34 Windows Hyper-V architectural stack

Partitions

One of the key architectural components behind the Windows hypervisor is the concept of a partition.
A partition essentially references an instance of an operating system installation, which can refer
either to what's traditionally called the host or to the guest. Under the Windows hypervisor model,
these two terms are not used; instead, we talk of either a parent partition or a child partition, respec-
tively. Consequently, at a minimum, a Hyper-V system will have a parent partition, which is recom-
mended to contain a Windows Server Core installation, as well as the virtualization stack and its
associated components. Although this installation type is recommended because it allows minimiz-
ing patches and reducing the security surface area, resulting in increased availability of the server, a
full installation is also supported. Each operating system running within the virtualized environment
represents a child partition, which might contain certain additional tools that optimize access to the
hardware or allow management of the operating system.

Parent Partition

One of the main goals behind the design of the Windows hypervisor was to have it as small and
modular as possible, much like a microkernel, instead of providing a full, monolithic module. This
means that most of the virtualization work is actually done by a separate virtualization stack and that
there are also no hypervisor drivers. In lieu of these, the hypervisor uses the existing Windows driver
architecture and talks to actual Windows device drivers. This architecture results in several compo-
nents that provide and manage this behavior, which are collectively called the hypervisor stack.

System Mechanisms 249

Logically, it is the parent partition that is responsible for providing the hypervisor, as well as the
entire hypervisor stack. Because these are Microsoft components, only a Windows machine can be a
root partition, naturally. A parent partition should have almost no resource usage for itself because its
role is to run other operating systems. The main components that the parent partition provides are
shown in Figure 3-35.

Virtualization stack
WMI provider VM worker
User mode
Kernel mode
Server core Virtualization
service
. providers
Windows
kernel (VSPs)
Device
drivers

FIGURE 3-35 Components of a parent partition

Parent Partition Operating System

The Windows installation (typically the minimal footprint server installation, called Windows Server
Core, to minimize resource usage) is responsible for providing the hypervisor and the device drivers
for the hardware on the system (which the hypervisor will need to access), as well as for running the
hypervisor stack. It is also the management point for all the child partitions.

Virtual Machine Manager Service and Worker Processes

The virtual machine management service (%SystemRoot%\System32\Vmmes.exe) is responsible for
providing the Windows Management Instrumentation (WMI) interface to the hypervisor, which allows
managing the child partitions through a Microsoft Management Console (MMC) plug-in. It is also
responsible for communicating requests to applications that need to communicate to the hypervisor
or to child partitions. It controls settings such as which devices are visible to child partitions, how the
memory and processor allocation for each partition is defined, and more.

The virtual machine worker processes (VMWPs), on the other hand, perform various virtualization
work that a typical monolithic hypervisor would perform (similar to the work of a software-based
virtualization solution). This means managing the state machine for a given child partition (to allow
support for features such as snapshots and state transitions), responding to various notifications com-
ing in from the hypervisor, performing the emulation of certain devices exposed to child partitions,
and collaborating with the VM service and configuration component.

250 Windows Internals, Sixth Edition, Part 1

On a system with child partitions performing lots of I/O or privileged operations, you would
expect most of the CPU usage to be visible in the parent partition: you can identify them by the name
Vmwp.exe (one for each child partition). The worker process also includes components responsible
for remote management of the virtualization stack, as well as an RDP component that allows using
the remote desktop client to connect to any child partition and remotely view its user interface and
interact with it.

Virtualization Service Providers

Virtualization service providers (VSPs) are responsible for the high-speed emulation of certain devices
visible to child partitions (the exact difference between VSP-emulated devices and user-mode-
process-emulated devices will be explained later), and unlike the VM service and processes, VSPs can
also run in kernel mode as drivers. More detail on VSPs will follow in the section that describes device
architecture in the virtualization stack.

VM Infrastructure Driver and Hypervisor API Library

Because the hypervisor cannot be directly accessed by user-mode applications, such as the VM
service that is responsible for management, the virtualization stack must actually talk to a driver in
kernel mode that is responsible for relaying the requests to the hypervisor. This is the job of the VM
infrastructure driver (VID). The VID also provides support for certain low-memory memory devices,
such as MMIO and ROM emulation.

A library located in kernel mode provides the actual interface to the hypervisor (called hypercalls).
Messages can also come from child partitions (which will perform their own hypercalls), because there
is only one hypervisor for the whole system and it can listen to messages coming from any partition.
You can find this functionality in the Winhv.sys device driver.

Hypervisor

At the bottom of the architecture is the hypervisor itself, which registers itself with the processor at
system boot-up time and provides its services for the stack to use (through the use of the hypercall
interface). This early initialization is performed by the hvboot.sys driver, which is configured to start
early on during a system boot. Because Intel and AMD processors have slightly differing implementa-
tions of hardware-assisted virtualization, there are actually two different hypervisors—the correct one
is selected at boot-up time by querying the processor through CPUID instructions. On Intel systems,
the Hvix64.exe binary is loaded, while on AMD systems, the Hvax64.exe image is used.

Child Partitions

The child partition, as discussed earlier, is an instance of any operating system running parallel to the
parent partition. (Because you can save or pause the state of any child, it might not necessarily be
running, but there will be a worker process for it.) Unlike the parent partition, which has full access
to the APIC, I/O ports, and physical memory, child partitions are limited for security and manage-
ment reasons to their own view of address space (the Guest Virtual Address Space, or GVA, which is

System Mechanisms 251

managed by the hypervisor) and have no direct access to hardware. In terms of hypervisor access, it
is also limited mainly to notifications and state changes. For example, a child partition doesn't have
control over other partitions (and can't create new ones).

Child partitions have many fewer virtualization components than a parent partition because they
are not responsible for running the virtualization stack—only for communicating with it. Also, these
components can also be considered optional because they enhance performance of the environment
but are not critical to its use. Figure 3-36 shows the components present in a typical Windows child

partition.
Guest applications
User mode
Kernel mode
Virtualization Windows

service kernel
clients

(VSCs) i

Enlightenments

FIGURE 3-36 Components in a child partition

J EXPERIMENT: Examining Child Partitions from the Parent with LiveKd

With Sysinternals LiveKd, you can examine a Windows XP or higher virtual machine from the
parent partition without having to boot the child operating system in debugging mode. First,
specify the —hv/ option to LiveKd, which has it list the IDs and names of active child partitions:

C:\>Tivekd -hvl

LiveKd v5.0 - Execute kd/windbg on a Tive system
Sysinternals - www.sysinternals.com
Copyright (C) 2000-2010 Mark Russinovich and Ken Johnson

Partition GUID Name
C8FAS20B-CBBC-48CE-84EC-14BC2B2C3A74 Win7x64

C:\>

Then run LiveKd with the —hv switch and specify the ID or name of the child partition that
you want to examine. Just as for debugging the local system with Livekd, the contents of the
virtual machine’s memory can change as you execute LiveKd commands, resulting in LiveKd

252 Windows Internals, Sixth Edition, Part 1

seeing inconsistencies caused by data reflecting different points in time. If you want LiveKd to
see a consistent view, you can specify the —p option to have the child partition paused while
LiveKd is running. All commands that work on a local system also work when you use LiveKd
to explore a virtual machine. Here's the partial output of the /vm kernel debugger command,
which lists various memory-related statistics, when executed on a Hyper-V child partition:

C:\>Tivekd -hv win7x64

LiveKd v5.0 - Execute kd/windbg on a Tive system
Sysinternals - www.sysinternals.com
Copyright (C) 2000-2010 Mark Russinovich and Ken Johnson

Launching C:\program files\Debugging Tools for Windows (x64)\kd.exe:

Microsoft (R) Windows Debugger Vversion 6.13.0002.895 AMD64
Copyright (c) Microsoft Corporation. Al1l rights reserved.

Loading Dump File [C:\Windows\11ivekd.dmp]
Kernel Complete Dump File: Full address space is available

Comment: 'LiveKD live system view Chypervisor partition)'

Symbol search path is: srv*c:\Symbols*http://msdl.microsoft.com/download/symbols
Executable search path is:

Windows 7 Kernel Version 7600 MP (2 procs) Free x64

Product: WinNt, suite: TerminalServer SingleUserTS

Built by: 7600.16617.amd64fre.win7_gdr.100618-1621

Machine Name:

Kernel base = Oxfffff800 02a06000 PsLoadedModuleList = Oxfffff800 02c43e50
Debug session time: Sat Feb 12 19:34:57.897 17420 (UTC - 7:00)

System Uptime: 3 days 7:14:55.312

Loading Kernel Symbols

Loading User Symbols

Loading unloaded module 1ist

6; ka; I'vm

#** yirtual Memory Usage ***
Physical Memory: 513422 (2053688 Kb)
Page File: \??\C:\pagefile.sys
Current: 1048576 Kb Free Space: 792480 Kb
Minimum: 1048576 Kb Maximum: 4194304 Kb
Available Pages: 101260 (405040 Kb)
ResAvail Pages: 167196 (668784 Kb)
Locked IO Pages: 0 ¢ 0 Kb)
Free System 33533587 (134134348 Kb)

Virtualization Service Clients

Virtualization service clients (VSCs) are the child partition analogues of VSPs. Like VSPs, VSCs are used
for device emulation, which is a topic of later discussion.

Enlightenments

Enlightenments are one of the key performance optimizations that Windows virtualization takes
advantage of. They are direct modifications to the standard Windows kernel code that can detect that
this operating system is running in a child partition and perform work differently. Usually, these opti-
mizations are highly hardware-specific and result in a hypercall to notify the hypervisor. An example

System Mechanisms 253

is notifying the hypervisor of a long busy-wait spin loop. The hypervisor can keep some state stale in
this scenario instead of keeping track of the state at every single loop instruction. Entering and exiting
an interrupt state can also be coordinated with the hypervisor, as well as access to the APIC, which
can be enlightened to avoid trapping the real access and then virtualizing it.

Another example has to do with memory management, specifically TLB flushing and changing
address space. (See Chapter 9 for more information on these concepts.) Usually, the operating system
executes a CPU instruction to flush this information, which affects the entire processor. However,
because a child partition could be sharing a CPU with many other child partitions, such an operation
would also flush this information for those operating systems, resulting in noticeable performance
degradation. If Windows is running under a hypervisor, it instead issues a hypercall to have the
hypervisor flush only the specific information belonging to the child partition.

Hardware Emulation and Support

A virtualization solution must also provide optimized access to devices. Unfortunately, most de-
vices aren't made to accept multiple requests coming in from different operating systems. The
hypervisor steps in by providing the same level of synchronization where possible and by emulating
certain devices when real access to hardware cannot be permitted. In addition to devices, memory
and processors must also be virtualized. Table 3-26 describes the three types of hardware that the
hypervisor must manage.

TABLE 3-26 Virtualized Hardware

Component Managed By Usage

Processor Hypervisor built-in scheduler and | Manage usage of hardware’s processing power, share
related microkernel components | multiple processors across multiple child partitions,
manage and switch processor states (such as registers).

Memory Hypervisor built-in memory Manage hardware's RAM usage and availability. Protect
manager and related microkernel | memory from child partitions and parent partition.
components Provide a contiguous view of physical memory starting

at address 0.

Devices VM worker processes—hypervisor | Provide hardware multiplexing so that multiple child
responsible only for interception | partitions can access the same device on the physical
and notification machine. Optimize access to physical devices to be as

fast as possible.

Instead of exposing actual hardware to child partitions, the hypervisor exposes virtual devices
(called VDevs). VDevs are packaged as COM components that run inside a VM worker process, and
they are the central manageable object behind the device. (Usually, VDevs expose a WMI interface.)
The Windows virtualization stack provides support for two kinds of virtual devices: emulated devices
and synthetic devices (also called enlightened I/0O). The former provide support for various devices that
the operating systems on the child partition would expect to find, while the latter requires specific
support from the guest operating system. On the other hand, synthetic devices provide a significant
performance benefit by reducing CPU overhead.

254 Windows Internals, Sixth Edition, Part 1

Emulated Devices

Emulated devices work by presenting the child partition with a set of I/O ports, memory ranges, and
interrupts that are being controlled and monitored by the hypervisor. When access to these resources
is detected, the VM worker process eventually gets notified through the virtualization stack (shown
earlier in Figure 3-34). The process then emulates whatever action is expected from the device and
completes the request, going back through the hypervisor and then to the child partition. From

this topological view alone, one can see that there is a definite loss in performance, without even
considering that the software emulation of a hardware device is usually slow.

The need for emulated devices comes from the fact that the hypervisor needs to support
nonhypervisor-aware operating systems, as well as the early installation steps of even Windows itself.
During the boot process, the installer can't simply load all the child partition’s required components
(such as VSCs) to use synthetic devices, so a Windows installation will always use emulated devices
(which is why installation will seem very slow, but once installed the operating system will run quite
close to native speed). Emulated devices are also used for hardware that doesn’t require high-speed
emulation and for which software emulation might even be faster. This includes items such as COM
(serial) ports, parallel ports, or the motherboard itself.

Note Hyper-V emulates an Intel i440BX motherboard, an S3 Trio video card, and an Intel
21140 NIC.

Synthetic Devices

Although emulated devices work adequately for 10-Mbit network connections, low-resolution VGA
displays, and 16-bit sound cards, the operating systems and hardware that child partitions usually
require in today’s usage scenarios require a lot more processing power, such as support for 1000-
Mbit GbE connections; full-color, high-resolution 3D support; and high-speed access to storage
devices. To support this kind of virtualized hardware access at an acceptable CPU usage level and
virtualized throughput, the virtualization stack uses a variety of components to optimize device 1/Os
to their fullest (similar to kernel enlightenments). Three components are part of this support, and they
all belong to what'’s presented to the user as integration components or ICs:

m Virtualization service providers (VSPs)
m Virtualization service clients/consumers (VSCs)
= VMBus

Figure 3-37 shows a diagram of how an enlightened, or synthetic storage 1/O, is handled by the
virtualization stack.

System Mechanisms 255

Parent partition E Child partitions
i
1
VM worker process ! Applications
1
User mode H
................................. e ————
Kernel mode E | Windows file system |
1 |
i Volume
: I |
H I
- Virtualization service E | Partition |
| Disk I— provider (VSP) | | I
: | Disk |
i I
i —I Fast path filter (VSC) |
StorPort H T
StorPort 1 [
miniport i)
: Virtualization service | iSCSlprt
! client (VSC)
: I
VMBus
________________________________ S g g
Windows hypervisor
Hardware

FIGURE 3-37 1/O handling paths in Hyper-V

As shown in Figure 3-37, VSPs run in the parent partition, where they are associated with a specific
device that they are responsible for enlightening. (We'll use that as a term instead of emulating when
referring to synthetic devices.) VSCs reside in the child partition and are also associated with a specific
device. Note, however, that the term provider can refer to multiple components spread across the
device stack. For example, a VSP can be any of the following:

m A user-mode service
m A user-mode COM component
m A kernel-mode driver

In all three cases, the VSP will be associated with the actual virtual device inside the VM worker
process. VSCs, on the other hand, are almost always designed to be drivers sitting at the lowest level
of the device stack (see Chapter 8 in Part 2 for more information on device stacks) and intercept 1/Os
to a device and redirect them through a more optimized path. The main optimization that is per-
formed by this model is to avoid actual hardware access and use VMBus instead. Under this model,
the hypervisor is unaware of the /0O, and the VSP redirects it directly to the parent partition’s kernel

256 Windows Internals, Sixth Edition, Part 1

storage stack, avoiding a trip to user mode as well. Other VSPs can perform work directly on the
device, by talking to the actual hardware and bypassing any driver that might have been loaded on
the parent partition. Another option is to have a user-mode VSP, which can make sense when dealing
with lower-bandwidth devices.

As described earlier, VMBus is the name of the bus transport used to optimize device access by
implementing a communications protocol using hypervisor services. VMBus is a bus driver present
on both the parent partition and the child partitions responsible for the Plug and Play enumeration
of synthetic devices in a child. It also contains the optimized cross-partition messaging protocol that
uses a transport method that is appropriate for the data size. One of these methods is to provide a
shared ring buffer between each partition—essentially an area of memory on which a certain amount
of data is loaded on one side and unloaded on the other side. No memory needs to be allocated
or freed because the buffer is continuously reused and simply rotated. Eventually, it might become
full with requests, which would mean that newer 1/0Os would overwrite older 1/Os. In this uncom-
mon scenario, VMBus simply delays newer requests until older ones complete. The other messaging
transport is direct child memory mapping to the parent address space for large enough transfers.

Virtual Processors

Just as the hypervisor doesn't allow direct access to hardware (or to memory, as you'll see later), child
partitions don't really see the actual processors on the machine but have a virtualized view of CPUs
as well. On the root machine, the administrator and the operating system deal with logical processors,
which are the actual processors on which threads can run (for example, a dual quad-core machine
has eight logical processors), and assign these processors to various child partitions. For example, one
child partition could be scheduled on logical processors 1, 2, 3, and 4, while the second child partition
is scheduled on processors 5, 6, 7, and 8. These operations are all made possible through the use of
virtual processors, or VPs.

Because processors can be shared across multiple child partitions, the hypervisor includes its own
scheduler that distributes the workload of the various partitions across each processor. Additionally,
the hypervisor maintains the register state for each virtual processor and to an appropriate “processor
switch” when the same logical processor is being used by another child partition. The parent parti-
tion has the ability to access all these contexts and modify them as required, an essential part of the
virtualization stack that must respond to certain instructions and perform actions.

The hypervisor is also directly responsible for virtualizing processor APICs and providing a simpler,
less-featured virtual APIC, including support for the timer that's found on most APICs (however,
at a slower rate). Because not all operating systems support APICs, the hypervisor also allows for
the injection of interrupts through a hypercall, which permits the virtualization stack to emulate a
standard i8059 PIC.

Finally, because Windows supports dynamic processor addition, an administrator can add new
processors to a child partition at run time to increase the responsiveness of the guest operating
systems if it's under heavy load.

System Mechanisms 257

Memory Virtualization

The final piece of hardware that must be abstracted away from child partitions is memory, not only
for the normal behavior of the guest operating systems, but also for security and stability. Improperly
managing the child partitions’ access to memory could result in privacy disclosures and data corrup-
tion, as well as possible malicious attacks by “escaping” the child partition and attacking the parent
(which would then allow attacks on the other child partitions). Apart from this aspect, there is also the
matter of the guest operating system'’s view of physical address space. Almost all operating systems
expect memory to begin at address 0 and be somewhat contiguous, so simply assigning chunks of
physical memory to each child partition wouldn't work even if enough memory was available on the
system.

To solve this problem, the hypervisor implements an address space called the guest physical
address space (GPA space). The GPA starts at address 0, which satisfies the needs of operating systems
inside child partitions. However, the GPA is not a simple mapping to a chunk of physical memory
because of the second problem (the lack of contiguous memory). As such, GPAs can point to any
location in the machine’s physical memory (which is called the system physical address space, or
SPA space), and there must be a translation system to go from one address type to another. This
translation system is maintained by the hypervisor and is nearly identical to the way virtual memory
is mapped to physical memory on x86 and x64 processors. (See Chapter 10 in Part 2 for more
information on the memory manager and address translation.)

As for actual virtual addresses in the child partition (which are called guest virtual address space—
GVA space), these continue to be managed by the operating system without any change in behavior.
What the operating system believes are real physical addresses in its own page tables are actually
SPAs. Figure 3-38 shows an overview of the mapping between each level.

0x41404

NtWriteFile —-0x80841404

0x910B4

N/

NV

GVAs GPAs SPAs

FIGURE 3-38 Guest virtual and physical address translation

This means that when a guest operating system boots up and creates the page tables to map
virtual to physical memory, the hypervisor intercepts SPAs and keeps its own copy of the page tables.
Conceptually, whenever a piece of code accesses a virtual address inside a guest operating system,
the hypervisor does the initial page table translation to go from the guest virtual address to the GPA
and then maps that GPA to the respective SPA. In reality, this operation is optimized through the use
of shadow page tables (SPTs), which the hypervisor maintains to have direct GVA-to-SPA translations
and simply loads when appropriate so that the guest accesses the SPA directly.

258 Windows Internals, Sixth Edition, Part 1

Second-Level Address Translation and Tagged TLB

Because the translation from GVA to GPA to SPA is expensive (because it must be done in
software), CPU manufacturers have worked to curtail this inefficiency by making the processor
natively aware of the address translation requirements of a virtual machine—in other words,
an advanced processor could understand that the memory access is occurring from a hosted
virtual machine and perform the GVA-to-SPA lookup on its own, without requiring assistance
from the hypervisor. This lookup technology is called Second-Level Address Translation (SLAT)
because it covers both the target-to-host translation (second level) and the host VA-to—host
PA translation (first level). For marketing purposes, however, Intel has called this support VT
Extended/Nested Page Table (NPT) technology, while AMD calls it AMD-V Rapid Virtualization
Indexing (RVI).

The latest version of the Hyper-V stack takes full advantage of this processor support,
reducing the complexity of its code and minimizing the number of context switches required
to handle page faults in hosted partitions. Additionally, SLAT enables Hyper-V to throw out its
shadow page tables and relevant mappings, which allows an additional reduction of memory
overhead as well. These changes increase the scalability of Hyper-V on such systems, notably
leading to an increase in the maximum number of virtual machines that a single host (Hyper-V
server) can serve, or run concurrently. According to tests performed by Microsoft, support for
SLAT increases the maximum number of supported sessions between 1.6 and 2.5 times. Fur-
thermore, the processor overhead drops from about 10 percent to 2 percent, and each virtual
machine consumes one less megabyte of physical RAM on the host.

In addition, both Intel and AMD introduced a functionality that was typically found only on
RISC processors such as ARM, MIPS, or PPC, which is the ability of the processor to differentiate
between the processes associated with each cached virtual-to-physical translation entry in the
translation look-aside buffer (TLB). On CISC processors such as the x86 and x64, the TLB was
built as a systemwide resource—each time the operating system switched the currently execut-
ing process, the TLB had to be flushed to invalidate any cached entries that might've belonged
to the previous executing process. If the processor, instead, could be told that the process has
changed, the TLB would avoid a flush and the processor would simply not use the cached en-
tries that did not correspond to this process. New entries would be created, eventually overrid-
ing other processes’ older entries. This type of smarter TLB is called a tagged TLB, because each
cache entry is tagged with a per-process identifier.

Flushing the TLB is even worse when dealing with Hyper-V systems because a different
process can actually correspond to a completely different VM. In other words, each time the
hypervisor and operating system scheduled another VM for execution, the host's TLB had to
be flushed, flushing away all the cached translations the previous VM had performed, slow-
ing down memory access, and causing significant latency. When running on a processor that
implements a tagged TLB, the Hyper-V can simply notify the processor that a new process/VM
is running and that the entries of other VM should not be used. AMD processors with RVI sup-
port tagged TLBs through an Address Space Identifier, or ASID, while recent Intel Nehalem-EX
processors implement a tagged TLB by using a Virtual Processor Identifier (VPID).

System Mechanisms

259

Dynamic Memory

A feature called Dynamic Memory enables systems administrators to make a virtual machine’s
physical memory allocation variable based on the memory demands of the active virtual ma-
chines, in much the same way that the Windows memory manager adjusts the physical memory
assigned to each process based on their memory demands. The capability means that adminis-
trators do not have to precisely gauge the size of a virtual machine required for optimal perfor-
mance and that the system’s physical memory is more effectively used by the virtual machines
that need it.

Dynamic Memory's architecture consists of several components, shown in Figure 3-39.

Parent partition Child partition

:
1
1
1
1
VMMS VM worker process H
i Child
1 . .
Dynamic Dynamic Memory ! Applications
Memory VSP !
Balancer !
'
1
1
1
1
1
User mode :

Kernel mode

Dynamic Memory
VsC

Windows hypervisor

FIGURE 3-39 Dynamic Memory architecture

The principle components of the architecture are as follows:

= The Dynamic Memory balancer, which is implemented in the virtual machine management
service. The balancer is responsible for assigning physical memory to child partitions.

m The Dynamic Memory VSP (DM VSP), which runs in the VMWPs of child partitions that
have dynamic memory enabled.

m The Dynamic Memory VSC (DM VSC, %SystemRoot%\System32\Drivers\Dmvsc.sys),
installed as an enlightenment driver running in the child partitions.

260 Windows Internals, Sixth Edition, Part 1

To configure a VM for dynamic memory, an administrator chooses Dynamic in the VM's
memory settings as shown in Figure 3-40.

ESettings for vm (-]
Jvm -l 4 b |G
#_Hardware B® Memory
Add Hardware
W BIOS ‘You can configure options for assigning and managing memory For this virtual machine
Eioot from CD
- —Memory management
M
sl:rzn:l? Specify a sek amount of memory for this virtual machine, or let Hyper-¥ manage the
amount dynamically within the specified range.
D Processor
1 Wirtual processor - atatic
BT 1DE Controlier 0 e |—512 e
= EE IDE Controller 1 -
{4 DVD Drive & Dynamic
Mane l_
. Starkup RAM: 512 MB
2 5C31 Controller
',U,' MNetwark Adapter Maximum RAM: 65536 ME
Mot connected
7 oM Specify the percentage of memory thak Hyper- should try to reserve as a
o buffer. Hyper-V uses the percentage and the current demand For memary to
one determine an amount of memory For the buffer,
5 comz
Mone Memary buffer: 20 %
fed Diskette Drive
Hane —Memary weight
L1 Specify how to prioritize the availabiity of memary For this virtual machine
1] Mame compared to other virtual machines on this computer,
wm
I
2] Integration Services Low r High
All services offered oo e e
{&| Snapshat File Location @) Specifying a lower setting for this virtual machine might prevent it from
il ClusterStoragel Cluster_(C5%1 L. starting when other virtual machines are running and available memory is low,

¥ Automatic Start Action
Restart if previously running
i_;. Automatic Stop Action
Save

OF I Cancel Apply

FIGURE 3-40 Dynamic memory configuration dialog

The associated settings include the amount of memory that will be assigned to the VM
when it starts (Startup RAM), the maximum amount that it can be assigned (Maximum RAM),
the percentage of the VM'’s memory that should be available for immediate use by the operat-
ing system if its memory demand increases, and finally, the weight of the VM with respect to
other VMs. In addition to serving as weighting for the distribution of physical memory among
virtual machines that have dynamic memory enabled, the hypervisor also uses it as a guide for
the startup order of virtual machines configured to start when the system boots. Finally, the
available memory percentage is a reference to memory within the VM that the VM's operating
system has not assigned to a process, device drivers, or itself, and that can be assigned without
incurring a page fault. Chapter 10 in Part 2 describes available memory in more detail.

When the DM VSC starts in a child partition that has dynamic memory enabled in its
memory configuration, it first checks to see if the operating system supports dynamic memory
capabilities. It performs this check by simply calling the memory manager’s hot-add memory
function, specifying a block of child physical memory already assigned to the virtual machine.
If the memory manager supports hot add, it returns an error indicating that the address range
is already in use, and if it doesn't, it reports that the function is not supported. If dynamic

System Mechanisms

261

memory is supported, the DM VSC establishes a connection to the DM VSP via VMBus. Because
the system’s memory usage fluctuates during the boot process, after all autostart Windows
services have finished initializing, the VSC begins reporting memory statistics once per second
that indicate the current system commit level in the virtual machine. (See Chapter 10 in Part 2
for more information on system commit.)

The DM VSP in the parent partition calculates a memory pressure value for its corresponding
VM using the following calculation based on the VM’'s memory report:

Memory Pressure = Committed Memory / Physical Memory

Physical Memory refers to the amount of memory currently assigned to the VM's partition. It
also keeps a running exponential average pressure that represents the previous 20 seconds of
pressure reports, adjusting the average pressure only when the current pressure deviates from
the average by at least a standard deviation.

A component called the balancer executes in the VMMS service. Once per second, it analyzes
the memory pressures reported by the DM VSPs, considers VM policy configuration, and de-
termines if and how much memory should be redistributed. If a global Hyper-V setting called
NUMA spanning is enabled, the balancer uses two balancing engines: one engine is the global
balancer, and it is responsible for assigning new VMs to NUMA nodes. It does so based on the
memory usage and VM pressures of the nodes at the time of the assignment. Each NUMA node
has its own local balancer that manages the distribution of the node’s memory across the VMs
assigned to the node. If the NUMA spanning option is off, the global balancer has no role other
than to invoke the only local balancer for the system.

The benefit of assigning VMs to NUMA nodes is that VMs will be guaranteed the fastest
memory accesses possible. The tradeoff, however, is that it might not be possible to start or
add memory to a VM in the case where the sum of unassigned memory is sufficient but no one
node has enough available memory to accommodate the amount of memory requested.

A local balancer increases or decreases a global target memory pressure to use all available
memory under its management or to use it until a minimum pressure level is reached that
indicates all VMs have ample memory. The balancer then loops over the VMs, determining
how much memory to add or remove from each VM to reach the target pressure. During the
calculations, the balancer reserves a minimum amount of memory for the host. The host’s
reservation is a base amount of approximately 400 MB plus 30 MB for each 1 GB of RAM on
the system. Factors that can affect the amount of memory reserved include whether or not the
system is using SLAT or software paging, and whether multimedia redirection is enabled. Every
five minutes, the balancer also removes memory from VMs that have so much memory that
their pressure is essentially zero.

Note that if the child partition’s operating system is running a 32-bit version of Windows, the
dynamic memory engine will not assign the partition more than 4 GB of memory.

Once it has calculated the amounts of memory to add and remove from VMs, it asks each
WP to perform the desired operation. If the operation is to remove memory, the WP signals

262 Windows Internals, Sixth Edition, Part 1

the child DM VSC over VMBUS of the amount to remove and the DM VSC balloons its memory
usage by allocating physical memory from the system using the MmAllocatePagesForMdIEx
function. It retrieves the allocated GPAs and sends that back to the WP, which passes them to
the Hyper-V memory manager. The Hyper-V memory manager then converts the GPAs to SPAs
and adds the memory to its free memory pool.

If it's a memory add operation, the WP asks the Hyper-V memory manager first if the VM
has any physical memory assigned to it but currently allocated by the VSC's balloon. If it does,
the WP retrieves the GPAs for an amount that should be unballooned and asks the VSC to free
those pages, making them available again for use by the VM's operating system. If the amount
that can be released by unballooning falls short of the amount of physical memory the balancer
wants to give the VM, it asks the Hyper-V memory manager to give the remaining amount
from its free memory pool to the child partition via Windows support for hot-add memory and
reports the GPAs it added to the WP, which in turn relays them to the child's DM VSC.

EXPERIMENT: Watching Dynamic Memory

You can watch the behavior of Dynamic Memory by configuring Dynamic Memory for a

VM running a 64-bit Dynamic Memory-compatible operating system, such as Windows 7 or
Windows Server 2008 R2. Hyper-V exposes several Dynamic Memory-related performance
counters under Hyper-V Dynamic Memory Balancer and Dynamic Memory VM. Counters
include the amount of memory assigned to a guest, the guest operating system-visible
memory (the amount of memory it thinks it has), its current and average memory pressure, and
the amount of memory added and removed over time:

Add Counters

Available counters Added counters

Select counters from computer:

tocal cmpuzer> .

Counker Parent Inst... Computer

{Hyper:¥ Dynamic Memery VM)

Instances of selected object:

<Allinskances =
Win7=64

A Search

[] Show description [

Help] [oK] [Cancel

System Mechanisms 263

After freshly booting the virtual machine, add the Guest Visible Physical Memory and
Physical Memory counters. Set the scale to three times the current Guest Visible Physical
Memory value, which will be at least as large as the Physical Memory value. Then run the
Sysinternals Testlimit tool in the virtual machine with the following commandline:
testlimit -m 1000 -c 1

Assuming you have enough available physical memory on the system, this causes Testlimit
to allocate about 1 GB of virtual memory, raising the memory pressure in the virtual machine.
After a few seconds, you will see the guest visible and actual physical memory assigned to the
virtual machine jump to the same value. Roughly 30 seconds later, you'll see another jump
when the balancer decides that the additional memory is not enough to completely relieve the
memory pressure in the virtual machine and, because there's more memory available on the
host, gives the virtual machine some more.

10:05:15 AM 10:05:25 AM 10:05:35 AM 10:05:45 AM 10:05:55 AM 10:06:05 AM 10:06:15 AWM 10:06:20 AM

Last 2006.000 Average LE17.460 Minimum 918.000 Maximum 2,006.000 Duration L40

nt Object Computer
Hyper-V Dynamic Memor... \\MR-Z400
Hyper-V Dynamic Memar... \MR-Z400

If you terminate Testlimit, the memory levels remain constant for several minutes if there's
no memory demands from the host or other virtual machines, but eventually the balancer will
respond to the lack of memory pressure in the virtual machine by trimming memory. Note that

264 Windows Internals, Sixth Edition, Part 1

the Guest Visible Physical Memory counter remains unchanged, but the Physical Memory
counter drops back to a level near what it was before Testlimit executed:

10:1L:15 AM 10:1L:20 AM

mum 2.006.000 Duration L:40

Intercepts

We've talked about the various ways in which access to hardware, processors, and memory is
virtualized by the hypervisor and sometimes handed off to a VM worker process, but we haven't
yet talked about the mechanism that allows this to happen—intercepts. Intercepts are configurable
hooks that a parent partition can install and configure in order to respond to. These can include the
following items:

m |/O intercepts, useful for device emulation
m MSR intercepts, useful for APIC emulation and profiling

m Access to GPAs, useful for device emulation, monitoring, and profiling (Additionally, the
intercept can be fine-tuned to a specific access, such as read, write, or execute.)

m Exception intercepts such as page faults, useful for maintaining machine state and memory
emulation (for example, maintaining copy-on-write)

System Mechanisms 265

Once the hypervisor detects an event for which an intercept has been registered, it sends an
intercept message through the virtualization stack and puts the VP in a suspended state. The virtu-
alization stack (usually the worker process) must then handle the event and resume the VP (typically
with a modified register state that reflects the work performed to handle the intercept).

Live Migration

To support scenarios such as planned hardware upgrades and resource load balancing across servers,
Hyper-V includes support for migrating virtual machines between nodes of a Windows Failover
Cluster with minimal downtime. The key to Live Migration’s efficiency is that the bulk of the transfer of
the virtual machine’s memory from the source to the target occurs while the virtual machine contin-
ues to run on the source node; only when the memory transfer is complete does the virtual machine
suspend and resume operating on the target node. This small window when final virtual machine
state migrates is typically less than the default TCP timeout value, preserving open connections

from clients using services of the virtual machine and making the migration transparent from their
perspective. Figure 3-41 shows the Live Migration process.

Time —

Source
Host
Target
Host —— v A
1. Migration 2. Memory 3. State
Setup Transfer Transfer

======_\/M Running

FIGURE 3-41 Live migration transfer steps

The Live Migration process proceeds in a number of steps, shown in Figure 3-41:

1. Migration Setup The VMMS of the hosting (source) node of the virtual machine opens
a TCP connection with the destination host. It transfers the virtual machine’s configuration
information, which includes virtual hardware specifications such as the number of processors
and amount of RAM, to the destination. VMMS on the destination (target) node instantiates a
paused virtual machine matching the configuration. The VMMS on the source notifies the vir-
tual machine’s worker process that the live migration is ready to proceed and hands it the TCP
connection. Likewise, the target VMMS hands its end of the connection to the target worker
process.

2. Memory Transfer The memory transfer phase consists of several subphases:

a. The source VMWP creates a bitmap with one bit representing each page of the virtual
machine’s guest physical memory. It sets every bit to indicate that the page is dirty, which
means that the page’s current contents have not yet been sent to the target.

266 Windows Internals, Sixth Edition, Part 1

7.

b. The source VMWP registers a memory-change notification callback with the hypervisor
that sets the corresponding bit in the bitmap for each page of the virtual machine that
changes.

c. The source VMWP proceeds to walk through the dirty-page bitmap in 16-KB blocks,
clearing the dirty bits in the dirty-page bitmap for the pages in the block, reading each
dirty page’s contents via a hypervisor call, and sending the contents to the target. The
target VMWP invokes the hypervisor to inject the memory contents into the target virtual
machine’s guest physical memory.

d. When it's finished iterating over the dirty-page bitmap, the source VMWP checks to see if
any pages have been dirtied during the iteration. If not, it moves to the next phase of the
migration, but if any pages have been dirtied, it repeats the iteration. If it's iterated five
times, the virtual machine is dirtying memory faster than the worker process can send
modifications, so it proceeds to the next phase of the migration.

State Transfer The source VMWP suspends the virtual machine and makes a final iteration
through the dirty-page bitmap to send over any pages that were dirtied since the last pass.
Because the virtual machine is suspended during the transfer, no more pages will be dirtied.
Then the source worker process sends the virtual machine’s state, including the contents of
the virtual processor registers. Finally, it notifies VMMS that the migration is complete, waits
for acknowledgement, and then sends a message to the target transferring ownership of the
virtual machine. As the last migration step, the target worker process moves the virtual ma-
chine to the running state.

Another aspect of Live Migration is the transfer of ownership of the virtual machine’s files,
including its VHDs. Traditional Windows Clustering is a shared-nothing model, where each
LUN of the cluster’s storage system is owned by one node at a time. The LUN's owning node
has sole access to the LUN and any files stored on it. This model can lead to management
complexity because each virtual machine must be stored on a separate LUN and therefore a
separate volume, causing an explosion of volumes in a cluster hosting many virtual machines.
It poses an even more significant challenge for Live Migration because LUN ownership transfer
is an expensive operation, consisting of the source node flushing any modified file data to the
LUN, the source node unmounting the volumes formatted on the LUN, ownership transfer
from the source node to target node, and the target node mounting the volumes. Depending
on the number of volumes on the LUN and the amount of dirty data that needs to be written
back, the entire sequence can take tens of seconds, which would prevent Live Migration from
meeting its goal of perceived nearly-instantaneous migrations.

To address the limitations of the traditional clustering model and make Live Migration pos-
sible, Live Migration leverages a storage feature called Clustered Shared Volumes (CSV). With
CSV, one node owns the namespace of the volumes on a LUN while others can have exclusive
ownership of individual files. Exclusive ownership permits the node hosting the virtual ma-
chine to directly access the on-disk storage of the VHD file, bypassing the network file system
accesses normally required to interact with a LUN owned by another node. Only when a node
wants to create or delete files, change the size of files (for example, to extend the size of a

System Mechanisms 267

dynamic or differencing VHD), or change other file metadata such as timestamps does it need
to send a request via the SMB2 protocol to the owning node if it's not the owner.

8. The hybrid sharing model of CSV enables LUN ownership to remain unchanged during Live
Migration and enables only ownership of individual migrating virtual machine’s file to change,
avoiding the unmounts and mount operations. Also, only dirty data specific to the virtual ma-
chine files must be written before the migration, something that can typically happen concur-
rently with the memory migration. Figure 3-42 depicts the storage ownership changes during
a Live Migration. CSV's implementation is described in the “File System Filter Drivers” section
of Chapter 12, “File Systems,” in Part 2.

Source Target
Node Node
VM VM

A\N 2

LUN Owner .

VHD Owner K Pre-migration

. Post-migration

LUN

FIGURE 3-42 Clustered Shared Volumes in Live Migration

Kernel Transaction Manager

One of the more tedious aspects of software development is handling error conditions. This is
especially true if, in the course of performing a high-level operation, an application has completed
one or more subtasks that result in changes to the file system or registry. For example, an applica-
tion’s software updating service might make several registry updates, replace one of the application’s
executables, and then be denied access when it attempts to update a second executable. If the service
doesn’t want to leave the application in the resulting inconsistent state, it must track all the changes it
makes and be prepared to undo them. Testing the error-recovery code is difficult, and consequently
often skipped, so errors in the recovery code can negate the effort.

Applications can, with very little effort, gain automatic error-recovery capabilities by using a kernel
mechanism called the Kernel Transaction Manager (KTM), which provides the facilities required to
perform such transactions and enables services such as the distributed transaction coordinator (DTC)

268 Windows Internals, Sixth Edition, Part 1

in user mode to take advantage of them. Any developer who uses the appropriate APIs can take
advantage of these services as well.

KTM does more than solve large-scale issues like the one presented. Even on single-user home
computers, installing a service patch or performing a system restore are large operations that involve
both files and registry keys. Unplug an older Windows computer during such an operation, and the
chances for a successful boot are slim. Even though the NT File System (NTFS) has always had a log
file permitting the file system to guarantee atomic operations (see Chapter 12 in Part 2 for more
information on NTFS), this only means that whichever file was being written to during the process
will get fully written or fully deleted—it does not guarantee the entire update or restore operation.
Likewise, the registry has had numerous improvements over the years to deal with corruption (see
Chapter 4 for more information on the registry), but the fixes apply only at the key/value level.

As the heart of transaction support, KTM allows transactional resource managers such as NTFS and
the registry to coordinate their updates for a specific set of changes made by an application. NTFS
uses an extension to support transactions, called TxF. The registry uses a similar extension, called TxR.
These kernel-mode resource managers work with KTM to coordinate the transaction state, just as
user-mode resource managers use DTC to coordinate transaction state across multiple user-mode
resource managers. Third parties can also use KTM to implement their own resource managers.

TxF and TxR both define a new set of file system and registry APIs that are similar to existing ones,
except that they include a transaction parameter. If an application wants to create a file within a trans-
action, it first uses KTM to create the transaction, and then it passes the resulting transaction handle
to the new file creation API. Although we'll look at the registry and NTFS implementations of KTM
later, these are not its only possible uses. In fact, it provides four system objects that allow a variety of
operations to be supported. These are listed in Table 3-27.

TABLE 3-27 KTM Objects

Object Meaning Usage

Transaction Collection of data operations to Can be associated with the registry and file
be performed. Provides atomic, I/O to make those operations part of the same
consistent, isolated, and durable larger operation.
operations.

Enlistment Association between a resource Register with a transaction to receive
manager and a transaction. notifications on it. The enlistment can specify

which notifications should be generated.

Resource Manager (RM) | Container for the transactions and Provides an interface for clients to read and

the data on which they operate. write the data, typically on a database.
Transaction Manager Container of all transactions that Provides an infrastructure through which clients
(TM) are part of the associated resource | and resource managers can communicate, and

managers. As an instance of a log, provides and coordinates recovery operations

it knows about all transaction states | after a crash. Clients use the TM for transactions;

but not their data. RMs use the TM for enlistments.

System Mechanisms 269

EXPERIMENT: Listing Transaction Managers

Windows ships with a built-in tool called Ktmutil.exe that allows you to see ongoing
transactions as well as registered transaction managers on the system (and force the outcome
of ongoing transactions). In this experiment, you'll use it to display the transaction managers
typically seen on a Windows machine.

Start an elevated command prompt and type:

Ktmutil.exe tm Tist

Here's an example of output on a typical Windows system:

C:\Windows\system32>ktmutil tm Tist

TmGuid TmLogPath

{fef0dc5f-0392-11de-979f-002219dd8c25} \Device\HarddiskVolume2\$Extend\$RmMetadata\$TxfLog
\$TxfLog: :KtmLog

{fef0dc63-0392-11de-979f-002219dd8c25} \Device\HarddiskVolumel\$Extend\$RmMetadata\$TxfLog
\$TxfLog: :KtmLog

{5e68e4aa-129e-11e0-8635-806e6T6e6963} \Device\HarddiskVolume2\Windows\ServiceProfiles\
NetworkService\ntuser.dat{5e68e4a8-129e-11e0-8635-806e6f6e6963}.TM
{5e68e4ae-129e-11e0-8635-005056c00008} \Device\HarddiskVolume2\Windows\ServiceProfiles\
LocalService\ntuser.dat{5e68e4ac-129e-11e0-8635-005056c00008}.TM
{51ce23c9-0d6c-11e0-8afb-806e6f6e6963} \SystemRoot\System32\Config\TxR\{51ce23c7-0d6c-
11e0-8afb-806e6f6e6963}.TM

{51ce23ee-0d6c-11e0-8afb-005056c00008} \Device\HarddiskVolume2\Users\markruss\ntuser.
dat{51lce23ec-0d6c-11e0-8afb-005056c00008}.TM

{51ce23f2-0d6c-11e0-8afb-005056c00008} \Device\HarddiskVolume2\Users\markruss\AppData\
Local\Microsoft\Windows\UsrClass.dat{51ce23f0-0d6c-11e0-8afb-005056c00008}.TM

Hotpatch Support

Rebooting a machine to apply the latest patches can mean significant downtime for a server, which
is why Windows supports a run-time method of patching, called a hot patch (or simply hotpatch), in
contrast to a cold patch, which requires a reboot. Hotpatching doesn’t simply allow files to be over-
written during execution; instead, it includes a complex series of operations that can be requested
(and combined). These operations are listed in Table 3-28.

TABLE 3-28 Hotpatch Operations

Operation Meaning Usage

Rename Image Replacing a DLL that is on the disk When an entire library in user mode needs to
and currently used by other applica- | be replaced, the kernel can detect which pro-
tions, or replacing a driver that is on | cesses and services are referencing it, unload
the disk and is currently loaded by | them, and then update the DLL and restart the
the kernel programs and services (which is done through
the restart manager). When a driver needs to
be replaced, the kernel can unload the driver
(the driver requires an unload routine), update
it, and then reload it.

270 Windows Internals, Sixth Edition, Part 1

Operation Meaning Usage

Object Swap Atomically renaming an object in When a file (typically a known DLL) needs to
the object directory namespace be renamed atomically but not affect any pro-
cess that might be using it (so that the process
can start using the new file immediately, using
the old handle, without requiring an applica-
tion restart).

Patch Function Code Replacing the code of one or more | If a DLL or driver can't be replaced or renamed
functions inside an image file with during run time, functions in the image can be
another version directly patched. A hotpatch DLL that contains

the newer code is jumped to whenever an
older function is called.

Refresh System DLL Reload the memory mapped The system native library, Ntdll.dll, is loaded
section object for Ntdll.dll only once during boot-up and then simply
duplicated into the address space of every
new process. If it has been hotpatched, the
system must refresh this section to load the
newer version.

Although hotpatches use internal kernel mechanisms, their actual implementation is no different
from cold patches. The patch is delivered through Windows Update, typically as an executable file
containing a program called Update.exe that performs the extraction of the patch and the update
process. For hotpatches, however, an additional hotpatch file, containing the .hp extension, will be
present. This file contains a special PE header called .HOTI. This header contains a data structure
describing the various patch descriptors present inside the file. Each of these descriptors identifies
the offset in the original file that needs to be patched, a validation mechanism (which can include a
simple comparison of the old data, a checksum, or a hash), and the new data to be patched. The ker-
nel parses the descriptors and applies the appropriate modifications. In the case of a protected process
(see Chapter 5 for more information on processes) and other digitally signed images, the hotpatch
must also be digitally signed in order to prevent fake patches from being applied to sensitive files or
processes.

Note Because the hotpatch file also includes the original data, the hotpatching mechanism
can also be used to uninstall a patch at run time.

Compile-time hotpatching support works by adding 7 additional bytes to the beginning of
each function—4 are considered part of the end of the previous function, and 2 are part of the
function prolog—that is, the function’s beginning. Here's an example of a function that was built with
hotpatching information:

Tkd> u nt!NtCreateFile - 5
nt!FsRt1TeardownPerFileContexts+0x169:

82227ea5 90 nop

82227eab 90 nop

82227ea7 90 nop

82227ea8 90 nop

82227ea9 90 nop
nt!NtCreateFile:

82227eaa 8bff mov edi,edi

System Mechanisms 271

Notice that the five nop instructions don't actually do anything, while the mov edi, edi at the
beginning of the NtCreateFile function are also essentially meaningless—no actual state-changing
operation takes place. Because 7 bytes are available, the NtCreateFile prologue can be transformed
into a short jump to the buffer of five instructions available, which are then converted to a near jump
instruction to the patched routine. Here's NtCreateFile after having been hotpatched:

Tkd> u nt!NtCreateFile - 5
nt!FsRt1TeardownPerFileContexts+0x169:

82227ea5 €93d020010 jmp nt_patch!NtCreateFile (922280e7)
nt!NtCreateFile:
82227eaa ebfc jmp nt!FsRt1TeardownPerFileContexts+0x169 (82227ea5)

This method allows only the addition of 2 bytes to each function by jumping into the previous
function'’s alignment padding that it would most likely have at its end anyway.

There are some limitations to the hotpatching functionality:

m Patches that third-party applications such as security software might block or that might be
incompatible with the operation of third-party applications

m Patches that modify a file's export table or import table

m Patches that change data structures, fix infinite loops, or contain inline assembly code

Kernel Patch Protection

Some 32-bit device drivers modify the behavior of Windows in unsupported ways. For example,
they patch the system call table to intercept system calls or patch the kernel image in memory to
add functionality to specific internal functions. Shortly after the release of 64-bit Windows for x64
and before a rich third-party ecosystem had developed, Microsoft saw an opportunity to preserve
the stability of 64-bit Windows. To prevent these kinds of changes, x64 Windows implements Kernel
Patch Protection (KPP), also referred to as PatchGuard. KPP’s job on the system is similar to what

its name implies—it attempts to deter common techniques for patching the system, or hooking it.
Table 3-29 lists which components or structures are protected and for what purpose.

TABLE 3-29 Components Protected by KPP

Component Legitimate Usage Potential Malicious Usage

Ntoskrnl.exe, Hal.dll, Ci.dll, Kernel, HAL, and their dependen- Patching code in the kernel and/or HAL to

Kdcom.dll, Pshed.dll, Clfs.sys, cies. Lower layer of network stack. subvert normal operation and behavior.

Ndis.sys, Tcpip.sys Patching Ndis.sys to silently add back doors on

open ports.

Global Descriptor Table (GDT) | CPU hardware protection for the Ability to set up a callgate, a CPU mechanism
implementation of ring privilege through which user (Ring 3) code could per-
levels (Ring 0 vs. Ring 3). form operations with kernel privileges (Ring 0).

272 Windows Internals, Sixth Edition, Part 1

Component

Interrupt Descriptor Table
(IDT)

System Service Descriptor
Table (SSDT)

Processor Machine State
Registers (MSRs)

KdpStub, KiDebugRoutine,

KdpTrap function pointers

PsInvertedFunctionTable

Kernel stacks

Object types

Other

Legitimate Usage

Table read by the CPU to deliver
interrupt vectors to the correct
handling routine.

Table containing the array of
pointers for each system call
handler.

LSTAR MSR is used to set the
handler of the SYSENTER and/
or SYSCALL instructions used for
system calls.

Used for run-time configuration of
where exceptions should be deliv-
ered, based on whether a kernel
debugger is remotely connected to
the machine.

Cache of exception directories used
on x64, allowing quick mapping
between code where an exception
happened and its handler.

Store function arguments, the call
stack (where a function should
return), and variables.

Definitions for the various objects
(such as processes and files) that the
system supports through the object
manager.

Code related to bug-checking the
system during a KPP violation,
executing the DPCs and timers
associated with KPP, and more.

Potential Malicious Usage

Malicious drivers could intercept file I/Os
directly at the interrupt level, or hook page
faults to hide contents of memory. Rootkits
could hook the INT2E handler to hook all
system calls from a single point.

Rootkits could modify the output or input of
calls from user mode and hide processes, files,
or registry keys.

LSTAR could be overwritten by a malicious
driver to provide a single hook for all system
calls performed on the system.

Value of the pointers could be overwritten by a
malicious rootkit to take control of the system
at predetermined times and perform invisible
background tasks.

Could be used to take control of the system
during the exception handling of unrelated
system code, including KPP's own exception
code responsible for detecting modifications
in the first place.

A driver could allocate memory on the side,
set it as a kernel stack for a thread, and then
manipulate its contents to redirect calls and
parameters.

Could be used as part of a technique called
DKOM (Direct Kernel Object Modification)

to modify system behavior—for example, by
hooking the object callbacks that each object
type has registered.

By modifying certain parts of the system used
by KPP, malicious drivers could attempt to
silence, ignore, or otherwise cripple KPP.

Note Because certain 64-bit Intel processors implement a slightly different feature set of
the x64 architecture, the kernel needs to perform run-time code patching to work around
the lack of a prefetch instruction. KPP can deter kernel patching even on these processors,
by exempting those specific patches from detection. Additionally, because of hypervisor
(Hyper-V) enlightenments (more information on the hypervisor is provided earlier in this
chapter), certain functions in the kernel are patched at boot time, such as the swap context
routine. These patches are also allowed by very explicit checks to make sure they are

known patches to the hypervisor-enlightened versions.

System Mechanisms 273

When KPP detects a change in any of the structures mentioned (as well as some other internal
consistency checks), it crashes the system with code 0x109—CRITICAL_STRUCTURE_CORRUPTION.

For third-party developers who used techniques that KPP deters, the following supported
techniques can be used:

m File system minifilters (see Chapter 8 in Part 2 for more information on these) to hook all file
operations, including loading image files and DLLs, that can be intercepted to purge malicious
code on-the-fly or block reading of known bad executables.

m Registry filter notifications (see Chapter 4 for more information on these notifications) to hook
all registry operations. Security software can block modification of critical parts of the registry,
as well as heuristically determine malicious software by registry access patterns or known bad
registry keys.

m Process notifications (see Chapter 5 for more information on these notifications). Security
software can monitor the execution and termination of all processes and threads on the
system, as well as DLLs being loaded or unloaded. With the enhanced notifications added for
antivirus and other security vendors, they also have the ability to block process launch.

m Object manager filtering (explained in the object manager section earlier). Security software
can remove certain access rights being granted to processes and/or threads to defend their
own utilities against certain operations.

There is no way to disable KPP once it's enabled. Because device driver developers might need to
make changes to a running system as part of debugging, KPP does not enable if the system boots in
debugging mode with an active kernel-debugging connection.

Code Integrity

Code integrity is a Windows mechanism that authenticates the integrity and source of executable
images (such as applications, DLLs, or drivers) by validating a digital certificate contained within the
image’s resources. This mechanism works in conjunction with system policies, defining how sign-
ing should be enforced. One of these policies is the Kernel Mode Code Signing (KMCS) policy, which
requires that kernel-mode code be signed with a valid Authenticode certificate rooted by one of
several recognized code signing authorities, such as Verisign or Thawte.

To address backward-compatibility concerns, the KMCS policy is only fully enforced on 64-bit
machines, because those drivers have to be recompiled recently in order to run on that Windows
architecture. This, in turn, implies that a company or individual is still responsible for maintaining the
driver and is able to sign it. On 32-bit machines, however, many older devices ship with outdated
drivers, possibly from out-of-business companies, so signing those drivers would sometimes be

274 Windows Internals, Sixth Edition, Part 1

unfeasible. Figure 3-43 shows the warning displayed on 64-bit Windows machines that attempt to
load an unsigned driver.

Note Windows also has a second driver-signing policy, which is part of the Plug and Play
manager. This policy is applied solely to Plug and Play drivers, and unlike the kernel-mode
code-signing policy, it can be configured to allow unsigned Plug and Play drivers (but not
on 64-bit systems, where the KMCS policy takes precedence). See Chapter 8 in Part 2 for
more information on the Plug and Play manager.

/1. Program Compatibility Assistant Z§_|

N Windows requires a digitally signed driver
A recently installed program tried to install an unsigned
driver. This version of Windows requires all drivers to have a
valid digital signature. The driver is unavailable and the
program that uses this driver might not work correctly.
Uninstall the program or device that uses this driver and

check the publisher's support website to get a digitally
signed driver.

Driver: Unknown Program

Service: PORTIO®G

Publisher: Unknown Publisher

Location: C:\Users\Ash\AppDa..\PIO8B59 tmp

Close

l@l What is a signed driver?

FIGURE 3-43 Warning when attempting to install an unsigned 64-bit driver

Even on 32-bit Windows, code integrity writes an event to the Code Integrity event log when it
loads an unsigned driver.

Note Protected Media Path applications can also query the kernel for its integrity state,
which includes information on whether or not unsigned 32-bit drivers are loaded on the

system. In such scenarios, they are allowed to disable protected, high-definition media
playback as a method to ensure the security and reliability of the encrypted stream.

The code-integrity mechanism doesn't stop at driver load time, however. Stronger measures also
exist to authenticate per-page image contents for executable pages. This requires using a special
flag while signing the driver binary and will generate a catalog with the cryptographic hash of every
executable page on which the driver will reside. (Pages are a unit of protection on the CPU; for more
information, see Chapter 10 in Part 2.) This method allows for detection of modification of an existing
driver, which might happen either at run time by another driver or through a page file or hibernation

System Mechanisms 275

file attack (in which the contents of memory are edited on the disk and then reloaded into memory).
Generating such per-page hashes is also a requirement for the new filtering model, as well as
Protected Media Path components.

Conclusion

In this chapter, we examined the key base system mechanisms on which the Windows executive is
built. In the next chapter, we'll look at three important mechanisms involved with the management
infrastructure of Windows: the registry, services, and Windows Management Instrumentation (WMI).

276 Windows Internals, Sixth Edition, Part 1

Management Mechanisms

his chapter describes four fundamental mechanisms in the Microsoft Windows operating system
that are critical to its management and configuration:

m The registry

m Services

m Unified Background Process Manager

m Windows Management Instrumentation

m Windows Diagnostics Infrastructure

The Registry

The registry plays a key role in the configuration and control of Windows systems. It is the repository
for both systemwide and per-user settings. Although most people think of the registry as static

data stored on the hard disk, as you'll see in this section, the registry is also a window into various
in-memory structures maintained by the Windows executive and kernel.

We'll start by providing you with an overview of the registry structure, a discussion of the data
types it supports, and a brief tour of the key information Windows maintains in the registry. Then
we'll look inside the internals of the configuration manager, the executive component responsible for
implementing the registry database. Among the topics we'll cover are the internal on-disk structure
of the registry, how Windows retrieves configuration information when an application requests it, and
what measures are employed to protect this critical system database.

Viewing and Changing the Registry

In general, you should never have to edit the registry directly: application and system settings
stored in the registry that might require manual changes should have a corresponding user
interface to control their modification. However, as you've already seen a number of times in this
book, some advanced and debug settings have no editing user interface. Therefore, both graphical
user interface (GUI) and command-line tools are included with Windows to enable you to view and
modify the registry.

277

Windows comes with one main GUI tool for editing the registry—Regedit.exe—and a number of
command-line registry tools. Reg.exe, for instance, has the ability to import, export, back up, and
restore keys, as well as to compare, modify, and delete keys and values. It can also set or query flags
used in UAC virtualization. Regini.exe, on the other hand, allows you to import registry data based on
text files that contain ASCII or Unicode configuration data.

The Windows Driver Kit (WDK) also supplies a redistributable component, Offreg.dll, which hosts
the Offline Registry Library. This library allows loading registry hive files in their binary format and
applying operations on the files themselves, bypassing the usual logical loading and mapping that
Windows requires for registry operations. Its use is primarily to assist in offline registry access, such
as for purposes of integrity checking and validation. It can also provide performance benefits if the
underlying data is not meant to be visible by the system, because the access is done through local
file 1/O instead of registry system calls.

Registry Usage

There are four principal times at which configuration data is read:

m During the initial boot process, the boot loader reads configuration data and the list of
boot device drivers to load into memory before initializing the kernel. Because the Boot
Configuration Database (BCD) is really stored in a registry hive, one could argue that registry
access happens even earlier, when the Boot Manager displays the list of operating systems.

m During the kernel boot process, the kernel reads settings that specify which device drivers
to load and how various system elements—such as the memory manager and process
manager—configure themselves and tune system behavior.

m During logon, Explorer and other Windows components read per-user preferences from the
registry, including network drive-letter mappings, desktop wallpaper, screen saver, menu
behavior, icon placement, and perhaps most importantly, which startup programs to launch
and which files were most recently accessed.

m During their startup, applications read systemwide settings, such as a list of optionally installed
components and licensing data, as well as per-user settings that might include menu and
toolbar placement and a list of most-recently accessed documents.

However, the registry can be read at other times as well, such as in response to a modification of
a registry value or key. Although the registry provides asynchronous callbacks that are the preferred
way to receive change notifications, some applications constantly monitor their configuration set-
tings in the registry through polling and automatically take updated settings into account. In general,
however, on an idle system there should be no registry activity and such applications violate best
practices. (Process Monitor, from Sysinternals, is a great tool for tracking down such activity and the
application or applications at fault.)

278 Windows Internals, Sixth Edition, Part 1

The registry is commonly modified in the following cases:

Although not a modification, the registry’s initial structure and many default settings are
defined by a prototype version of the registry that ships on the Windows setup media that is
copied onto a new installation.

Application setup utilities create default application settings and settings that reflect
installation configuration choices.

During the installation of a device driver, the Plug and Play system creates settings in the
registry that tell the I/O manager how to start the driver and creates other settings that con-
figure the driver’s operation. (See Chapter 8, “I/O System,” in Part 2 for more information on
how device drivers are installed.)

When you change application or system settings through user interfaces, the changes are

often stored in the registry.

Registry Data Types

The registry is a database whose structure is similar to that of a disk volume. The registry contains
keys, which are similar to a disk’s directories, and values, which are comparable to files on a disk.
A key is a container that can consist of other keys (subkeys) or values. Values, on the other hand,

store data. Top-level keys are root keys. Throughout this section, we'll use the words subkey and key

interchangeably.

Both keys and values borrow their naming convention from the file system. Thus, you can

uniquely identify a value with the name mark, which is stored in a key called trade, with the name

trade\mark. One exception to this naming scheme is each key’s unnamed value. Regedit displays the

unnamed value as (Default).

Values store different kinds of data and can be one of the 12 types listed in Table 4-1. The majority
of registry values are REG_DWORD, REG_BINARY, or REG_SZ. Values of type REG_DWORD can store
numbers or Booleans (on/off values); REG_BINARY values can store numbers larger than 32 bits or raw
data such as encrypted passwords; REG_SZ values store strings (Unicode, of course) that can represent

elements such as names, file names, paths, and types.

TABLE 4-1 Registry Value Types

Value Type Description

REG_NONE No value type

REG_SZ Fixed-length Unicode string

REG_EXPAND_SZ Variable-length Unicode string that can have embedded
environment variables

REG_BINARY Arbitrary-length binary data

Management Mechanisms

279

Value Type Description

REG_DWORD 32-bit number
REG_DWORD_BIG_ENDIAN 32-bit number, with high byte first
REG_LINK Unicode symbolic link

REG_MULTI_SZ Array of Unicode NULL-terminated strings
REG_RESOURCE_LIST Hardware resource description
REG_FULL_RESOURCE_DESCRIPTOR Hardware resource description
REG_RESOURCE_REQUIREMENTS_LIST Resource requirements

REG_QWORD 64-bit number

The REG_LINK type is particularly interesting because it lets a key transparently point to another
key. When you traverse the registry through a link, the path searching continues at the target of the
link. For example, if \Root1\Link has a REG_LINK value of \Root2\RegKey and RegKey contains the
value RegValue, two paths identify RegValue: \Root1\Link\RegValue and \Root2\RegKey\RegValue. As
explained in the next section, Windows prominently uses registry links: three of the six registry root
keys are links to subkeys within the three nonlink root keys.

Registry Logical Structure

You can chart the organization of the registry via the data stored within it. There are six root keys (and
you can't add new root keys or delete existing ones) that store information, as shown in Table 4-2.

TABLE 4-2 The Six Root Keys

Root Key Description

HKEY_CURRENT_USER Stores data associated with the currently logged-on user

HKEY_USERS Stores information about all the accounts on the machine

HKEY_CLASSES_ROOT Stores file association and Component Object Model (COM) object
registration information

HKEY_LOCAL_MACHINE Stores system-related information

HKEY_PERFORMANCE_DATA Stores performance information

HKEY_CURRENT_CONFIG Stores some information about the current hardware profile

Why do root-key names begin with an H? Because the root-key names represent Windows handles
(H) to keys (KEY). As mentioned in Chapter 1, “Concepts and Tools,” HKLM is an abbreviation used
for HKEY_LOCAL_MACHINE. Table 4-3 lists all the root keys and their abbreviations. The following
sections explain in detail the contents and purpose of each of these six root keys.

280 Windows Internals, Sixth Edition, Part 1

TABLE 4-3 Registry Root Keys

Root Key

HKEY_CURRENT_USER

HKEY_USERS

HKEY_CLASSES_ROOT

HKEY_LOCAL_MACHINE

HKEY_CURRENT_CONFIG

HKEY_PERFORMANCE_DATA

HKEY_CURRENT_USER

Abbreviation

HKCU

HKU

HKCR

HKLM

HKCC

HKPD

Description

Points to the user profile
of the currently logged-
on user

Contains subkeys for all
loaded user profiles

Contains file association

and COM registration in-
formation

Global settings for the
machine.

Current hardware profile

Performance counters

Link

Subkey under HKEY_USERS
corresponding to currently logged-
on user

Not a link

Not a direct link; rather, a merged
view of HKLM\SOFTWARE\Classes
and
HKEY_USERS\<SID>\SOFTWARE\
Classes

Not a link
HKLM\SYSTEM\CurrentControlSet\
Hardware Profiles\Current

Not a link

The HKCU root key contains data regarding the preferences and software configuration of the locally
logged-on user. It points to the currently logged-on user's user profile, located on the hard disk at
\Users\<username>\Ntuser.dat. (See the section "Registry Internals” later in this chapter to find out
how root keys are mapped to files on the hard disk.) Whenever a user profile is loaded (such as at

logon time or when a service process runs under the context of a specific user name), HKCU is created
to map to the user’s key under HKEY_USERS. Table 4-4 lists some of the subkeys under HKCU.

TABLE 4-4 HKEY_CURRENT_USER Subkeys

Subkey

AppEvents
Console

Control Panel

Environment
EUDC

Identities
Keyboard Layout
Network

Printers

Software

Volatile Environment

Description

Sound/event associations

Environment variable definitions

Windows Mail account information

Command window settings (for example, width, height, and colors)

Screen saver, desktop scheme, keyboard, and mouse settings, as well as
accessibility and regional settings

Information on end-user defined characters

Keyboard layout setting (for example, U.S. or U.K.)

Network drive mappings and settings
Printer connection settings
User-specific software preferences

Volatile environment variable definitions

281

Management Mechanisms

HKEY_USERS

HKU contains a subkey for each loaded user profile and user class registration database on the
system. It also contains a subkey named HKU\.DEFAULT that is linked to the profile for the system
(which is used by processes running under the local system account and is described in more detail in
the section “Services” later in this chapter). This is the profile used by Winlogon, for example, so that
changes to the desktop background settings in that profile will be implemented on the logon screen.
When a user logs on to a system for the first time and her account does not depend on a roaming
domain profile (that is, the user’s profile is obtained from a central network location at the direction
of a domain controller), the system creates a profile for her account that's based on the profile stored
in %SystemDrive%\Users\Default.

The location under which the system stores profiles is defined by the registry value
HKLM\Software\Microsoft\Windows NT\CurrentVersion\ProfileList\ProfilesDirectory, which is by
default set to %SystemDrive%\Users. The ProfileList key also stores the list of profiles present on a
system. Information for each profile resides under a subkey that has a name reflecting the security
identifier (SID) of the account to which the profile corresponds. (See Chapter 6, “Security,” for more
information on SIDs.) Data stored in a profile’s key includes the time of the last load of the profile in
the ProfileLoadTimeLow value, the binary representation of the account SID in the Sid value, and the
path to the profile’s on-disk hive (which is described later in this chapter in the “Hives” section) in the
ProfilelmagePath directory. Windows shows the list of profiles stored on a system in the User Profiles
management dialog box, shown in Figure 4-1, which you access by clicking Settings in the User
Profiles section of the Advanced tab in the Advanced System Settings of the System Control Panel
applet.

User Profiles =3

c User profiles store settings for your deskkop and other
m information related to your user account, You can create a
different profile on each computer you use, or vou can select a
roaming profile that is the same on every computer you use,

Profiles stored on this computer:

Marme Size Type Status Ma...

ALEX-LAPTOP\Administrator 5,61 GB Local Local
ALEX-LAPTOP User 19.8ME Local Local 7l

Change Type... Delete Copy To...

To create new user accounts, click here,

[[o]4][Cancel]

FIGURE 4-1 The User Profiles management dialog box

282 Windows Internals, Sixth Edition, Part 1

-
o

EXPERIMENT: Watching Profile Loading and Unloading

You can see a profile load into the registry and then unload by using the Runas command to
launch a process in an account that’s not currently logged on to the machine. While the new
process is running, run Regedit and note the loaded profile key under HKEY_USERS. After
terminating the process, perform a refresh in Regedit by pressing the F5 key and the profile
should no longer be present.

HKEY_CLASSES_ROOT

HKCR consists of three types of information: file extension associations, COM class registrations, and
the virtualized registry root for User Account Control (UAC). (See Chapter 6 for more information
on UAC.) A key exists for every registered file name extension. Most keys contain a REG_SZ value
that points to another key in HKCR containing the association information for the class of files that
extension represents.

For example, HKCR\.xls would point to information on Microsoft Office Excel files in a key such as
HKCU\.xIs\Excel.Sheet.8. Other keys contain configuration details for COM objects registered on the
system. The UAC virtualized registry is located in the VirtualStore key, which is not related to the other
kinds of data stored in HKCR.

The data under HKEY_CLASSES_ROOT comes from two sources:

m The per-user class registration data in HKCU\SOFTWARE\Classes (mapped to the file on hard
disk \Users\<username>\AppData\Local\Microsoft\Windows\Usrclass.dat)

m Systemwide class registration data in HKLM\SOFTWARE\Classes

The reason that there is a separation of per-user registration data from systemwide registration
data is so that roaming profiles can contain these customizations. It also closes a security hole: a non-
privileged user cannot change or delete keys in the systemwide version HKEY_CLASSES_ROOT, and
thus cannot affect the operation of applications on the system. Nonprivileged users and applications
can read systemwide data and can add new keys and values to systemwide data (which are mirrored
in their per-user data), but they can modify existing keys and values in their private data only.

HKEY_LOCAL_MACHINE

HKLM is the root key that contains all the systemwide configuration subkeys: BCD0O0000000,
COMPONENTS (loaded dynamically as needed), HARDWARE, SAM, SECURITY, SOFTWARE, and
SYSTEM.

The HKLM\BCD00000000 subkey contains the Boot Configuration Database (BCD) information
loaded as a registry hive. This database replaces the Boot.ini file that was used before Windows
Vista and adds greater flexibility and isolation of per-installation boot configuration data. (For more
information on the BCD, see Chapter 13, "Startup and Shutdown,” in Part 2.)

Management Mechanisms 283

Each entry in the BCD, such as a Windows installation or the command-line settings for the
installation, is stored in the Objects subkey, either as an object referenced by a GUID (in the case of a
boot entry) or as a numeric subkey called an element. Most of these raw elements are documented
in the BCD reference in the MSDN Library and define various command-line settings or boot
parameters. The value associated with each element subkey corresponds to the value for its respective
command-line flag or boot parameter.

The BCDEdit command-line utility allows you to modify the BCD using symbolic names for the
elements and objects. It also provides extensive help for all the boot options available; unfortunately,
it works only locally. Because the registry can be opened remotely as well as imported from a hive
file, you can modify or read the BCD of a remote computer by using the Registry Editor. The following
experiment shows you how to enable kernel debugging by using the Registry Editor.

7JJ EXPERIMENT: Offline or Remote BCD Editing

In this experiment, you enable debugging through editing the BCD inside the registry. For
the purposes of this example, you edit the local copy of the BCD, but the point of this tech-
nique is that it can be used on any machine’s BCD hive. Follow these steps to add the /DEBUG
command-line flag:

1. Open the Registry Editor, and then navigate to the HKLM\BCD0O000000O key. Expand
every subkey so that the numerical identifiers of each Elements key are fully visible.

H Registry Editor [(=lE=E
File Edit Wiew Favorites Help
4. BCDO0DOROOD || Wame Type Data
Deseription ab] (Default) REG_SZ (value not set)
4L Objects 2] Element REG_SZ Earlier Version of
4} {0c24991b-e5b3-8016-b23c-520d9250e500]
Description

4 || Elements
16000020
4]! {afadcd9-16ab-4a5c-901b-212802dad460}
| Description
4 || Elements
14000008
4 || [4636856e-5407-4170-a130-a847F6FAcE 54}
Description
4)L Elemerts
15000011
15000013
15000014
4 || [46665288-0af2-4776-0038-095b170dc 1 1c}
Description

!

4.). Elements
11000001
12000002
12000004
45000001
47000005
4.). [5189b25c-5550-4bf2-bead-109b11be20e2}
| Description
Elements
4). [6efbS2bf-1786-41db-a5b3-DeeSefT2bdT}
| Description
4.). Elements
14000008
4}, [FeaZelac-Tef1-4T28-33a3-8060d0a0f e]
Description I

4l Elernents
14000006

4 {Ffi0Te0-4395-11db-h0de-0800200c9a66}
Description
4|, Elements
2500003
25000074
2500005

.......................... M|l o] C

ComputeryHKEY_LOCAL_MACHINE\BCDO0000000\Objects'{ 466f5a88-0af2-4F76-0038-005b170de21c]\Elermentsi 12000004

284 Windows Internals, Sixth Edition, Part 1

2. Identify the boot entry for your Windows installation by locating the Description
with a Type value of 0x10200003, and then check ID 0x12000004 in the Elements
tree. In the Element value of that subkey, you should find the name of your version of
Windows, such as Windows 7. If you have more than one Windows installation on your
machine, you may need to check the 0x22000002 Element, which contains the path,
such as \Windows.

3. Now that you've found the correct GUID for your Windows installation, create a new
subkey under the Elements subkey for that GUID and name it 0x260000a0. If this
subkey already exists, simply navigate to it.

4. |If you had to create the subkey, now create a binary value called Element inside it.

5. Edit the value and set it to O1. This will enable kernel-mode debugging. Here’s what
these changes should look like:

H Registry Editar FelrE s
File Edit Yiew Favorites Help
12000005 [ame Type Data
14000006 8] (Default) REG_SZ (ualue nat set)
1600000k 5 Element REG_EINARY 01

45000001

47000005

4) [falfcllc-3331-11dd-bb1l-che3b5T268fb}

i) Deseription

4. Elements

11000001

12000002

12000004

12000005

14000006

21000001

22000002

23000003

25000020

26000030

42000002

45000001

47000005

4)| [fal9c11d-3331-11dd-bb11-c6e3b5T268b] |
i) Deseription
4. Elements

11000001

12000002

12000004 2

ComputerHKEY_LOCAL_MACHINE\BCDON000000Objectsh{fa0de1le-3331-11dd-bbll-cbe3bST266fbAElements 26000030

Note The 0x12000004 ID corresponds to BcdLibraryString_ApplicationPath,
while the 0x22000002 ID corresponds to BcdOSLoaderString_SystemRoot.
Finally, the ID you added, 0x260000a0, corresponds to BcdOSLoaderBoolean_
KernelDebuggerEnabled. These values are documented in the BCD reference
in the MSDN Library.

The HKLM\COMPONENTS subkey contains information pertinent to the Component Based
Servicing (CBS) stack. This stack contains various files and resources that are part of a Windows
installation image (used by the Automated Installation Kit or the OEM Preinstallation Kit) or an active
installation. The CBS APIs that exist for servicing purposes use the information located in this key to

Management Mechanisms 285

identify installed components and their configuration information. This information is used whenever
components are installed, updated, or removed either individually (called units) or in groups (called
packages). To optimize system resources, because this key can get quite large, it is only dynamically
loaded and unloaded as needed if the CBS stack is servicing a request.

The HKLM\HARDWARE subkey maintains descriptions of the system’s legacy hardware and some
hardware device-to-driver mappings. On a modern system, only a few peripherals—such as keyboard,
mouse, and ACPI BIOS data—are likely to be found here. The Device Manager tool (which is avail-
able by running System from Control Panel and then clicking Device Manager) lets you view registry
hardware information that it obtains by simply reading values out of the HARDWARE key (although it
primarily uses the HKLM\SYSTEM\CurrentControlSet\Enum tree).

HKLM\SAM holds local account and group information, such as user passwords, group definitions,
and domain associations. Windows Server systems that are operating as domain controllers store
domain accounts and groups in Active Directory, a database that stores domainwide settings and
information. (Active Directory isn't described in this book.) By default, the security descriptor on the
SAM key is configured so that even the administrator account doesn’t have access.

HKLM\SECURITY stores systemwide security policies and user-rights assignments. HKLM\SAM is
linked into the SECURITY subkey under HKLM\SECURITY\SAM. By default, you can’t view the contents
of HKLM\SECURITY or HKLM\SAM\SAM because the security settings of those keys allow access only
by the System account. (System accounts are discussed in greater detail later in this chapter.) You
can change the security descriptor to allow read access to administrators, or you can use PsExec to
run Regedit in the local system account if you want to peer inside. However, that glimpse won't be
very revealing because the data is undocumented and the passwords are encrypted with one-way
mapping—that is, you can’t determine a password from its encrypted form.

HKLM\SOFTWARE is where Windows stores systemwide configuration information not needed to
boot the system. Also, third-party applications store their systemwide settings here, such as paths to
application files and directories and licensing and expiration date information.

HKLM\SYSTEM contains the systemwide configuration information needed to boot the system,
such as which device drivers to load and which services to start. Because this information is criti-
cal to starting the system, Windows also maintains a copy of part of this information, called the last
known good control set, under this key. The maintenance of a copy allows an administrator to select
a previously working control set in the case that configuration changes made to the current control
set prevent the system from booting. For details on when Windows declares the current control set
“good,” see the section “"Accepting the Boot and Last Known Good" later in this chapter.

HKEY_CURRENT_CONFIG

HKEY_CURRENT_CONFIG is just a link to the current hardware profile, stored under HKLM\SYSTEM
\CurrentControlSet\Hardware Profiles\Current. Hardware profiles are no longer supported in
Windows, but the key still exists to support legacy applications that might be depending on its
presence.

286 Windows Internals, Sixth Edition, Part 1

HKEY_PERFORMANCE_DATA

The registry is the mechanism used to access performance counter values on Windows, whether those
are from operating system components or server applications. One of the side benefits of providing
access to the performance counters via the registry is that remote performance monitoring works “for
free” because the registry is easily accessible remotely through the normal registry APIs.

You can access the registry performance counter information directly by opening a special key
named HKEY_PERFORMANCE_DATA and querying values beneath it. You won't find this key by look-
ing in the Registry Editor; this key is available only programmatically through the Windows registry
functions, such as RegQueryValueEx. Performance information isn't actually stored in the registry; the
registry functions use this key to locate the information from performance data providers.

You can also access performance counter information by using the Performance Data Helper
(PDH) functions available through the Performance Data Helper API (Pdh.dll). Figure 4-2 shows the
components involved in accessing performance counter information.

Performance-
monitoring —|
applications

Custom Custom Performance
application A application B tool

Programming __ | RegQueryValueEx Windows Management Instrumentation
interfaces High-performance provider interface
Advapi32.dll | PerfLib | Registry DLL provider |
System Performance erformance
performance extension P .
DLL DLL data p.rowder
object

FIGURE 4-2 Registry performance counter architecture

Transactional Registry (TxR)

Thanks to the Kernel Transaction Manager (KTM; for more information see the section about the KTM
in Chapter 3, "System Mechanisms”), developers have access to a straightforward API that allows them
to implement robust error-recovery capabilities when performing registry operations, which can be
linked with nonregistry operations, such as file or database operations.

Three APIs support transactional modification of the registry: RegCreateKeyTransacted,
RegOpenKeyTransacted, and RegDeleteKeyTransacted. These new routines take the same parameters

Management Mechanisms 287

as their nontransacted analogs, except that a new transaction handle parameter is added. A developer
supplies this handle after calling the KTM function CreateTransaction.

After a transacted create or open operation, all subsequent registry operations—such as creating,
deleting, or modifying values inside the key—will also be transacted. However, operations on
the subkeys of a transacted key will not be automatically transacted, which is why the third AP,
RegDeleteKeyTransacted exists. It allows the transacted deletion of subkeys, which RegDeleteKeyEx
would not normally do.

Data for these transacted operations is written to log files using the common logging file system
(CLFS) services, similar to other KTM operations. Until the transaction itself is committed or rolled
back (both of which might happen programmatically or as a result of a power failure or system
crash, depending on the state of the transaction), the keys, values, and other registry modifica-
tions performed with the transaction handle will not be visible to external applications through the
nontransacted APIs. Also, transactions are isolated from each other; modifications made inside one
transaction will not be visible from inside other transactions or outside the transaction until the
transaction is committed.

Note A nontransactional writer will abort a transaction in case of conflict—for example,
if a value was created inside a transaction and later, while the transaction is still active, a
nontransactional writer tries to create a value under the same key. The nontransactional
operation will succeed, and all operations in the conflicting transaction will be aborted.

ulu

The isolation level (the 1" in ACID) implemented by TxR resource managers is read-commit, which
means that changes become available to other readers (transacted or not) immediately after being
committed. This mechanism is important for people who are familiar with transactions in databases,
where the isolation level is predictable-reads (or cursor-stability, as it is called in database literature).
With a predictable-reads isolation level, after you read a value inside a transaction, subsequent reads
will give you back the same data. Read-commit does not make this guarantee. One of the conse-
quences is that registry transactions can't be used for “atomic” increment/decrement operations on a
registry value.

To make permanent changes to the registry, the application that has been using the transaction
handle must call the KTM function CommitTransaction. (If the application decides to undo the
changes, such as during a failure path, it can call the RollbackTransaction APl.) The changes will then
be visible through the regular registry APIs as well.

Note If a transaction handle created with CreateTransaction is closed before the
transaction is committed (and there are no other handles open to that transaction), the
system will roll back that transaction.

288 Windows Internals, Sixth Edition, Part 1

Apart from using the CLFS support provided by the KTM, TxR also stores its own internal log files in
the %SystemRoot%\System32\Config\Txr folder on the system volume; these files have a .regtrans-ms
extension and are hidden by default. Even if there are no third-party applications installed, your
system likely will contain files in this directory because Windows Update and Component Based
Servicing make use of TxR to atomically write data to the registry to avoid system failure or incon-
sistent component data in the case of an incomplete update. In fact, if you take a look at some of
the transaction files, you should be able to see the key names on which the transaction was being
performed.

There is a global registry resource manager (RM) that services all the hives that are mounted
at boot time. For every hive that is mounted explicitly, an RM is created. For applications that use
registry transactions, the creation of an RM is transparent because KTM ensures that all RMs taking
part in the same transaction are coordinated in the two-phase commit/abort protocol. For the global
registry RM, the CLFS log files are stored, as mentioned earlier, inside System32\Config\Txr. For other
hives, they are stored alongside the hive (in the same directory). They are hidden and follow the same
naming convention, ending in .regtrans-ms. The log file names are prefixed with the name of the hive
to which they correspond.

Monitoring Registry Activity

Because the system and applications depend so heavily on configuration settings to guide their
behavior, system and application failures can result from changing registry data or security. When the
system or an application fails to read settings that it assumes it will always be able to access, it might
not function properly, display error messages that hide the root cause, or even crash. It's virtually
impossible to know what registry keys or values are misconfigured without understanding how the
system or the application that's failing is accessing the registry. In such situations, the Process Monitor
utility from Windows Sysinternals (http.//technet.microsoft.com/sysinternals) might provide the answer.

Process Monitor lets you monitor registry activity as it occurs. For each registry access, Process
Monitor shows you the process that performed the access; the time, type, and result of the access;
and the stack of the thread at the moment of the access. This information is useful for seeing how
applications and the system rely on the registry, discovering where applications and the system store
configuration settings, and troubleshooting problems related to applications having missing registry
keys or values. Process Monitor includes advanced filtering and highlighting so that you can zoom in
on activity related to specific keys or values or to the activity of particular processes.

Process Monitor Internals

Process Monitor relies on a device driver that it extracts from its executable image at run time and
then starts. Its first execution requires that the account running it have the Load Driver privilege as
well as the Debug privilege; subsequent executions in the same boot session require only the Debug
privilege because, once loaded, the driver remains resident.

Management Mechanisms 289

EXPERIMENT: Viewing Registry Activity on an Idle System

Because the registry implements the RegNotifyChangeKey function that applications can use
to request notification of registry changes without polling for them, when you launch Process
Monitor on a system that’s idle you should not see repetitive accesses to the same registry keys
or values. Any such activity identifies a poorly written application that unnecessarily negatively
affects a system’s overall performance.

Run Process Monitor, and after several seconds examine the output log to see whether
you can spot polling behavior. Right-click on an output line associated with polling, and then
choose Process Properties from the context menu to view details about the process performing
the activity.

EXPERIMENT: Using Process Monitor to Locate Application Registry
Settings

In some troubleshooting scenarios, you might need to determine where in the registry the
system or an application stores particular settings. This experiment has you use Process Monitor
to discover the location of Notepad's settings. Notepad, like most Windows applications, saves
user preferences—such as word-wrap mode, font and font size, and window position—across
executions. By having Process Monitor watching when Notepad reads or writes its settings, you
can identify the registry key in which the settings are stored. Here are the steps for doing this:

1. Have Notepad save a setting you can easily search for in a Process Monitor trace.
You can do this by running Notepad, setting the font to Times New Roman, and then
exiting Notepad.

2. Run Process Monitor. Open the filter dialog box and the Process Name filter, and type
notepad.exe as the string to match. This step specifies that Process Monitor will log
only activity by the notepad.exe process.

3. Run Notepad again, and after it has launched stop Process Monitor’s event capture by
toggling Capture Events on the Process Monitor File menu.

4. Scroll to the top line of the resultant log and select it.

5. Press Ctrl+F to open a Find dialog box, and search for times new. Process Monitor
should highlight a line like the one shown in the following screen that represents
Notepad reading the font value from the registry. Other operations in the immediate
vicinity should relate to other Notepad settings.

290 Windows Internals, Sixth Edition, Part 1

2} Pracess Manitor - Sysinternals: waaw,sysinternals.com (=3 EoR| <=
File Edit Event Filter Tools Options Help
Zd | aBE | 2A® | A5 | [EEZE
Piocess Na.. PID Operation Path Fiesul Datal =
“Inotspad.exe 2804 GueryBasicinfor...C:\Windows\System3Zusthems. i SUCCESS CreafionTime: 1/18/2008 10:44:44 PM. LasthcoessTime: 1/18/200.
“Inotepad.exe 2804 CloseFile C:¥Windows\System32unthenne. SUCCESS
" Inotepad.ene 2804 CreateFile CWindows\System3Zuntheme. di SUCCESS Desied Access: Read DatarList Directory, Execute/Traverse, Sync...
“Inotepad.exe 2804 CloseFile C:¥Windows\System3Zutheme.di SUCCESS
Inotepadens 2804 LoadImage CWindows\System3Ziusthenie. di SUCCESS Iniage Base: 0x756b0000. Image Sizs: (x3000
“Inotepad.eve 2804 FegOpenKey HKCU Desited fooess: Masimum Allowed. Granted Acoess: All Acoess
otepad.ene 2804 Feglueral p apement SUCCESS Type: REG_DWORD. Length 4. Data 0
Tnotepad exe 2804 Regluenialue HKCU liDrientation SUCCESS Type: REG_DWORD, Length: 4, Datar 0
“Inotepad.exe 2804 FiegQuenahue HKCU P SUCCESS Type: REG_DWORD, Length: 4, Data: 400
“Inotepad.exe 2804 FegQuenalue HKCU osol SUCCESS Type: REG_DWORD, Length 4, Data 0 [/
“Inotepad.exe 2804 FiegQuenahe HKCU fUnderine SUCCESS Type: REG_DWORD, Length: 4, Data 0
“Inotepad.eve 2804 FegOuenValue HKCU osoft N otep Out SUCCESS Type: REG_DWORD. Length: 4. Data 0
“Inotepad.exe 2804 FiegQuenialue HKCU iCharSet SUCCESS Type: REG_DWORD, Length: 4, Data 0
“Inotepad.exe 2804 FegOueralue HKCU osoitNotepadsiutPrecision SUCCESS Type: REG_DWORD. Length: 4. Data: 1
“notepadexs 2804 RegQueniiaslue HKCU HiCipPrecision SUCCESS Type: REG_DWORD, Length: 4, Datar 2
“Inotspad.exe 2804 FiegOuerValue HKCU osoitHotepadsiGualt SUCCESS Type: REG_DWORD. Length: 4. Data 2
“Inotepad.exe 2804 FegOuenalue HKCU osol héincFami SUCCESS Type: REG_DWORD, Length 4, Data 43
“Inotepad.ene 2804 RegCreateKey HKLM\SoltwareMicrosolt\Notepad DefauliFonts SUCCESS Desied Access: Marimum Allowed, Granted Access: All Access
“Inotepad.eve 2804 ReguenValue HKLM\SDFTWARE Microsoft\NotepadiDefaulFonts\fFaceName SUCCESS Type REG_SZ, Length: 30, Data: Lucida Console
" Inotepad.exe 2804 RegQuenValue HKLM\SOFTWARE MicrosoftiNotepadiDefalFonts\PointSize SUCCESS Type: REG_DWORD, Length: 4, Datar 100
"notepadene 7804 ReqCloseKey HKLMASOFTWARE \Microsait DefaulFonts SUCCESS 2

Showing 455 of 17,324 events (2.6%)

Backed by page file

6. Finally, right-click the highlighted line and click Jump To. Process Monitor will execute
Regedit (if it's not already running) and cause it to navigate to and select the Notepad-
referenced registry value.

Process Monitor Troubleshooting Techniques

Two basic Process Monitor troubleshooting techniques are effective for discovering the cause of
registry-related application or system problems:

m Look at the last thing in the Process Monitor trace that the application did before it failed. This
action might point to the problem.

m Compare a Process Monitor trace of the failing application with a trace from a working system.

To follow the first approach, run Process Monitor and then run the application. At the point the
failure occurs, go back to Process Monitor and stop the logging (by pressing Ctrl+E). Then go to the
end of the log and find the last operations performed by the application before it failed (or crashed,
hung, or whatever). Starting with the last line, work your way backward, examining the files, registry
keys, or both that were referenced—often this will help pinpoint the problem.

Use the second approach when the application fails on one system but works on another. Capture
a Process Monitor trace of the application on the working and failing systems, and save the output
to a log file. Then open the good and bad log files with Microsoft Excel (accepting the defaults in the
Import wizard), and delete the first three columns. (If you don't delete the first three columns, the
comparison will show every line as different because the first three columns contain information that
is different from run to run, such as the time and the process ID.) Finally, compare the resulting log
files. (You can do this by using WinDiff, which is included in the Windows SDK).

Entries in a Process Monitor trace that have values of NAME NOT FOUND or ACCESS DENIED in
the Result column are ones you should investigate. NAME NOT FOUND is reported when an applica-
tion attempts to read from a registry key or value that doesn't exist. In many cases, a missing key or

291

Management Mechanisms

value is innocuous because a process that fails to read a setting from the registry simply falls back on
default values. In some cases, however, applications expect to find values for which there is no default
and will fail if they are missing.

Access-denied errors are a common source of registry-related application failures and occur when
an application doesn't have permission to access a key the way that it wants. Applications that do not
validate registry operation results or perform proper error recovery will fail.

A common result string that might appear suspicious is BUFFER OVERFLOW. It does not indicate
a buffer-overflow exploit in the application that receives it. Instead, it's used by the configuration
manager to inform an application that the buffer it specified to store a registry value is too small to
hold the value. Application developers often take advantage of this behavior to determine how large
a buffer to allocate to store a value. They first perform a registry query with a zero-length buffer that
returns a buffer-overflow error and the length of the data it attempted to read. The application then
allocates a buffer of the indicated size and rereads the value. You should therefore see operations that
return BUFFER OVERFLOW repeat with a successful result.

In one example of Process Monitor being used to troubleshoot a real problem, it saved a user from
doing a complete reinstall of his Windows system. The symptom was that Internet Explorer would
hang on startup if the user did not first manually dial the Internet connection. This Internet connec-
tion was set as the default connection for the system, so starting Internet Explorer should have caused
an automatic dial-up to the Internet (because Internet Explorer was set to display a default home
page upon startup).

An examination of a Process Monitor log of Internet Explorer startup activity, going backward
from the point in the log where Internet Explorer hung, showed a query to a key under
HKCU\Software\Microsoft\RAS Phonebook. The user reported that he had previously uninstalled the
dialer program associated with the key and manually created the dial-up connection. Because the
dial-up connection name did not match that of the uninstalled dialer program, it appeared that the
key had not been deleted by the dialer’s uninstall program and that it was causing Internet Explorer
to hang. After the key was deleted, Internet Explorer functioned as expected.

Logging Activity in Unprivileged Accounts or During Logon/Logoff

A common application-failure scenario is that an application works when run in an account that has
Administrative group membership but not when run in the account of an unprivileged user. As de-
scribed earlier, executing Process Monitor requires security privileges that are not normally assigned
to standard user accounts, but you can capture a trace of applications executing in the logon session
of an unprivileged user by using the Runas command to execute Process Monitor in an administrative
account.

If a registry problem relates to account logon or logoff, you'll also have to take special steps to
be able to use Process Monitor to capture a trace of those phases of a logon session. Applications
that are run in the local system account are not terminated when a user logs off, and you can take
advantage of that fact to have Process Monitor run through a logoff and subsequent logon. You can

292 Windows Internals, Sixth Edition, Part 1

launch Process Monitor in the local system account either by using the At command that's built into
Windows and specifying the /interactive flag, or by using the Sysinternals PsExec utility, like this:

psexec —i 0 —s —d c:\procmon.exe

The —i 0 switch directs PsExec to have Process Monitor's window appear on the session 0
interactive window station’s default desktop, the —s switch has PsExec run Process Monitor in the local
system account, and the —d switch has PsExec launch Process Monitor and exit without waiting for
Process Monitor to terminate. When you execute this command, the instance of Process Monitor that
executes will survive logoff and reappear on the desktop when you log back on, having captured the
registry activity of both actions.

Another way to monitor registry activity during the logon, logoff, boot, or shutdown process is to
use the Process Monitor log boot feature, which you can enable by selecting Log Boot on the Options
menu. The next time you boot the system, the Process Monitor device driver logs registry activity
from early in the boot to %SystemRoot%\Procmon.pml. It will continue logging to that file until disk
space runs out, the system shuts down, or you run Process Monitor. A log file storing a registry trace
of startup, logon, logoff, and shutdown on a Windows system will typically be between 50 and 150
MB in size.

Registry Internals

In this section, you'll find out how the configuration manager—the executive subsystem that
implements the registry—organizes the registry’s on-disk files. We'll examine how the configura-
tion manager manages the registry as applications and other operating system components read
and change registry keys and values. We'll also discuss the mechanisms by which the configuration
manager tries to ensure that the registry is always in a recoverable state, even if the system crashes
while the registry is being modified.

Hives

On disk, the registry isn't simply one large file but rather a set of discrete files called hives. Each hive
contains a registry tree, which has a key that serves as the root or starting point of the tree. Subkeys
and their values reside beneath the root. You might think that the root keys displayed by the Registry
Editor correlate to the root keys in the hives, but such is not the case. Table 4-5 lists registry hives and
their on-disk file names. The path names of all hives except for user profiles are coded into the con-
figuration manager. As the configuration manager loads hives, including system profiles, it notes each
hive's path in the values under the HKLM\SYSTEM\CurrentControlSet\Control\Hivelist subkey, remov-
ing the path if the hive is unloaded. It creates the root keys, linking these hives together to build the
registry structure you're familiar with and that the Registry Editor displays.

You'll notice that some of the hives listed in Table 4-5 are volatile and don't have associated
files. The system creates and manages these hives entirely in memory; the hives are therefore
temporary. The system creates volatile hives every time it boots. An example of a volatile hive is the
HKLM\HARDWARE hive, which stores information about physical devices and the devices’ assigned

Management Mechanisms 293

resources. Resource assignment and hardware detection occur every time the system boots, so not

storing this data on disk is logical.

TABLE 4-5 On-Disk Files Corresponding to Paths in the Registry

Hive Registry Path
HKEY_LOCAL_MACHINE\BCD00000000
HKEY_LOCAL_MACHINE\COMPONENTS
HKEY_LOCAL_MACHINE\SYSTEM
HKEY_LOCAL_MACHINE\SAM
HKEY_LOCAL_MACHINE\SECURITY
HKEY_LOCAL_MACHINE\SOFTWARE
HKEY_LOCAL_MACHINE\HARDWARE

Hive File Path

\Boot\BCD
%SystemRoot%\System32\Config\Components
%SystemRoot%\System32\Config\System
%SystemRoot%\System32\Config\Sam
%SystemRoot%\System32\Config\Security
%SystemRoot%\System32\Config\Software

Volatile hive

HKEY_USERS\<SID of local service account> %SystemRoot%\ServiceProfiles\LocalService\Ntuser.dat

HKEY_USERS\<SID of network service account> %SystemRoot%\ServiceProfiles\NetworkService\NtUser.dat

HKEY_USERS\<SID of username> \Users\<username>\Ntuser.dat

HKEY_USERS\<SID of username>_Classes \Users\<username>\AppData\Local\Microsoft\Windows\

Usrclass.dat

HKEY_USERS\.DEFAULT %SystemRoot%\System32\Config\Default

JJ EXPERIMENT: Manually Loading and Unloading Hives

Regedit has the ability to load hives that you can access through its File menu. This capability
can be useful in troubleshooting scenarios where you want to view or edit a hive from an un-
bootable system or a backup medium. In this experiment, you'll use Regedit to load a version of
the HKLM\SYSTEM hive that Windows Setup creates during the install process.

1. Hives can be loaded only underneath HKLM or HKU, so open Regedit, select HKLM,
and choose Load Hive from the Regedit File menu.

2. Navigate to the %SystemRoot%\System32\Config\RegBack directory in the Load Hive
dialog box, select System and open it. When prompted, type Test as the name of the
key under which it will load.

3. Open the newly created HKLM\Test key, and explore the contents of the hive.

4. Open HKLM\SYSTEM\CurrentControlSet\Control\Hivelist, and locate the entry
\Registry\Machine\Test, which demonstrates how the configuration manager lists
loaded hives in the Hivelist key.

5. Select HKLM\Test, and then choose Unload Hive from the Regedit File menu to unload
the hive.

294 Windows Internals, Sixth Edition, Part 1

Hive Size Limits

In some cases, hive sizes are limited. For example, Windows places a limit on the size of the
HKLM\SYSTEM hive. It does so because Winload reads the entire HKLM\SYSTEM hive into physical
memory near the start of the boot process when virtual memory paging is not enabled. Winload
also loads Ntoskrnl and boot device drivers into physical memory, so it must constrain the amount of
physical memory assigned to HKLM\SYSTEM. (See Chapter 13 in Part 2 for more information on the
role Winload plays during the startup process.) On 32-bit systems, Winload allows the hive to be as
large as 400 MB or one-half the amount of physical memory on the system, whichever is lower. On
x64 systems, the lower bound is 1.5 GB. On Itanium systems, it is 32 MB.

Registry Symbolic Links

A special type of key known as a registry symbolic link makes it possible for the configuration
manager to link keys to organize the registry. A symbolic link is a key that redirects the configuration
manager to another key. Thus, the key HKLM\SAM is a symbolic link to the key at the root of the SAM
hive. Symbolic links are created by specifying the REG_CREATE_LINK parameter to RegCreateKey

or RegCreateKeyEx. Internally, the configuration manager will create a REG_LINK value called
SymbolicLinkValue, which will contain the path to the target key. Because this value is a REG_LINK
instead of a REG_SZ, it will not be visible with Regedit—it is, however, part of the on-disk registry hive.

EXPERIMENT: Looking at Hive Handles

The configuration manager opens hives by using the kernel handle table (described in

Chapter 3) so that it can access hives from any process context. Using the kernel handle table

is an efficient alternative to approaches that involve using drivers or executive components to
access from the System process only handles that must be protected from user processes. You
can use Process Explorer to see the hive handles, which will be displayed as being opened in the
System process. Select the System process, and then select Handles from the Lower Pane View
menu entry on the View menu. Sort by handle type, and scroll until you see the hive files, as
shown in the following screen.

X Process Explorer - Sysinternals: s sysinternals.com [ALEX-LARTOPYAdministrator] =3 o ===
File Options \iew Process Find Handle Users Help

Bo=Esdx ad | NS

Process FID CPU CSwitch Delta Description
=] System Idie Process 0 9750 2361 [
] Interupts na 074 2,200 Hardware Intemupts
5 DPCs nda 190 Defenred Procedure Calk:
(= & Spstem 4 50
57 smas.exe 400 Windows Session Manager
[B5 carss.exe 468 Client Server Runtime Process -
Ty’pa Mame Handle Access *
File ‘Device\NetBT_Tcpip_[BF274252-514D-4EBS-9660- 149760 40EBTA} 0+10C 0400000000 | |
File C:\Wwindows\System32iconfighT+R\{25083487-750C-494d-BOC3-DABEBEE 2101B L. TM.bif 0«10 0:0012019F
Filz C:A\windowshSystem32hconfighDEFAULT.LOG2 Ox114 0<00000003
Filz C:AwindowshSystem32hconfigRegBack \COMPOMNENTS 0118 0<00020003
Filz C:A\windowshSystem32hconfighSECURITY.LOGT 0<11C 000000003
Filz C:A\windawshSystem32\LogFiles WHINRHE ackup\EMwR TDiaglog.etl 0x120 0x00130088
Filz C:\windawshSystem32hconfighSOFTWARE 0+00020003
ile LSECURITY [003
Filz Sindows\System3IZhconlighSYSTEM 0+00020003
File sWwfindows\Spstem32hconfighDEFALILT 0400020003~

CPU Usage: 2.22% Commit Charge: 2L17% Processes: 53 Threads: 465 Handles: 12412

Management Mechanisms 295

Hive Structure

The configuration manager logically divides a hive into allocation units called blocks in much the
same way that a file system divides a disk into clusters. By definition, the registry block size is 4096
bytes (4 KB). When new data expands a hive, the hive always expands in block-granular increments.
The first block of a hive is the base block.

The base block includes global information about the hive, including a signature—regf—that
identifies the file as a hive, updated sequence numbers, a time stamp that shows the last time a write
operation was initiated on the hive, information on registry repair or recovery performed by Winload,
the hive format version number, a checksum, and the hive file's internal file name (for example,
\Device\HarddiskVolumeI\WINDOWS\SYSTEM32\CONFIG\SAM). We'll clarify the significance of the
updated sequence numbers and time stamp when we describe how data is written to a hive file.

The hive format version number specifies the data format within the hive. The configuration
manager uses hive format version 1.3 (which improved searching by caching the first four charac-
ters of the name inside the cell index structure for quick lookups) for all hives except for System and
Software for roaming profile compatibility with Windows 2000. For System and Software hives, it uses
version 1.5 because of the later format’s optimizations for large values (values larger than 1 MB are
supported) and searching (instead of caching the first four characters of a name, a hash of the entire
name is used to reduce collisions).

Windows organizes the registry data that a hive stores in containers called cells. A cell can hold a
key, a value, a security descriptor, a list of subkeys, or a list of key values. A 4-byte character tag at the
beginning of a cell’s data describes the data’s type as a signature. Table 4-6 describes each cell data
type in detail. A cell’s header is a field that specifies the cell’s size as the 1's complement (not present
in the CM_ structures). When a cell joins a hive and the hive must expand to contain the cell, the
system creates an allocation unit called a bin.

A bin is the size of the new cell rounded up to the next block or page boundary, whichever is
higher. The system considers any space between the end of the cell and the end of the bin to be free
space that it can allocate to other cells. Bins also have headers that contain a signature, hbin, and a
field that records the offset into the hive file of the bin and the bin’s size.

TABLE 4-6 Cell Data Types

Data Type Structure Type Description

Key cell CM_KEY_NODE A cell that contains a registry key, also called a key node. A key
cell contains a signature (kn for a key, kl for a link node), the

time stamp of the most recent update to the key, the cell index
of the key's parent key cell, the cell index of the subkey-list cell
that identifies the key's subkeys, a cell index for the key’s secu-
rity descriptor cell, a cell index for a string key that specifies the
class name of the key, and the name of the key (for example,
CurrentControlSet). It also saves cached information such as the
number of subkeys under the key, as well as the size of the largest
key, value name, value data, and class name of the subkeys under
this key.

296 Windows Internals, Sixth Edition, Part 1

Data Type Structure Type Description

Value cell CM_KEY_VALUE A cell that contains information about a key's value. This cell
includes a signature (kv), the value’s type (for example,

REG_ DWORD or REG_BINARY), and the value's name (for
example, Boot-Execute). A value cell also contains the cell index of
the cell that contains the value's data.

Subkey-list cell CM_KEY_INDEX A cell composed of a list of cell indexes for key cells that are all
subkeys of a common parent key.

Value-list cell CM_KEY_INDEX A cell composed of a list of cell indexes for value cells that are all
values of a common parent key.

Security-descriptor cell | CM_KEY_SECURITY A cell that contains a security descriptor. Security-descriptor cells
include a signature (ks) at the head of the cell and a reference

count that records the number of key nodes that share the securi-
ty descriptor. Multiple key cells can share security-descriptor cells.

By using bins, instead of cells, to track active parts of the registry, Windows minimizes some
management chores. For example, the system usually allocates and deallocates bins less frequently
than it does cells, which lets the configuration manager manage memory more efficiently. When the
configuration manager reads a registry hive into memory, it reads the whole hive, including empty
bins, but it can choose to discard them later. When the system adds and deletes cells in a hive, the
hive can contain empty bins interspersed with active bins. This situation is similar to disk fragmenta-
tion, which occurs when the system creates and deletes files on the disk. When a bin becomes empty,
the configuration manager joins to the empty bin any adjacent empty bins to form as large a contigu-
ous empty bin as possible. The configuration manager also joins adjacent deleted cells to form larger
free cells. (The configuration manager shrinks a hive only when bins at the end of the hive become
free. You can compact the registry by backing it up and restoring it using the Windows RegSaveKey
and RegReplaceKey functions, which are used by the Windows Backup utility.)

The links that create the structure of a hive are called cell indexes. A cell index is the offset of a cell
into the hive file minus the size of the base block. Thus, a cell index is like a pointer from one cell to
another cell that the configuration manager interprets relative to the start of a hive. For example, as
you saw in Table 4-6, a cell that describes a key contains a field specifying the cell index of its parent
key; a cell index for a subkey specifies the cell that describes the subkeys that are subordinate to the
specified subkey. A subkey-list cell contains a list of cell indexes that refer to the subkey’s key cells.
Therefore, if you want to locate, for example, the key cell of subkey A, whose parent is key B, you
must first locate the cell containing key B's subkey list using the subkey-list cell index in key B's cell.
Then you locate each of key B's subkey cells by using the list of cell indexes in the subkey-list cell. For
each subkey cell, you check to see whether the subkey’s name, which a key cell stores, matches the
one you want to locate, in this case, subkey A.

The distinction between cells, bins, and blocks can be confusing, so let's look at an example of a
simple registry hive layout to help clarify the differences. The sample registry hive file in Figure 4-3
contains a base block and two bins. The first bin is empty, and the second bin contains several cells.
Logically, the hive has only two keys: the root key Root, and a subkey of Root, Sub Key. Root has two

Management Mechanisms 297

values, Val 1 and Val 2. A subkey-list cell locates the root key's subkey, and a value-list cell locates
the root key's values. The free spaces in the second bin are empty cells. Figure 4-3 doesn’t show the
security cells for the two keys, which would be present in a hive.

Block boundaries

-
J
-

Base block Empty bin Root Val 1 iy Val 2
Key
. ' |
Bin 1
e

[Key cell (key node) [Subkey-list cell Bin 2
[Value cell [Free space
Il Value-list cell

FIGURE 4-3 Internal structure of a registry hive

To optimize searches for both values and subkeys, the configuration manager sorts subkey-list
cells alphabetically. The configuration manager can then perform a binary search when it looks for a
subkey within a list of subkeys. The configuration manager examines the subkey in the middle of the
list, and if the name of the subkey the configuration manager is looking for is alphabetically before
the name of the middle subkey, the configuration manager knows that the subkey is in the first half
of the subkey list; otherwise, the subkey is in the second half of the subkey list. This splitting process
continues until the configuration manager locates the subkey or finds no match. Value-list cells aren’t
sorted, however, so new values are always added to the end of the list.

Cell Maps

If hives never grew, the configuration manager could perform all its registry management on the
in-memory version of a hive as if the hive were a file. Given a cell index, the configuration manager
could calculate the location in memory of a cell simply by adding the cell index, which is a hive file
offset, to the base of the in-memory hive image. Early in the system boot, this process is exactly

what Winload does with the SYSTEM hive: Winload reads the entire SYSTEM hive into memory as

a read-only hive and adds the cell indexes to the base of the in-memory hive image to locate cells.
Unfortunately, hives grow as they take on new keys and values, which means the system must allocate
paged pool memory to store the new bins that contain added keys and values. Thus, the paged pool
that keeps the registry data in memory isn't necessarily contiguous.

EXPERIMENT: Viewing Hive Paged Pool Usage

There are no administrative-level tools that show you the amount of paged pool that registry
hives, including user profiles, are consuming on Windows. However, the !reg dumppool kernel
debugger command shows you not only how many pages of the paged pool each loaded hive
consumes but also how many of the pages store volatile and nonvolatile data. The command

298 Windows Internals, Sixth Edition, Part 1

prints the total hive memory usage at the end of the output. (The command shows only the last
32 characters of a hive's name.)

kd> !'reg dumppool

dumping hive at e20d66a8 (a\Microsoft\Windows\UsrClass.dat)
Stable Length = 1000
1/1 pages present
Volatile Length = 0

dumping hive at e215ee88 (ettings\Administrator\ntuser.dat)
Stable Length = f2000
242/242 pages present
Volatile Length = 2000
2/2 pages present

dumping hive at el3fal88 (\SystemRoot\System32\Config\SAM)
Stable Length = 5000
5/5 pages present
Volatile Length = 0

To deal with noncontiguous memory addresses referencing hive data in memory, the configuration
manager adopts a strategy similar to what the Windows memory manager uses to map virtual
memory addresses to physical memory addresses. The configuration manager employs a two-level
scheme, which Figure 4-4 illustrates, that takes as input a cell index (that is, a hive file offset) and
returns as output both the address in memory of the block the cell index resides in and the address
in memory of the block the cell resides in. Remember that a bin can contain one or more blocks and
that hives grow in bins, so Windows always represents a bin with a contiguous region of memory.
Therefore, all blocks within a bin occur within the same cache manager view.

Cell index

[Directoryindex | Tableindex | Byteoffset |
32 0

Hive's cell map
directory

o

Target block

Cell map table
— 0 —
; Cell

1023 ~ ~

L—

511

Hive cell map directory pointer

FIGURE 4-4 Structure of a cell index

Management Mechanisms 299

To implement the mapping, the configuration manager divides a cell index logically into fields,
in the same way that the memory manager divides a virtual address into fields. Windows interprets
a cell index’s first field as an index into a hive’s cell map directory. The cell map directory contains
1024 entries, each of which refers to a cell map table that contains 512 map entries. An entry in this
cell map table is specified by the second field in the cell index. That entry locates the bin and block
memory addresses of the cell. Not all bins are necessarily mapped into memory, and if a cell lookup
yields an address of 0, the configuration manager maps the bin into memory, unmapping another on
the mapping LRU list it maintains, if necessary.

In the final step of the translation process, the configuration manager interprets the last field of
the cell index as an offset into the identified block to precisely locate a cell in memory. When a hive
initializes, the configuration manager dynamically creates the mapping tables, designating a map
entry for each block in the hive, and it adds and deletes tables from the cell directory as the changing
size of the hive requires.

The Registry Namespace and Operation

The configuration manager defines a key object type to integrate the registry’s namespace with the
kernel's general namespace. The configuration manager inserts a key object named Registry into the
root of the Windows namespace, which serves as the entry point to the registry. Regedit shows key
names in the form HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet, but the Windows subsystem
translates such names into their object namespace form (for example, \Registry\Machine\System
\CurrentControlSet). When the Windows object manager parses this name, it encounters the key
object by the name of Registry first and hands the rest of the name to the configuration manager. The
configuration manager takes over the name parsing, looking through its internal hive tree to find the
desired key or value. Before we describe the flow of control for a typical registry operation, we need
to discuss key objects and key control blocks. Whenever an application opens or creates a registry
key, the object manager gives a handle with which to reference the key to the application. The handle
corresponds to a key object that the configuration manager allocates with the help of the object
manager. By using the object manager’s object support, the configuration manager takes advantage
of the security and reference-counting functionality that the object manager provides.

For each open registry key, the configuration manager also allocates a key control block. A key
control block stores the name of the key, includes the cell index of the key node that the control block
refers to, and contains a flag that notes whether the configuration manager needs to delete the key
cell that the key control block refers to when the last handle for the key closes. Windows places all key
control blocks into a hash table to enable quick searches for existing key control blocks by name. A
key object points to its corresponding key control block, so if two applications open the same registry
key, each will receive a key object, and both key objects will point to a common key control block.

When an application opens an existing registry key, the flow of control starts with the application
specifying the name of the key in a registry API that invokes the object manager’s name-parsing rou-
tine. The object manager, upon encountering the configuration manager’s registry key object in the
namespace, hands the path name to the configuration manager. The configuration manager performs
a lookup on the key control block hash table. If the related key control block is found there, there’s no

300 Windows Internals, Sixth Edition, Part 1

need for any further work; otherwise, the lookup provides the configuration manager with the closest
key control block to the searched key, and the lookup continues by using the in-memory hive data
structures to search through keys and subkeys to find the specified key. If the configuration man-
ager finds the key cell, the configuration manager searches the key control block tree to determine
whether the key is open (by the same application or another one). The search routine is optimized

to always start from the closest ancestor with a key control block already opened. For example, if an
application opens \Registry\Machine\Key1\Subkey2, and \Registry\Machine is already opened, the
parse routine uses the key control block of \Registry\Machine as a starting point. If the key is open,
the configuration manager increments the existing key control block’s reference count. If the key isn't
open, the configuration manager allocates a new key control block and inserts it into the tree. Then
the configuration manager allocates a key object, points the key object at the key control block, and
returns control to the object manager, which returns a handle to the application.

When an application creates a new registry key, the configuration manager first finds the key cell
for the new key’s parent. The configuration manager then searches the list of free cells for the hive in
which the new key will reside to determine whether cells exist that are large enough to hold the new
key cell. If there aren't any free cells large enough, the configuration manager allocates a new bin and
uses it for the cell, placing any space at the end of the bin on the free cell list. The new key cell fills
with pertinent information—including the key's name—and the configuration manager adds the key
cell to the subkey list of the parent key's subkey-list cell. Finally, the system stores the cell index of the
parent cell in the new subkey’s key cell.

The configuration manager uses a key control block’s reference count to determine when to delete
the key control block. When all the handles that refer to a key in a key control block close, the refer-
ence count becomes 0, which denotes that the key control block is no longer necessary. If an applica-
tion that calls an API to delete the key sets the delete flag, the configuration manager can delete the
associated key from the key’s hive because it knows that no application is keeping the key open.

EXPERIMENT: Viewing Key Control Blocks

You can use the kernel debugger to list all the key control blocks allocated on a system with the
command !reg openkeys command. Alternatively, if you want to view the key control block for a
particular open key, use !reg findkcb:

kd> !'reg findkcb \registry\machine\software\microsoft
Found KCB = e1034d40 :: \REGISTRY\MACHINE\SOFTWARE\MICROSOFT
You can then examine a reported key control block with the !reg kcb command:

kd> !'reg kcb e1034d40

Key : \REGISTRY\MACHINE\SOFTWARE\MICROSOFT
RefCount : 1f

Flags : CompressedName, Stable

ExtFlags :

Parent : 0xel997368

KeyHive : Oxelc8a768

Management Mechanisms 301

KeyCeTl1

1 0x64e598 [cell 1index]

TotalLevels H

DelayedCloseIndex: 2048
MaxNameLen 1 0x3c
MaxValueNameLen : 0x0
MaxValueDatalen : 0x0

LastWriteTime

: Ox 1c42501:0x7eb6d470

KeyBodyListHead : 0xel034d70 0xel034d70
SubKeyCount : 137

ValueCache.Count : 0

KCBLock : 0xel034d40

KeyLock 1 0xel034d40

The Flags field indicates that the name is stored in compressed form, and the SubKeyCount
field shows that the key has 137 subkeys.

Stable Storage

To make sure that a nonvolatile registry hive (one with an on-disk file) is always in a recoverable state,
the configuration manager uses log hives. Each nonvolatile hive has an associated log hive, which is

a hidden file with the same base name as the hive and a logN extension. To ensure forward progress,
the configuration manger uses a dual-logging scheme. There are potentially two log files: .logl and
Jog2. If, for any reason, .logl was written but a failure occurred while writing dirty data to the primary
log file, the next time a flush happens, a switch to .log2 will occur with the cumulative dirty data. If
that fails as well, the cumulative dirty data (the data in .logl and the data that was dirtied in between)
is saved in .log2. As a consequence, .logl will be used again next time around, until a successful write
operation is done to the primary log file. If no failure occurs, only .logl is used.

For example, if you look in your %SystemRoot%\System32\Config directory (and you have the
Show Hidden Files And Folders folder option selected), you'll see System.logl, Sam.logl, and other
Jogl and .log2 files. When a hive initializes, the configuration manager allocates a bit array in which
each bit represents a 512-byte portion, or sector, of the hive. This array is called the dirty sector
array because an on bit in the array means that the system has modified the corresponding sector
in the hive in memory and must write the sector back to the hive file. (An off bit means that the
corresponding sector is up to date with the in-memory hive’s contents.)

When the creation of a new key or value or the modification of an existing key or value takes place,
the configuration manager notes the sectors of the hive that change in the hive’s dirty sector array.
Then the configuration manager schedules a lazy write operation, or a hive sync. The hive lazy writer
system thread wakes up five seconds after the request to synchronize the hive and writes dirty hive
sectors for all hives from memory to the hive files on disk. Thus, the system flushes, at the same time,
all the registry modifications that take place between the time a hive sync is requested and the time
the hive sync occurs. When a hive sync takes place, the next hive sync will occur no sooner than five
seconds later.

302 Windows Internals, Sixth Edition, Part 1

Note The RegFlushKey API's name implies that the function flushes only modified

data for a specified key to disk, but it actually triggers a full registry flush, which has a
major performance impact on the system. For that reason and the fact that the registry
automatically makes sure that modified data is in stable storage within seconds, application
programmers should avoid using it.

If the lazy writer simply wrote all a hive's dirty sectors to the hive file and the system crashed in
mid-operation, the hive file would be in an inconsistent (corrupted) and unrecoverable state. To
prevent such an occurrence, the lazy writer first dumps the hive's dirty sector array and all the dirty
sectors to the hive's log file, increasing the log file's size if necessary. The lazy writer then updates
a sequence number in the hive's base block and writes the dirty sectors to the hive. When the lazy
writer is finished, it updates a second sequence number in the base block. Thus, if the system crashes
during the write operations to the hive, at the next reboot the configuration manager will notice
that the two sequence numbers in the hive's base block don’t match. The configuration manager can
update the hive with the dirty sectors in the hive’s log file to roll the hive forward. The hive is then up
to date and consistent.

The Windows Boot Loader also contains some code related to registry reliability. For example, it
can parse the System.log file before the kernel is loaded and do repairs to fix consistency. Addition-
ally, in certain cases of hive corruption (such as if a base block, bin, or cell contains data that fails
consistency checks), the configuration manager can reinitialize corrupted data structures, possibly
deleting subkeys in the process, and continue normal operation. If it has to resort to a self-healing
operation, it pops up a system error dialog box notifying the user.

Registry Filtering

The configuration manager in the Windows kernel implements a powerful model of registry filtering,
which allows for monitoring of registry activity by tools such as Process Monitor. When a driver uses

the callback mechanism, it registers a callback function with the configuration manager. The configu-
ration manager executes the driver’s callback function before and after the execution of registry sys-
tem services so that the driver has full visibility and control over registry accesses. Antivirus products
that scan registry data for viruses or prevent unauthorized processes from modifying the registry are
other users of the callback mechanism.

Registry callbacks are also associated with the concept of altitudes. Altitudes are a way for different
vendors to register a "height” on the registry filtering stack so that the order in which the system calls
each callback routine can be deterministic and correct. This avoids a scenario in which an antivirus
product would be scanning encrypted keys before an encryption product would run its own callback
to decrypt them. With the Windows registry callback model, both types of tools are assigned a base
altitude corresponding to the type of filtering they are doing—in this case, encryption versus scan-
ning. Secondly, companies that create these types of tools must register with Microsoft so that within
their own group, they will not collide with similar or competing products.

Management Mechanisms 303

The filtering model also includes the ability to either completely take over the processing of
the registry operation (bypassing the configuration manager and preventing it from handling the
request) or redirect the operation to a different operation (such as Wow64's registry redirection).
Additionally, it is also possible to modify the output parameters as well as the return value of a
registry operation.

Finally, drivers can assign and tag per-key or per-operation driver-defined information for their
own purposes. A driver can create and assign this context data during a create or open operation,
which the configuration manager will remember and return during each subsequent operation on the
key.

Registry Optimizations

The configuration manager makes a few noteworthy performance optimizations. First, virtually every
registry key has a security descriptor that protects access to the key. Storing a unique security-de-
scriptor copy for every key in a hive would be highly inefficient, however, because the same security
settings often apply to entire subtrees of the registry. When the system applies security to a key, the
configuration manager checks a pool of the unique security descriptors used within the same hive as
the key to which new security is being applied, and it shares any existing descriptor for the key, ensur-
ing that there is at most one copy of every unique security descriptor in a hive.

The configuration manager also optimizes the way it stores key and value names in a hive. Al-
though the registry is fully Unicode-capable and specifies all names using the Unicode convention, if
a name contains only ASCII characters, the configuration manager stores the name in ASCIl form in
the hive. When the configuration manager reads the name (such as when performing name lookups),
it converts the name into Unicode form in memory. Storing the name in ASCII form can significantly
reduce the size of a hive.

To minimize memory usage, key control blocks don't store full key registry path names. Instead,
they reference only a key's name. For example, a key control block that refers to \Registry\System\
Control would refer to the name Control rather than to the full path. A further memory optimiza-
tion is that the configuration manager uses key name control blocks to store key names, and all key
control blocks for keys with the same name share the same key name control block. To optimize
performance, the configuration manager stores the key control block names in a hash table for quick
lookups.

To provide fast access to key control blocks, the configuration manager stores frequently accessed
key control blocks in the cache table, which is configured as a hash table. When the configuration
manager needs to look up a key control block, it first checks the cache table. Finally, the configuration
manager has another cache, the delayed close table, that stores key control blocks that applications
close so that an application can quickly reopen a key it has recently closed. To optimize lookups, these
cache tables are stored for each hive. The configuration manager removes the oldest key control
blocks from the delayed close table as it adds the most recently closed blocks to the table.

304 Windows Internals, Sixth Edition, Part 1

Services

Almost every operating system has a mechanism to start processes at system startup time that
provide services not tied to an interactive user. In Windows, such processes are called services or
Windows services, because they rely on the Windows API to interact with the system. Services are
similar to UNIX daemon processes and often implement the server side of client/server applications.
An example of a Windows service might be a web server, because it must be running regardless of
whether anyone is logged on to the computer and it must start running when the system starts so
that an administrator doesn’t have to remember, or even be present, to start it.

Windows services consist of three components: a service application, a service control program
(SCP), and the service control manager (SCM). First, we'll describe service applications, service
accounts, and the operations of the SCM. Then we'll explain how auto-start services are started
during the system boot. We'll also cover the steps the SCM takes when a service fails during its
startup and the way the SCM shuts down services.

Service Applications

Service applications, such as web servers, consist of at least one executable that runs as a Windows
service. A user wanting to start, stop, or configure a service uses an SCP. Although Windows supplies
built-in SCPs that provide general start, stop, pause, and continue functionality, some service applica-
tions include their own SCP that allows administrators to specify configuration settings particular to
the service they manage.

Service applications are simply Windows executables (GUI or console) with additional code to
receive commands from the SCM as well as to communicate the application’s status back to the SCM.
Because most services don't have a user interface, they are built as console programs.

When you install an application that includes a service, the application’s setup program
must register the service with the system. To register the service, the setup program calls the
Windows CreateService function, a services-related function implemented in Advapi32.dll
(%SystemRoot%\System32\Advapi32.dll). Advapi32, the "Advanced API” DLL, implements all the
client-side SCM APIs.

When a setup program registers a service by calling CreateService, a message is sent to the SCM
on the machine where the service will reside. The SCM then creates a registry key for the service
under HKLM\SYSTEM\CurrentControlSet\Services. The Services key is the nonvolatile representation
of the SCM's database. The individual keys for each service define the path of the executable image
that contains the service as well as parameters and configuration options.

After creating a service, an installation or management application can start the service via the
StartService function. Because some service-based applications also must initialize during the boot
process to function, it's not unusual for a setup program to register a service as an auto-start service,
ask the user to reboot the system to complete an installation, and let the SCM start the service as the
system boots.

Management Mechanisms 305

When a program calls CreateService, it must specify a number of parameters describing the
service's characteristics. The characteristics include the service's type (whether it's a service that runs
in its own process rather than a service that shares a process with other services), the location of the
service’s executable image file, an optional display name, an optional account name and password
used to start the service in a particular account’s security context, a start type that indicates whether
the service starts automatically when the system boots or manually under the direction of an SCP,
an error code that indicates how the system should react if the service detects an error when start-
ing, and, if the service starts automatically, optional information that specifies when the service starts
relative to other services.

The SCM stores each characteristic as a value in the service's registry key. Figure 4-5 shows an
example of a service registry key.

o Registry Editor ==Es
File Edit View Favorites Help
4 {8 Computer || Name Type Data
:Eg—gbﬁiﬁfﬂ;; || 25){Defaulty REG_SZ (value not set)
" - = || 28| Description REG_SZ @%SystemPootXisystern3Ziaelupsvedil, -2

a4 HKEY_LOCAL_MACHIME
, BCDOOO00000

COMPONENTS

HARDW/ARE

REG_SZ Application Experience
REG_DWORD 000000001 (1)
REG_EINARY 50510100 00 00 00 00 00 00 00 00 03 00 00 00 14 00 00 00 1)

Sam 28 ImagePath REG_EXPAND_SZ %systermroothsystem3Zisechost, exe -k netsves
SECURITY 25| Objecthlame REG_SZ. localSystern
.| SOFTWARE 28 RequiredPrivileges REG_MULTLSZ SeTcbPrivilege SelmpersonatePrivilege
4| SYSTEM 52 Start REG_DWORD: 00000004 (4)
ControlSet002 e Type REG_DWORD 0000020 (32)

| ControlSetd3
ContralSetl4
4| CurrentControlSet
Control
Deleted Device IDs
Enum
Hardware Profiles
4)y Services
NET CLR Dat
MET CLR Metworking
NET Dsta Provider for On
NET Data Provider far ¢
METFramework
[25ED7262-BEAA-4784-B
19606 L4ED-0F 24-473E-8¢
{BF27A252-514D-4EBS-9¢
[EBF6BE52-T10B-4C0C-B
APl
adpiboc
adpahci
adpulélm
adpudil
adsi
AeLookupSue
AFD o
< I v < . b

ComputeryHKEY_LOCAL_MACHINENSYSTEMY CurrentContralSet\Services\AeLookupSue

FIGURE 4-5 Example of a service registry key

Table 4-7 lists all the service characteristics, many of which also apply to device drivers. (Not every
characteristic applies to every type of service or device driver.) If a service needs to store configura-
tion information that is private to the service, the convention is to create a subkey named Parameters
under its service key and then store the configuration information in values under that subkey. The
service then can retrieve the values by using standard registry functions.

Note The SCM does not access a service's Parameters subkey until the service is deleted, at
which time the SCM deletes the service’s entire key, including subkeys like Parameters.

306 Windows Internals, Sixth Edition, Part 1

TABLE 4-7 Service and Driver Registry Parameters

Value Setting

Start

ErrorControl

Type

Group

Tag

ImagePath

Value Name

SERVICE_BOOT_START (0)

SERVICE_SYSTEM_START (1)

SERVICE_AUTO_START (2)

SERVICE_DEMAND_START (3)

SERVICE_DISABLED (4)
SERVICE_ERROR_IGNORE (0)

SERVICE_ERROR_NORMAL (1)

SERVICE_ERROR_SEVERE (2)

SERVICE_ERROR_CRITICAL (3)

SERVICE_KERNEL_DRIVER (1)

SERVICE_FILE_SYSTEM_DRIVER (2)

SERVICE_ADAPTER (4)

SERVICE_RECOGNIZER_DRIVER (8)
SERVICE_WIN32_OWN_PROCESS (16)

SERVICE_WIN32_SHARE_PROCESS (32)

SERVICE_INTERACTIVE_PROCESS (256)

Group name

Tag number

Path to the service or driver executable file

Value Setting Description

Winload preloads the driver so that it is in
memory during the boot. These drivers are
initialized just prior to SERVICE_ SYSTEM_
START drivers.

The driver loads and initializes during kernel
initialization after SERVICE_ BOOT_START
drivers have initialized.

The SCM starts the driver or service after the
SCM process, Services.exe, starts.

The SCM starts the driver or service on
demand.

The driver or service doesn’t load or initialize.

Any error the driver or service returns
is ignored, and no warning is logged or
displayed.

If the driver or service reports an error, an
event log message is written.

If the driver or service returns an error and
last known good isn’t being used, reboot into
last known good; otherwise, continue the
boot.

If the driver or service returns an error and
last known good isn’t being used, reboot into
last known good; otherwise, stop the boot
with a blue screen crash.

Device driver.

Kernel-mode file system driver.
Obsolete.

File system recognizer driver.

The service runs in a process that hosts only
one service.

The service runs in a process that hosts
multiple services.

The service is allowed to display windows on
the console and receive user input, but only
on the console session (0) to prevent interact-
ing with user/console applications on other
sessions.

The driver or service initializes when its group
is initialized.

The specified location in a group initialization
order. This parameter doesn't apply to
services.

If ImagePath isn't specified, the I/O manager
looks for drivers in %SystemRoot%\
System32\Drivers. Required for Windows
services.

Management Mechanisms 307

Value Setting

DependOnGroup

DependOnService

ObjectName

DisplayName

Description

FailureActions

FailureCommand

DelayedAutoStart

PreshutdownTimeout

ServiceSidType

RequiredPrivileges

Security

Value Name

Group name

Service name

Usually LocalSystem, but it can be an
account name, such as \Administrator

Name of the service

Description of service

Description of actions the SCM should
take when the service process exits
unexpectedly

Program command line

0 or 1 (TRUE or FALSE)

Timeout in milliseconds

SERVICE_SID_TYPE_NONE (0)
SERVICE_SID_TYPE_UNRESTRICTED (1)

SERVICE_SID_TYPE_RESTRICTED (3)

List of privileges

Security descriptor

308 Windows Internals, Sixth Edition, Part 1

Value Setting Description

The driver or service won't load unless a
driver or service from the specified group
loads.

The service won't load until after the
specified service loads. This parameter
doesn't apply to device drivers other than
those with a start type of SERVICE_AUTO_
START or SERVICE_DEMAND_START.

Specifies the account in which the ser-
vice will run. If ObjectName isn't speci-
fied, LocalSystem is the account used. This
parameter doesn't apply to device drivers.

The service application shows services by this
name. If no name is specified, the name of
the service's registry key becomes its name.

Up to 32767-byte description of the service.

Failure actions include restarting the service
process, rebooting the system, and running
a specified program. This value doesn't apply
to drivers.

The SCM reads this value only if
FailureActions specifies that a program
should execute upon service failure. This
value doesn't apply to drivers.

Tells the SCM to start this service after a
certain delay has passed since the SCM was
started. This reduces the number of services
starting simultaneously during startup.

This value allows services to override the
default preshutdown notification timeout of
180 seconds. After this timeout, the SCM will
perform shutdown actions on the service if it
has not yet responded.

Backward-compatibility setting.

The SCM will add the service SID as a group
owner to the service process’ token when it
is created.

Same as above, but the SCM will also add the
service SID to the restricted SID list of the
service process, along with the world, logon,
and write-restricted SIDs.

This value contains the list of privileges that
the service requires to function. The SCM will
compute their union when creating the token
for the shared process related to this service,
if any.

This value contains the optional security
descriptor that defines who has what access
to the service object created internally by the
SCM. If this value is omitted, the SCM applies
a default security descriptor.

Notice that Type values include three that apply to device drivers: device driver, file system driver,
and file system recognizer. These are used by Windows device drivers, which also store their parame-
ters as registry data in the Services registry key. The SCM is responsible for starting drivers with a Start
value of SERVICE_AUTO_START or SERVICE_DEMAND_START, so it's natural for the SCM database to
include drivers. Services use the other types, SERVICE_WIN32_OWN_PROCESS and SERVICE_WIN32_
SHARE_PROCESS, which are mutually exclusive. An executable that hosts more than one service
specifies the SERVICE_WIN32_SHARE_PROCESS type.

An advantage to having a process run more than one service is that the system resources that
would otherwise be required to run them in distinct processes are saved. A potential disadvantage is
that if one of the services of a collection running in the same process causes an error that terminates
the process, all the services of that process terminate. Also, another limitation is that all the services
must run under the same account (however, if a service takes advantage of service security hardening
mechanisms, it can limit some of its exposure to malicious attacks).

When the SCM starts a service process, the process must immediately invoke the
StartServiceCtrIDispatcher function. StartServiceCtrIDispatcher accepts a list of entry points into
services, one entry point for each service in the process. Each entry point is identified by the name of
the service the entry point corresponds to. After making a named-pipe communications connection
to the SCM, StartServiceCtrIDispatcher waits for commands to come through the pipe from the SCM.
The SCM sends a service-start command each time it starts a service the process owns. For each
start command it receives, the StartServiceCtrIDispatcher function creates a thread, called a service
thread, to invoke the starting service's entry point and implement the command loop for the service.
StartServiceCtrIDispatcher waits indefinitely for commands from the SCM and returns control to the
process’ main function only when all the process’ services have stopped, allowing the service process
to clean up resources before exiting.

A service entry point’s first action is to call the RegisterServiceCtrIHandler function. This function
receives and stores a pointer to a function, called the control handler, which the service implements to
handle various commands it receives from the SCM. RegisterServiceCtrIHandler doesn't communicate
with the SCM, but it stores the function in local process memory for the StartServiceCtriDispatcher
function. The service entry point continues initializing the service, which can include allocating mem-
ory, creating communications end points, and reading private configuration data from the registry.

As explained earlier, a convention most services follow is to store their parameters under a subkey of
their service registry key, named Parameters.

While the entry point is initializing the service, it must periodically send status messages, using the
SetServiceStatus function, to the SCM indicating how the service's startup is progressing. After the
entry point finishes initialization, a service thread usually sits in a loop waiting for requests from client
applications. For example, a Web server would initialize a TCP listen socket and wait for inbound HTTP
connection requests.

A service process’ main thread, which executes in the StartServiceCtriDispatcher function, receives
SCM commands directed at services in the process and invokes the target service’s control han-

Management Mechanisms 309

dler function (stored by RegisterServiceCtrIHandler). SCM commands include stop, pause, resume,
interrogate, and shutdown or application-defined commands. Figure 4-6 shows the internal organiza-
tion of a service process. Pictured are the two threads that make up a process hosting one service: the

main thread and the service thread.

Main thread Service thread
| Main | RegisterServiceCtrIHandler
Pipe to l
SCM /|
I:l 4—@—-» | StartServiceCtrlDispatcher | Initialize |
@

| Service control handler

Process client requests |

Connections to

1. StartServiceCtrlDispatcher launches service thread. service clients

2. Service thread registers control handler.
3. StartServiceCtrIDispatcher calls handlers in response to SCM commands.
4. Service thread processes client requests.

FIGURE 4-6 Inside a service process

Service Accounts

The security context of a service is an important consideration for service developers as well as for
system administrators because it dictates what resources the process can access. Unless a service
installation program or administrator specifies otherwise, most services run in the security context

of the local system account (displayed sometimes as SYSTEM and other times as LocalSystem). Two
other built-in accounts are the network service and local service accounts. These accounts have fewer
capabilities than the local system account from a security standpoint, and any built-in Windows
service that does not require the power of the local system account runs in the appropriate alternate
service account. The following subsections describe the special characteristics of these accounts.

The Local System Account

The local system account is the same account in which core Windows user-mode operating system
components run, including the Session Manager (%SystemRoot%\System32\Smss.exe), the Windows
subsystem process (Csrss.exe), the Local Security Authority process (%SystemRoot%\System32
\Lsass.exe), and the Logon process (%SystemRoot%\System32\Winlogon.exe). For more information
on these latter two processes, see Chapter 6.

310 Windows Internals, Sixth Edition, Part 1

From a security perspective, the local system account is extremely powerful—more powerful than
any local or domain account when it comes to security ability on a local system. This account has the
following characteristics:

It is a member of the local administrators group. Table 4-8 shows the groups to which the local
system account belongs. (See Chapter 6 for information on how group membership is used in
object access checks.)

It has the right to enable virtually every privilege (even privileges not normally granted to the
local administrator account, such as creating security tokens). See Table 4-9 for the list of privi-
leges assigned to the local system account. (Chapter 6 describes the use of each privilege.)

Most files and registry keys grant full access to the local system account. (Even if they don't
grant full access, a process running under the local system account can exercise the take-
ownership privilege to gain access.)

Processes running under the local system account run with the default user profile
(HKU\.DEFAULT). Therefore, they can't access configuration information stored in the user
profiles of other accounts.

When a system is a member of a Windows domain, the local system account includes the
machine security identifier (SID) for the computer on which a service process is running.
Therefore, a service running in the local system account will be automatically authenticated
on other machines in the same forest by using its computer account. (A forest is a grouping of
domains.)

Unless the machine account is specifically granted access to resources (such as network shares,
named pipes, and so on), a process can access network resources that allow null sessions—that
is, connections that require no credentials. You can specify the shares and pipes on a particu-
lar computer that permit null sessions in the NullSessionPipes and NullSessionShares registry
values under HKLM\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters.

TABLE 4-8 Service Account Group Membership

Local System Network Service Local Service
Everyone Everyone Everyone
Authenticated Users Authenticated Users Authenticated Users
Administrators Users Users

Local Local

Network Service Local Service

Service Service

Management Mechanisms

311

TABLE 4-9 Service Account Privileges

Local System

SeAssignPrimaryTokenPrivilege
SeAuditPrivilege
SeBackupPrivilege
SeChangeNotifyPrivilege
SeCreateGlobalPrivilege
SeCreatePagefilePrivilege
SeCreatePermanentPrivilege
SeCreateTokenPrivilege
SeDebugPrivilege
SelmpersonatePrivilege
SelncreaseBasePriorityPrivilege
SelncreaseQuotaPrivilege
SeLoadDriverPrivilege
SeLockMemoryPrivilege
SeManageVolumePrivilege
SeProfileSingleProcessPrivilege
SeRestorePrivilege
SeSecurityPrivilege
SeShutdownPrivilege
SeSystemEnvironmentPrivilege
SeSystemTimePrivilege
SeTakeOwnershipPrivilege
SeTcbPrivilege
SeUndockPrivilege (client only)

Network Service

SeAssignPrimaryTokenPrivilege
SeAuditPrivilege
SeChangeNotifyPrivilege
SeCreateGlobalPrivilege
SelmpersonatePrivilege
SelncreaseQuotaPrivilege
SeShutdownPrivilege
SeUndockPrivilege (client only)
Privileges assigned to the Everyone,
Authenticated Users, and Users
groups

The Network Service Account

Local Service

SeAssignPrimaryTokenPrivilege
SeAuditPrivilege
SeChangeNotifyPrivilege
SeCreateGlobalPrivilege
SelmpersonatePrivilege
SelncreaseQuotaPrivilege
SeShutdownPrivilege
SeUndockPrivilege (client only)
Privileges assigned to the Everyone,
Authenticated Users, and Users
groups

The network service account is intended for use by services that want to authenticate to other
machines on the network using the computer account, as does the local system account, but do

not have the need for membership in the Administrators group or the use of many of the privileges
assigned to the local system account. Because the network service account does not belong to the
Administrators group, services running in the network service account by default have access to far
fewer registry keys and file system folders and files than the services running in the local system
account. Further, the assignment of few privileges limits the scope of a compromised network service
process. For example, a process running in the network service account cannot load a device driver or

open arbitrary processes.

Another difference between the network service and local system accounts is that processes
running in the network service account use the network service account’s profile. The registry
component of the network service profile loads under HKU\S-1-5-20, and the files and directories that
make up the component reside in %SystemRoot%\ServiceProfiles\NetworkService.

A service that runs in the network service account is the DNS client, which is responsible for
resolving DNS names and for locating domain controllers.

The Local Service Account

The local service account is virtually identical to the network service account with the important
difference that it can access only network resources that allow anonymous access. Table 4-9 shows
that the network service account has the same privileges as the local service account, and Table 4-8

312 Windows Internals, Sixth Edition, Part 1

shows that it belongs to the same groups with the exception that it belongs to the Network Service
group instead of the Local Service group. The profile used by processes running in the local service
loads into HKU\S-1-5-19 and is stored in %SystemRoot%\ServiceProfiles\LocalService.

Examples of services that run in the local service account include the Remote Registry Service,
which allows remote access to the local system's registry, and the LmHosts service, which performs
NetBIOS name resolution.

Running Services in Alternate Accounts

Because of the restrictions just outlined, some services need to run with the security credentials of a
user account. You can configure a service to run in an alternate account when the service is created or
by specifying an account and password that the service should run under with the Windows Services
MMC snap-in. In the Services snap-in, right-click on a service and select Properties, click on the Log
On tab, and select the This Account option, as shown in Figure 4-7.

Running with Least Privilege

Services typically are subject to an all-or-nothing model, meaning that all privileges available to the
account the service process is running under are available to a service running in the process that
might require only a subset of those privileges. To better conform to the principle of least privilege, in
which Windows assigns services only the privileges they require, developers can specify the privileges
their service requires, and the SCM creates a security token that contains only those privileges.

Human Interface Device Access Properties (Local Computer) =3

| General| Log On | Fecovery Dependencies|

Log on az

() Local System account
Allow service to interact with desklop

@ This account: Dave Cutler Browse...
Pazaword: LITTITYTTITY T
LConfirm pazsword: T ITTTIITITITITIT]

Help me configure user sccount loq on options.

*f'ou can enable or dizable thiz service for the hardware profiles listed below:

Hardware Profile Service

Undocked Profile Enabled

Troublezhooting using hardware profiles. Enable

[QK J[Cancel][Apply]

FIGURE 4-7 Service account settings

Management Mechanisms 313

Note The privileges a service specifies must be a subset of those that are available to the
service account in which it runs.

Service developers use the ChangeServiceConfig2 API to indicate the list of privileges they desire.
The API saves that information in the registry under the Parameters key for the service. When the
service starts, the SCM reads the key and adds those privileges to the token of the process in which
the service is running.

If there is a RequiredPrivileges value and the service is a stand-alone service (running as a
dedicated process), the SCM creates a token containing only the privileges that the service needs.
For services running as part of a multiservice service process (as are most services that are part of
Windows) and specifying required privileges, the SCM computes the union of those privileges and
combines them for the service-hosting process’ token. In other words, only the privileges not speci-
fied by any of the services that are part of that service group will be removed. In the case in which the
registry value does not exist, the SCM has no choice but to assume that the service is either incom-
patible with least privileges or requires all privileges in order to function. In this case, the full token is
created, containing all privileges, and no additional security is offered by this model. To strip almost
all privileges, services can specify only the Change Notify privilege.

EXPERIMENT: Viewing Privileges Required by Services

You can look at the privileges a service requires with the Service Control utility, Sc.exe, and the
gprivs option. Additionally, Process Explorer can show you information about the security token
of any service process on the system, so you can compare the information returned by Sc.exe
with the privileges part of the token. The following steps show you how to do this for some of
the best locked-down services on the system.

1. Use Sc.exe to take a look at the required privileges specified by Dhcp by typing the
following into a command prompt:

sc gprivs dhcp

You should see two privileges being requested: the SeCreateGlobalPrivilege and the
SeChangeNotifyPrivilege.

2. Run Process Explorer, and take a look at the process list.

You should see a couple of Svchost.exe processes that are hosting the services on your
machine. Process Explorer highlights these in pink.

3. Now locate the service hosting process in which the Dhcp service is running. It should
be running alongside other services that are part of the LocalServiceNetworkRestricted
service group, such as the Audiosrv service and Eventlog service. You can do this by
hovering the mouse over each Svchost process and reading the tooltip, which contains
the names of the services running inside the service host.

314 Windows Internals, Sixth Edition, Part 1

4. Once you've found the process, double-click to open the Properties dialog box and
select the Security tab.

=] swchost.exe:340 Properties = | 5]
| Image I Performance | Performance Graph I Services |
| Threads | Tcee | Security | Enwironment | strings |

User: NT AUTHORITYILOCAL SERVICE
SID: 3-1-5-19

Session: 0 Virtualized: Mo
Group Flags i
BUILTIMN%zers b andatory
Everpone b andatory
LOCAL b andatory
Logon 510 [5-1-5-5-0-79995) Ownier

Mandatory Label\System Mandatory Level Integrity
MT AUTHORITY\Authenticated Users b andatory

m

MNT AUTHORITYASERWICE Mandatary

MT AUTHORITYThiz QOrganization b andatory

WT SERVICE\audiosry Cwner

MT SERVICE\Dhcp Ownier

MT SERVICE\E ventLog Ownier

MT SERVICE\FCRegSve Ownier i
WNT SERVICE Imhosts Cwner -

Group SID: nfa

a% Frivilege Flags

— SeChangeMotifyPrivilege Drefault Enabled
SeCreateGlobalPrivilege Drefault Enabled
SelmpersonatePrivilege Drefault Enabled

Selncrease'orkingS etPrivilege Dizabled

Permissions

[OF] [Cancel]

Note that although the service is running as part of the local service account, the list of
privileges Windows assigned to it is much shorter than the list available to the local service
account shown in Table 4-9.

Because for a service-hosting process the privileges part of the token is the union of the
privileges requested by all the services running inside it, this must mean that services such as
Audiosrv and Eventlog have not requested privileges other than the ones shown by Process
Explorer. You can verify this by running the Sc.exe tool on those other services as well.

Service Isolation

Although restricting the privileges that a service has access to helps lessen the ability of a
compromised service process to compromise other processes, it does nothing to isolate the service
from resources that the account in which it is running has access to under normal conditions. As
mentioned earlier, the local system account has complete access to critical system files, registry keys,

Management Mechanisms 315

and other securable objects on the system because the access control lists (ACLs) grant permissions to
that account.

At times, access to some of these resources is indeed critical to a service's operation, while other
objects should be secured from the service. Previously, to avoid running in the local system account
to obtain access to required resources, a service would be run under a standard user account and
ACLs would be added on the system objects, which greatly increased the risk of malicious code at-
tacking the system. Another solution was to create dedicated service accounts and set specific ACLs
for each account (associated to a service), but this approach easily became an administrative hassle.

Windows now combines these two approaches into a much more manageable solution: it allows
services to run in a nonprivileged account but still have access to specific privileged resources without
lowering the security of those objects. In a manner similar to the second pre-Windows Vista solution,
the ACLs on an object can now set permissions directly for a service, but not by requiring a dedicated
account. Instead, the SCM generates a service SID to represent a service, and this SID can be used
to set permissions on resources such as registry keys and files. Service SIDs are implemented in the
group SIDs part of the token for any process hosting a service. They are generated by the SCM during
system startup for each service that has requested one via the ChangeServiceConfig2 API. In the case
of service-hosting processes (a process that contains more than one service), the process’ token will
contain the service SIDs of all services that are part of the service group associated with the process,
including services that are not started because there is no way to add new SIDs after a token has been
created.

The usefulness of having a SID for each service extends beyond the mere ability to add ACL entries
and permissions for various objects on the system as a way to have fine-grained control over their
access. Our discussion initially covered the case in which certain objects on the system, accessible
by a given account, must be protected from a service running within that same account. As we've
described to this point, service SIDs prevent that problem only by requiring that Deny entries associ-
ated with the service SID be placed on every object that needs to be secured, a clearly unmanageable
approach.

To avoid requiring Deny access control entries (ACEs) as a way to prevent services from having
access to resources that the user account in which they run does have access, there are two types of
service SIDs: the restricted service SID (SERVICE_SID_TYPE_RESTRICTED) and the unrestricted service
SID (SERVICE_SID_TYPE_UNRESTRICTED), the latter being the default and the case we've looked at
until now.

Unrestricted service SIDs are created as enabled-by-default, group owner SIDs, and the process
token is also given a new ACE providing full permission to the service logon SID, which allows the
service to continue communicating with the SCM. (A primary use of this would be to enable or disable
service SIDs inside the process during service startup or shutdown.)

A restricted service SID, on the other hand, turns the service-hosting process’ token into a
write-restricted token (see Chapter 6 for more information on tokens), which means that only objects
granting explicit write access to the service SID will be writable by the service, regardless of the
account it's running as. Because of this, all services running inside that process (part of the same

316 Windows Internals, Sixth Edition, Part 1

service group) must have the restricted SID type; otherwise, services with the restricted SID type will
fail to start. Once the token becomes write-restricted, three more SIDs are added for compatibility
reasons:

m The world SID is added to allow write access to objects that are normally accessible by anyone
anyway, most importantly certain DLLs in the load path.

m The service logon SID is added to allow the service to communicate with the SCM.

m The write-restricted SID is added to allow objects to explicitly allow any write-restricted service
write access to them. For example, Event Tracing for Windows (ETW) uses this SID on its
objects to allow any write-restricted service to generate events.

Figure 4-8 shows an example of a service-hosting process containing services that have been
marked as having restricted service SIDs. For example, the Base Filtering Engine (BFE), which is
responsible for applying Windows Firewall filtering rules, is part of this service because these rules
are stored in registry keys that must be protected from malicious write access should a service be
compromised. (This could allow a service exploit to disable the outgoing traffic firewall rules, enabling
bidirectional communication with an attacker, for example.)

[m] swchost.exei1212 Properties El@

| mege | Parformance | PerformanceGroph | services |
Threads TCRIIP Security Enviranment Strings

g User: NT AUTHORITYILOCAL SERVICE

SID: 5-1-5-19

Session: 0 virtualized: Mo

Graup Flags
BUILTIMNSUsers Mandatory

Evemone Mandatory, Restricted
Ewerane Mandatory

LOCAL Mandatory

Lagon 510 (5-1-5-5-0-11021398) Mandatory, Restricted
Logon 510 (5-1-5-5-0-11021398) Oner

Mandatory Label\System Mandatary Level Integrity

MT AUTHORITY Authenticated Users Mandatory

NT AUTHORITYSSERVICE Mandatory

MT AUTHORITYThis Organization Mandatory

NT AUTHORITYSWRITE RESTRICTED Mandatory, Restricted
NT AUTHORITYSWRITE RESTRICTED Mandatory

MNT SERVICE\BFE Mandatory, Restricted

MT SERVICE\BFE Quner

NT SERVICESDPS Mandatory, Restricted

NT SERVICE\DPS Quner

NT SERVICE\Mps5vc Mandatory, Restricted

MT SERVICE \MpsSve Oner

MNT SERVICE \pla Mandatory, Restricted

MT SERVICE\pla Oner

] m ¢

Group SID: nfa

ai Privilege Flags

= SedssignPrimaryTokenPrivilege Disabled
SeduditPriviege Enabled
SeChangeMatifyPrivilege Default Enabled
SeCreateGlobalPrivilege Default Enabled
SelmpersonatePriviege Default Enabled
SelncreaseluataPrivilegs Disabled

Bermissions

FIGURE 4-8 Service with restricted service SIDs

Management Mechanisms 317

By blocking write access to objects that would otherwise be writable by the service (through
inheriting the permissions of the account it is running as), restricted service SIDs solve the other side
of the problem we initially presented because users do not need to do anything to prevent a service
running in a privileged account from having write access to critical system files, registry keys, or other
objects, limiting the attack exposure of any such service that might have been compromised.

Windows also allows for firewall rules that reference service SIDs linked to one of the three
behaviors described in Table 4-10.

TABLE 4-10 Network Restriction Rules

Scenario Example Restrictions

Network access blocked The shell hardware detection service All network communications are blocked
(Shell[HWDetection). (both incoming and outgoing).

Network access statically The RPC service (Rpcss) operates on port Network communications are restricted to

port-restricted 135 (TCP and UDP). specific TCP or UDP ports.

Network access dynamically | The DNS service (Dns) listens on variable Network communications are restricted to

port-restricted ports (UDP). configurable TCP or UDP ports.

Interactive Services and Session 0 Isolation

One restriction for services running under the local system, local service, and network service
accounts that has always been present in Windows is that these services could not display (without
using a special flag on the MessageBox function, discussed in a moment) dialog boxes or windows on
the interactive user's desktop. This limitation wasn't the direct result of running under these accounts
but rather a consequence of the way the Windows subsystem assigns service processes to window
stations. This restriction is further enhanced by the use of sessions, in a model called Session Zero
Isolation, a result of which is that services cannot directly interact with a user’s desktop.

The Windows subsystem associates every Windows process with a window station. A window
station contains desktops, and desktops contain windows. Only one window station can be visible
on a console and receive user mouse and keyboard input. In a Terminal Services environment, one
window station per session is visible, but services all run as part of the console session. Windows
names the visible window station WinSta0, and all interactive processes access WinSta0.

Unless otherwise directed, the Windows subsystem associates services running in the local system
account with a nonvisible window station named Service-0x0-3e7$ that all noninteractive services
share. The number in the name, 3e7, represents the logon session identifier that the Local Security
Authority process (LSASS) assigns to the logon session the SCM uses for noninteractive services
running in the local system account.

Services configured to run under a user account (that is, not the local system account) are runin a
different nonvisible window station named with the LSASS logon identifier assigned for the service's
logon session. Figure 4-9 shows a sample display from the Sysinternals WinObj tool, viewing the
object manager directory in which Windows places window station objects. Visible are the interactive
window station (WinSta0) and the noninteractive system service window station (Service-0x0-3e79$).

318 Windows Internals, Sixth Edition, Part 1

&k WinObj - Sysintarnals: s, sysinterals.com [F=R(EoR]
File View Help
53]
=8 Marme Type Symlink
g :"NN”“E o [0 Service-0s0-304% WindowStation
= CETIZ a:"e Jects [Service-Dx0-3e54 WindowStation
2osc [Service-0x0-3e7$ WindowStation

Device
g Driver ngSta[l WindowStation

[FileSystem

[GLOBALT?

[KemelObjects

L3 KnownDlls

O s

[ObjectTypes

[RPC Contral

[Security

[Sessions

{1 UMDFCommunicationPorts
=0 Windows

24 WindowStations

NWindows\WindowStations

FIGURE 4-9 List of window stations

Regardless of whether services are running in a user account, the local system account, or the local
or network service accounts, services that aren’t running on the visible window station can't receive
input from a user or display windows on the console. In fact, if a service were to pop up a normal
dialog box on the window station, the service would appear hung because no user would be able to
see the dialog box, which of course would prevent the user from providing keyboard or mouse input
to dismiss it and allow the service to continue executing.

Note In the past, it was possible to use the special MB_SERVICE_NOTIFICATION or
MB_DEFAULT_DESKTOP_ONLY flags with the MessageBox API to display messages on the
interactive window station even if the service was marked as noninteractive. Because of
session isolation, any service using this flag will receive an immediate IDOK return value,
and the message box will never be displayed.

In rare cases, a service can have a valid reason to interact with the user via dialog boxes or
windows. To configure a service with the right to interact with the user, the SERVICE_INTERACTIVE_
PROCESS modifier must be present in the service's registry key's Type parameter. (Note that services
configured to run under a user account can't be marked as interactive.) When the SCM starts a service
marked as interactive, it launches the service's process in the local system account’s security context
but connects the service with WinSta0 instead of the noninteractive service window station.

Were user processes to run in the same session as services, this connection to WinSta0 would allow
the service to display dialog boxes and windows on the console and enable those windows to respond
to user input because they would share the window station with the interactive services. However,
only processes owned by the system and Windows services run in session O; all other logon sessions,
including those of console users, run in different sessions. Any window displayed by processes in
session 0 is therefore not visible to the user.

Management Mechanisms 319

320

This additional boundary helps prevent shatter attacks, whereby a less privileged application sends
window messages to a window visible on the same window station to exploit a bug in a more privi-
leged process that owns the window, which permits it to execute code in the more privileged process.

To remain compatible with services that depend on user input, Windows includes a service that
notifies users when a service has displayed a window. The Interactive Services Detection (UlODetect)
service looks for visible windows on the main desktop of the WinSta0 window station of session 0 and
displays a notification dialog box on the console user’s desktop, allowing the user to switch to session
0 and view the service's Ul. (This is akin to connecting to a local Terminal Services session or switching
users.)

Note The Interactive Services Detection mechanism is purely for application compatibility,

and developers are strongly recommended to move away from interactive services and use
a secondary, nonprivileged helper application to communicate visually with the user. Local

RPC or COM can be used between this helper application and the service for configuration
purposes after Ul input has been received.

The dialog box, an example of which is shown in Figure 4-10, includes the process name, the time
when the Ul message was displayed, and the title of the window being displayed. Once the user
connects to session 0, a similar dialog box provides a portal back to the user's session. In the figure,
the service displaying a window is Microsoft Paint, which was explicitly started by the Sysinternals
PsExec utility with options that caused PsExec to run Paint in session 0. You can try this yourself with
the following command:

psexec —s —i 0 —d mspaint.exe

This tells PsExec to run Microsoft Paint as a system process (—s) running on session 0 (—i 0), and to
return immediately instead of waiting for the process to finish (-d).

2., Interactive Services Detection =]

A program running on this computer is trying to display a
message
The program might need information form you or your permission to complete a

task.
Why does this happen?

<+ View the message

<+ Ask me later

A Hide program details

Program(s) or devices(s) requesting attention.

Message title: Paint
Program path: C\Windows\system32imspaint.exe
Received: Today, January 25, 2012, 9:13:48 PM

This problem occurs when a program is not fully compatible with Windows.
Please contact the program or device manufacturer(s) for more infermation.

FIGURE 4-10 The Interactive Services Detection service at work

Windows Internals, Sixth Edition, Part 1

If you click View The Message, you can switch to the console for session 0 (and switch back again
with a similar window on the console).

The Service Control Manager

The SCM's executable file is %SystemRoot%\System32\Services.exe, and like most service processes, it
runs as a Windows console program. The Wininit process starts the SCM early during the system boot.
(Refer to Chapter 13 in Part 2 for details on the boot process.) The SCM's startup function, SvcCtrl-
Main, orchestrates the launching of services that are configured for automatic startup.

SvcCtrIMain first creates a synchronization event named SvcctriStartEvent_A3752DX that it initial-
izes as nonsignaled. Only after the SCM completes steps necessary to prepare it to receive commands
from SCPs does the SCM set the event to a signaled state. The function that an SCP uses to establish a
dialog with the SCM is OpenSCManager. OpenSCManager prevents an SCP from trying to contact the
SCM before the SCM has initialized by waiting for SvcctriStartEvent_A3752DX to become signaled.

Next, SvcCtrIMain gets down to business and calls ScGenerateServiceDB, the function that builds
the SCM's internal service database. ScGenerateServiceDB reads and stores the contents of
HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List, a REG_MULTI_SZ value that lists
the names and order of the defined service groups. A service’s registry key contains an optional
Group value if that service or device driver needs to control its startup ordering with respect to
services from other groups. For example, the Windows networking stack is built from the bottom
up, so networking services must specify Group values that place them later in the startup sequence
than networking device drivers. The SCM internally creates a group list that preserves the ordering of
the groups it reads from the registry. Groups include (but are not limited to) NDIS, TDI, Primary Disk,
Keyboard Port, and Keyboard Class. Add-on and third-party applications can even define their own
groups and add them to the list. Microsoft Transaction Server, for example, adds a group named MS
Transactions.

ScGenerateServiceDB then scans the contents of HKLM\SYSTEM\CurrentControlSet\Services,
creating an entry in the service database for each key it encounters. A database entry includes all the
service-related parameters defined for a service as well as fields that track the service's status. The
SCM adds entries for device drivers as well as for services because the SCM starts services and drivers
marked as auto-start and detects startup failures for drivers marked boot-start and system-start. It
also provides a means for applications to query the status of drivers. The I/O manager loads drivers
marked boot-start and system-start before any user-mode processes execute, and therefore any
drivers having these start types load before the SCM starts.

ScGenerateServiceDB reads a service's Group value to determine its membership in a group
and associates this value with the group’s entry in the group list created earlier. The function also
reads and records in the database the service's group and service dependencies by querying its
DependOnGroup and DependOnService registry values. Figure 4-11 shows how the SCM organizes
the service entry and group order lists. Notice that the service list is alphabetically sorted. The reason
this list is sorted alphabetically is that the SCM creates the list from the Services registry key, and
Windows stores registry keys alphabetically.

Management Mechanisms 321

Service database
Group order list

Service entry list
Servicel Service2 Service3
Type Type Type
Start Start Start
DependOnGroup DependOnGroup DependOnGroup
DependOnService DependOnService DependOnService
Status Status Status
Group || Group Group
— — —

FIGURE 4-11 Organization of a service database

During service startup, the SCM calls on LSASS (for example, to log on a service in a non-local
system account), so the SCM waits for LSASS to signal the LSA_RPC_SERVER_ACTIVE synchronization
event, which it does when it finishes initializing. Wininit also starts the LSASS process, so the initializa-
tion of LSASS is concurrent with that of the SCM, and the order in which LSASS and the SCM complete
initialization can vary. Then SvcCtrIMain calls ScGetBootAndSystemDriverState to scan the service
database looking for boot-start and system-start device driver entries.

ScGetBootAndSystemDriverState determines whether or not a driver successfully started by
looking up its name in the object manager namespace directory named \Driver. When a device driver
successfully loads, the I/O manager inserts the driver’s object in the namespace under this directory,
so if its name isn't present, it hasn't loaded. Figure 4-12 shows WinObj displaying the contents of the
Driver directory. SvcCtrIMain notes the names of drivers that haven't started and that are part of the
current profile in a list named ScFailedDrivers.

Before starting the auto-start services, the SCM performs a few more steps. It creates its remote
procedure call (RPC) named pipe, which is named \Pipe\Ntsvcs, and then RPC launches a thread to
listen on the pipe for incoming messages from SCPs. The SCM then signals its initialization-complete
event, SvcctriStartEvent_A3752DX. Registering a console application shutdown event handler and
registering with the Windows subsystem process via RegisterServiceProcess prepares the SCM for
system shutdown.

322 Windows Internals, Sixth Edition, Part 1

&% WinOhj - Sysintermals: wavw,sysinternals.com == EcR=
Eile Wiew Help
]
=R B} Name Type Syrlink =
g ’;"NNamE ob s ach Driver
] BaseNamedbjects sl acPLHAL Diiver =
-3 Callback g arn Driver
0 L4
g o] st Drver
= 4 b5Tndl6ix Driver
-3 FileSystem
.17 GLoBALY? Gl Beep Driver
27 KemnelObjects e cdram Driver
{3 KnownDlls FoLrs Driver
LML o CroBatt Driver
{1 ObjectTypes] compbatt Driver
{20 RPT Contral o credisk Driver
1 Security o disk Driver
-0 Sessions] DGRl Driver
{23 UMDFCommunicationPorts % hemon Drriver
-3 Windows o HdsudaddService Driver
54 HDAudBus Driver
5 HidUsb Driver
g s P o
< . »
\Driver

FIGURE 4-12 List of driver objects

Network Drive Letters

In addition to its role as an interface to services, the SCM has another totally unrelated
responsibility: it notifies GUI applications in a system whenever the system creates or deletes a
network drive-letter connection. The SCM waits for the Multiple Provider Router (MPR) to signal
a named event, \BaseNamedObjects\ScNetDrvMsg, which MPR signals whenever an application
assigns a drive letter to a remote network share or deletes a remote-share drive-letter assign-
ment. (See Chapter 7, “Networking,” for more information on MPR.) When MPR signals the
event, the SCM calls the GetDriveType Windows function to query the list of connected network
drive letters. If the list changes across the event signal, the SCM sends a Windows broadcast
message of type WM_DEVICECHANGE. The SCM uses either DBT_DEVICEREMOVECOMPLETE or
DBT_DEVICEARRIVAL as the message’s subtype. This message is primarily intended for Windows
Explorer so that it can update any open Computer windows to show the presence or absence of
a network drive letter.

Service Startup

SvcCtrIMain invokes the SCM function ScAutoStartServices to start all services that have a Start value
designating auto-start (except delayed auto-start services). ScAutoStartServices also starts auto-start
device drivers. To avoid confusion, you should assume that the term services means services and
drivers unless indicated otherwise. The algorithm in ScAutoStartServices for starting services in the
correct order proceeds in phases, whereby a phase corresponds to a group and phases proceed in the
sequence defined by the group ordering stored in the HKLM\SYSTEM\CurrentControlSet\Control
\ServiceGroupOrder\List registry value. The List value, shown in Figure 4-13, includes the names of

Management Mechanisms 323

324

groups in the order that the SCM should start them. Thus, assigning a service to a group has no effect
other than to fine-tune its startup with respect to other services belonging to different groups.

& Registry Editar E=S EE x|
File Edit Wiew Favorites Help

Cryptography = || Mame Type Data

EW‘“C'“’ES ab](Defsult) REG_SZ (ualue nat set)

F’I’“;“t T st | REG_MULTLSZ System Reserved EMS WidfLoadGroup Boot Bus Extender System Bus Extender $C5)

ileSystem

FileSystemltilities

GraphicsDrivers

GroupOrderList
HaL

|

b 1L hivelist

>) IDConfigDE
LM

Keyboard Layout

Keyboard Layauts

Lsa
MediaCategories
Medialnterfaces

-] mn] 3

ComputerHKEY_LOCAL_MACHINE\SYSTEMACurrentControlSetiControl\ServiceGroupOrder

FIGURE 4-13 ServiceGroupOrder registry key

When a phase starts, ScAutoStartServices marks all the service entries belonging to the phase’s
group for startup. Then ScAutoStartServices loops through the marked services seeing whether
it can start each one. Part of this check includes seeing whether the service is marked as delayed
auto-start, which causes the SCM to start it at a later stage. (Delayed auto-start services must also
be ungrouped.) Another part of the check it makes consists of determining whether the service has
a dependency on another group, as specified by the existence of the DependOnGroup value in the
service's registry key. If a dependency exists, the group on which the service is dependent must
have already initialized, and at least one service of that group must have successfully started. If the
service depends on a group that starts later than the service's group in the group startup sequence,
the SCM notes a “circular dependency” error for the service. If ScAutoStartServices is considering a
Windows service or an auto-start device driver, it next checks to see whether the service depends
on one or more other services, and if so, if those services have already started. Service dependencies
are indicated with the DependOnService registry value in a service's registry key. If a service depends
on other services that belong to groups that come later in the ServiceGroupOrder\List, the SCM also
generates a “circular dependency” error and doesn't start the service. If the service depends on any
services from the same group that haven't yet started, the service is skipped.

When the dependencies of a service have been satisfied, ScAutoStartServices makes a final check
to see whether the service is part of the current boot configuration before starting the service. When
the system is booted in safe mode, the SCM ensures that the service is either identified by name or by
group in the appropriate safe boot registry key. There are two safe boot keys, Minimal and Network,
under HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot, and the one that the SCM checks de-
pends on what safe mode the user booted. If the user chose Safe Mode or Safe Mode With Command
Prompt at the special boot menu (which you can access by pressing F8 early in the boot process),
the SCM references the Minimal key; if the user chose Safe Mode With Networking, the SCM refers
to Network. The existence of a string value named Option under the SafeBoot key indicates not only
that the system booted in safe mode but also the type of safe mode the user selected. For more
information about safe boots, see the section “Safe Mode” in Chapter 13 in Part 2.

Windows Internals, Sixth Edition, Part 1

Once the SCM decides to start a service, it calls ScStartService, which takes different steps for
services than for device drivers. When ScStartService starts a Windows service, it first determines the
name of the file that runs the service's process by reading the ImagePath value from the service’s
registry key. It then examines the service's Type value, and if that value is SERVICE_WINDOWS_SHARE_
PROCESS (0x20), the SCM ensures that the process the service runs in, if already started, is logged on
using the same account as specified for the service being started. (This is to ensure that the service
is not configured with the wrong account, such as a LocalService account, but with an image path
pointing to a running Svchost, such as netsvcs, which runs as LocalSystem.) A service's ObjectName
registry value stores the user account in which the service should run. A service with no ObjectName
or an ObjectName of LocalSystem runs in the local system account.

The SCM verifies that the service's process hasn't already been started in a different account by
checking to see whether the service's ImagePath value has an entry in an internal SCM database
called the image database. If the image database doesn’t have an entry for the ImagePath value,
the SCM creates one. When the SCM creates a new entry, it stores the logon account name used for
the service and the data from the service’s ImagePath value. The SCM requires services to have an
ImagePath value. If a service doesn't have an ImagePath value, the SCM reports an error stating that it
couldn’t find the service's path and isn't able to start the service. If the SCM locates an existing image
database entry with matching ImagePath data, the SCM ensures that the user account information
for the service it's starting is the same as the information stored in the database entry—a process can
be logged on as only one account, so the SCM reports an error when a service specifies a different
account name than another service that has already started in the same process.

The SCM calls ScLogonAndStartimage to log on a service if the service's configuration specifies and
to start the service's process. The SCM logs on services that don't run in the System account by calling
the LSASS function LogonUserEx. LogonUserEx normally requires a password, but the SCM indicates to
LSASS that the password is stored as a service’s LSASS “secret” under the key HKLM\SECURITY\Policy
\Secrets in the registry. (Keep in mind that the contents of SECURITY aren't typically visible because
its default security settings permit access only from the System account.) When the SCM calls
LogonUserEx, it specifies a service logon as the logon type, so LSASS looks up the password in the
Secrets subkey that has a name in the form _SC_<service name>.

The SCM directs LSASS to store a logon password as a secret using the LsaStorePrivateData
function when an SCP configures a service's logon information. When a logon is successful,
LogonUserEx returns a handle to an access token to the caller. Windows uses access tokens to rep-
resent a user's security context, and the SCM later associates the access token with the process that
implements the service.

After a successful logon, the SCM loads the account’s profile information, if it's not already loaded,
by calling the UserEnv DLL's (%SystemRoot%\System32\Userenv.dll) LoadUserProfile function. The
value HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList\<user profile key>\
ProfilelmagePath contains the location on disk of a registry hive that LoadUserProfile loads into the
registry, making the information in the hive the HKEY_CURRENT_USER key for the service.

Management Mechanisms 325

326

An interactive service must open the WinStaO window station, but before ScLogonAndStartimage
allows an interactive service to access WinStaO0 it checks to see whether the value HKLM\SYSTEM
\CurrentControlSet\Control\Windows\NolInteractiveServices is set. Administrators set this value to
prevent services marked as interactive from displaying windows on the console. This option is desir-
able in unattended server environments in which no user is present to respond to the Session 0 Ul
Discovery notification from interactive services.

As its next step, ScLogonAndStartimage proceeds to launch the service's process, if the process
hasn't already been started (for another service, for example). The SCM starts the process in a
suspended state with the CreateProcessAsUser Windows function. The SCM next creates a named pipe
through which it communicates with the service process, and it assigns the pipe the name
\Pipe\Net\NtControlPipeX, where X is a number that increments each time the SCM creates a pipe.
The SCM resumes the service process via the ResumeThread function and waits for the service to
connect to its SCM pipe. If it exists, the registry value HKLM\SYSTEM\CurrentControlSet\Control
\ServicesPipeTimeout determines the length of time that the SCM waits for a service to call
StartServiceCtrIDispatcher and connect before it gives up, terminates the process, and concludes that
the service failed to start. If ServicesPipeTimeout doesn't exist, the SCM uses a default timeout of 30
seconds. The SCM uses the same timeout value for all its service communications.

When a service connects to the SCM through the pipe, the SCM sends the service a start
command. If the service fails to respond positively to the start command within the timeout
period, the SCM gives up and moves on to start the next service. When a service doesn't respond
to a start request, the SCM doesn’t terminate the process, as it does when a service doesn't call
StartServiceCtrIDispatcher within the timeout; instead, it notes an error in the system Event Log that
indicates the service failed to start in a timely manner.

If the service the SCM starts with a call to ScStartService has a Type registry value of SERVICE_
KERNEL_DRIVER or SERVICE_FILE_SYSTEM_DRIVER, the service is really a device driver, so
ScStartService calls ScLoadDeviceDriver to load the driver. ScLoadDeviceDriver enables the load driver
security privilege for the SCM process and then invokes the kernel service NtLoadDriver, passing in
the data in the ImagePath value of the driver's registry key. Unlike services, drivers don't need to
specify an ImagePath value, and if the value is absent, the SCM builds an image path by appending
the driver’'s name to the string %SystemRoot%\System32\Drivers\.

ScAutoStartServices continues looping through the services belonging to a group until all the
services have either started or generated dependency errors. This looping is the SCM’s way of
automatically ordering services within a group according to their DependOnService dependencies.
The SCM will start the services that other services depend on in earlier loops, skipping the depen-
dent services until subsequent loops. Note that the SCM ignores Tag values for Windows services,
which you might come across in subkeys under the HKLM\SYSTEM\CurrentControlSet\Services
key; the 1/0 manager honors Tag values to order device driver startup within a group for boot-
start and system-start drivers. Once the SCM completes phases for all the groups listed in the
ServiceGroupOrder\List value, it performs a phase for services belonging to groups not listed in the
value and then executes a final phase for services without a group.

Windows Internals, Sixth Edition, Part 1

After handling auto-start services, the SCM calls ScinitDelayStart, which queues a delayed
work item associated with a worker thread responsible for processing all the services that
ScAutoStartServices skipped because they were marked delayed auto-start. This worker thread will
execute after the delay. The default delay is 120 seconds, but it can be overridden by the creating
an AutoStartDelay value in HKLM\SYSTEM\CurrentControlSet\Control. The SCM performs the same
actions as those used during startup of nondelayed auto-start services.

Delayed Auto-Start Services

Delayed auto-start services enable Windows to cope with the growing number of services that
are being started when a user logs on, bogging down the boot-up process and increasing the
time before a user is able to get responsiveness from the desktop. The design of auto-start
services was primarily intended for services required early in the boot process because other
services depend on them, a good example being the RPC service, on which all other services
depend. The other use was to allow unattended startup of a service, such as the Windows
Update service. Because many auto-start services fall in this second category, marking them as
delayed auto-start allows critical services to start faster and for the user’s desktop to be ready
sooner when a user logs on immediately after booting. Additionally, these services run in back-
ground mode, which lowers their thread, I/O, and memory priority. Configuring a service for
delayed auto-start requires calling the ChangeServiceConfig2 API. You can check the state of
the flag for a service by using the qc bits option of sc.exe instead.

Note If a nondelayed auto-start service has a delayed auto-start service as one of its
dependencies, the delayed auto-start flag will be ignored and the service will be started
immediately in order to satisfy the dependency.

When it's finished starting all auto-start services and drivers, as well as setting up the delayed
auto-start work item, the SCM signals the event \BaseNamedObjects\SC_AutoStartComplete. This
event is used by the Windows Setup program to gauge startup progress during installation.

Startup Errors

If a driver or a service reports an error in response to the SCM'’s startup command, the ErrorControl
value of the service’s registry key determines how the SCM reacts. If the ErrorControl value is
SERVICE_ERROR_IGNORE (0) or the ErrorControl value isn't specified, the SCM simply ignores the
error and continues processing service startups. If the ErrorControl value is SERVICE_ERROR_NORMAL
(1), the SCM writes an event to the system Event Log that says, “The <service name> service failed

to start due to the following error:". The SCM includes the textual representation of the Windows
error code that the service returned to the SCM as the reason for the startup failure in the Event Log
record. Figure 4-14 shows the Event Log entry that reports a service startup error.

Management Mechanisms 327

328

{2] Event Properties - Event 7001, Service Contral Manager Eventlog Provider =3

The Windows Firewall service depends on the Base Filtering Engine service which failed to start
because of the following error:

The service cannot be started, either because it is disabled or because it has no enabled devices
associated with it.

+*
Log Mame: Systern
Source: Service Control Manager Eve Logged: 971872008 4:56:00 Ph @
EventID: 7001 Task Category: MNaone
Lewel: Errar Keywords: Classic
User: MR, Corputer: Alex-Laptop
OpCode: Info

Mare Information: Event Log Online Help

con

FIGURE 4-14 Service startup failure Event Log entry

If a service with an ErrorControl value of SERVICE_ERROR_SEVERE (2) or SERVICE_ERROR_CRITICAL
(3) reports a startup error, the SCM logs a record to the Event Log and then calls the internal function
ScRevertToLastKknownGood. This function switches the system’s registry configuration to a version,
named last known good, with which the system last booted successfully. Then it restarts the system
using the NtShutdownSystem system service, which is implemented in the executive. If the system is
already booting with the last known good configuration, the system just reboots.

Accepting the Boot and Last Known Good

Besides starting services, the system charges the SCM with determining when the system'’s registry
configuration, HKLM\SYSTEM\CurrentControlSet, should be saved as the last known good control
set. The CurrentControlSet key contains the Services key as a subkey, so CurrentControlSet includes
the registry representation of the SCM database. It also contains the Control key, which stores many
kernel-mode and user-mode subsystem configuration settings. By default, a successful boot consists
of a successful startup of auto-start services and a successful user logon. A boot fails if the system
halts because a device driver crashes the system during the boot or if an auto-start service with an
ErrorControl value of SERVICE_ERROR_SEVERE or SERVICE_ERROR_CRITICAL reports a startup error.

The SCM obviously knows when it has completed a successful startup of the auto-start
services, but Winlogon (%SystemRoot%\System32\Winlogon.exe) must notify it when there is a
successful logon. Winlogon invokes the NotifyBootConfigStatus function when a user logs on, and

Windows Internals, Sixth Edition, Part 1

NotifyBootConfigStatus sends a message to the SCM. Following the successful start of the auto-start
services or the receipt of the message from NotifyBootConfigStatus (whichever comes last), the SCM
calls the system function NtinitializeRegistry to save the current registry startup configuration.

Third-party software developers can supersede Winlogon’s definition of a successful logon with
their own definition. For example, a system running Microsoft SQL Server might not consider a boot
successful until after SQL Server is able to accept and process transactions. Developers impose their
definition of a successful boot by writing a boot-verification program and installing the program by
pointing to its location on disk with the value stored in the registry key HKLM\SYSTEM
\CurrentControlSet\Control\BootVerificationProgram. In addition, a boot-verification program’s
installation must disable Winlogon'’s call to NotifyBootConfigStatus by setting HKLM\SOFTWARE
\Microsoft\Windows NT\CurrentVersion\Winlogon\ReportBootOk to 0. When a boot-verification
program is installed, the SCM launches it after finishing auto-start services and waits for the
program'’s call to NotifyBootConfigStatus before saving the last known good control set.

Windows maintains several copies of CurrentControlSet, and CurrentControlSet is really a symbolic
registry link that points to one of the copies. The control sets have names in the form HKLM\SYSTEM
\ControlSetnnn, where nnn is a number such as 001 or 002. The HKLM\SYSTEM\Select key con-
tains values that identify the role of each control set. For example, if CurrentControlSet points to
ControlSet001, the Current value under Select has a value of 1. The LastknownGood value under
Select contains the number of the last known good control set, which is the control set last used to
boot successfully. Another value that might be on your system under the Select key is Failed, which
points to the last control set for which the boot was deemed unsuccessful and aborted in favor of an
attempt at booting with the last known good control set. Figure 4-15 displays a system’s control sets
and Select values.

NtlinitializeRegistry takes the contents of the last known good control set and synchronizes it with
that of the CurrentControlSet key's tree. If this was the system'’s first successful boot, the last known
good won't exist and the system will create a new control set for it. If the last known good tree exists,
the system simply updates it with differences between it and CurrentControlSet.

Last known good is helpful in situations in which a change to CurrentControlSet, such as the
modification of a system performance-tuning value under HKLM\SYSTEM\Control or the addition
of a service or device driver, causes the subsequent boot to fail. Users can press F8 early in the boot
process to bring up a menu that lets them direct the boot to use the last known good control set,
rolling the system'’s registry configuration back to the way it was the last time the system booted
successfully. Chapter 13 in Part 2 describes in more detail the use of last known good and other
recovery mechanisms for troubleshooting system startup problems.

Management Mechanisms 329

330

A Registry Editor =2 ESR (5=

Eile Edit Wiew Favorites Help

48 Cornputer Mame Tyoe Dt
HKEY_CLASSES ROOT o ks 5 et
4 ig’fﬁf?i\?ﬁfﬁm 2| Current REG.DWORD 000000003 (3)
.|, BCONnNNAN 2| Default REG_DWORD 000000003 (3)
. || COMPONENTS 5] Failed REG.DWORD 000000002 (2)
| HARDWARE S¥|LastknownGood REG_DWORD 000000004 (4)
| saM
SECURITY
SOFTVAARE

4 || SYSTEM
b0 ControlSetdoz
ControlSetd3
ControlSetd04
CurrentControlSet
LastKnownGoodRecovery
MountedDevices

RNG

Select

Setup

SRTT

HKEY_USERS
HKEY_CURRENT_CONFIG a mm v

ComputerHKEY_LOCAL_MACHINE\SYSTEM\Select

FIGURE 4-15 Control set selection key

Service Failures

A service can have optional FailureActions and FailureCommand values in its registry key that the SCM
records during the service's startup. The SCM registers with the system so that the system signals the
SCM when a service process exits. When a service process terminates unexpectedly, the SCM deter-
mines which services ran in the process and takes the recovery steps specified by their failure-related
registry values. Additionally, services are not only limited to requesting failure actions during crashes
or unexpected service termination, since other problems, such as a memory leak, could also result in
service failure.

If a service enters the SERVICE_STOPPED state and the error code returned to the SCM is not
ERROR_SUCCESS, the SCM will check whether the service has the FailureActionsOnNonCrashFailures
flag set and perform the same recovery as if the service had crashed. To use this functionality, the
service must be configured via the ChangeServiceConfig2 API or the system administrator can use the
Sc.exe utility with the Failureflag parameter to set FailureActionsOnNonCrashFailures to 1. The default
value being 0, the SCM will continue to honor the same behavior as on earlier versions of Windows
for all other services.

Actions that a service can configure for the SCM include restarting the service, running a program,
and rebooting the computer. Furthermore, a service can specify the failure actions that take place the
first time the service process fails, the second time, and subsequent times, and it can indicate a delay
period that the SCM waits before restarting the service if the service asks to be restarted. The service
failure action of the IS Admin Service results in the SCM running the lISReset application, which
performs cleanup work and then restarts the service. You can easily manage the recovery actions for
a service using the Recovery tab of the service's Properties dialog box in the Services MMC snap-in, as
shown in Figure 4-16.

Windows Internals, Sixth Edition, Part 1

Microsoft iSCSI Initiator Service Properties (Local Cormputer) =3

| General I Log Dn| Recoverny Dependencies|

& computer's response if this service failz. H
First failure: [Hestart the Service ']
Second failure: [Hestart the Service v]
Subsequent failures: [Take Ma Action hd]
Fieset fail count after: 1] days
Flestart service after. 2 minutes
Enable actions for stops with emars. Bestart Computer Options...

Fiun program
customS cript.cmd Browse...
Append fail count to end of command line [Afail=%1%)

[QK][Cancel] Apply

FIGURE 4-16 Service recovery options

Service Shutdown

When Winlogon calls the Windows ExitWindowsEx function, ExitWindowsEx sends a message to Csrss,
the Windows subsystem process, to invoke Csrss's shutdown routine. Csrss loops through the active
processes and notifies them that the system is shutting down. For every system process except the
SCM, Csrss waits up to the number of seconds specified by HKU\.DEFAULT\Control Panel\Desktop
\WaitToKillAppTimeout (which defaults to 20 seconds) for the process to exit before moving on to the
next process. When Csrss encounters the SCM process, it also notifies it that the system is shutting
down but employs a timeout specific to the SCM. Csrss recognizes the SCM using the process ID Csrss
saved when the SCM registered with Csrss using the RegisterServicesProcess function during system
initialization. The SCM'’s timeout differs from that of other processes because Csrss knows that the
SCM communicates with services that need to perform cleanup when they shut down, so an adminis-
trator might need to tune only the SCM's timeout. The SCM's timeout value resides in the
HKLM\SYSTEM\CurrentControlSet\Control\WaitToKillServiceTimeout registry value, and it defaults to
12 seconds.

The SCM'’s shutdown handler is responsible for sending shutdown notifications to all the
services that requested shutdown notification when they initialized with the SCM. The SCM func-
tion ScShutdownAllServices loops through the SCM services database searching for services desiring
shutdown notification and sends each one a shutdown command. For each service to which it sends
a shutdown command, the SCM records the value of the service's wait hint, a value that a service also
specifies when it registers with the SCM. The SCM keeps track of the largest wait hint it receives. After
sending the shutdown messages, the SCM waits either until one of the services it notified of shutdown
exits or until the time specified by the largest wait hint passes.

Management Mechanisms 331

If the wait hint expires without a service exiting, the SCM determines whether one or more of the
services it was waiting on to exit have sent a message to the SCM telling the SCM that the service is
progressing in its shutdown process. If at least one service made progress, the SCM waits again for
the duration of the wait hint. The SCM continues executing this wait loop until either all the services
have exited or none of the services upon which it's waiting has notified it of progress within the wait
hint timeout period.

While the SCM is busy telling services to shut down and waiting for them to exit, Csrss waits for
the SCM to exit. If Csrss’s wait ends without the SCM having exited (the WaitToKillServiceTimeout time
expired), Csrss kills the SCM and continues the shutdown process. Thus, services that fail to shut down
in a timely manner are killed. This logic lets the system shut down in the face of services that never
complete a shutdown as a result of flawed design, but it also means that services that require more
than 20 seconds will not complete their shutdown operations.

Additionally, because the shutdown order is not deterministic, services that might depend on other
services to shut down first (called shutdown dependencies) have no way to report this to the SCM and
might never have the chance to clean up either.

To address these needs, Windows implements preshutdown notifications and shutdown ordering
to combat the problems caused by these two scenarios. Preshutdown notifications are sent, using the
same mechanism as shutdown notifications, to services that have requested preshutdown notification
via the SetServiceStatus API, and the SCM will wait for them to be acknowledged.

The idea behind these notifications is to flag services that might take a long time to clean up (such
as database server services) and give them more time to complete their work. The SCM will send a
progress query request and wait three minutes for a service to respond to this notification. If the
service does not respond within this time, it will be killed during the shutdown procedure; otherwi