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Introduction

W indows Internals, Sixth Edition is intended for advanced computer professionals 
(both  developers and system administrators) who want to understand how the 

core components of the Microsoft Windows 7 and Windows Server 2008 R2 operating 
systems work internally. With this knowledge, developers can better comprehend the 
rationale behind design choices when  building applications specific to the  Windows 
platform. Such knowledge can also help developers debug  complex problems.  System 
administrators can benefit from this information as well, because  understanding how 
the operating system works “under the covers” facilitates understanding the perfor-
mance behavior of the system and makes troubleshooting system problems much 
easier when things go wrong. After reading this book, you should have a better 
 understanding of how Windows works and why it behaves as it does.

Structure of the Book

For the first time, Windows Internals has been divided into two parts. Updating the 
book for each release of Windows takes considerable time so producing it in two parts 
allows us to publish the first part earlier.

This book, Part 1, begins with two chapters that define key concepts, introduce the 
tools used in the book, and describe the overall system architecture and components. 
The next two chapters  present key  underlying system and management mechanisms. 
Part 1 wraps up by covering three core  components of the operating system: processes, 
threads, and jobs; security; and networking.  

Part 2, which will be available separately in fall 2012, covers the remaining core 
 subsystems: I/O, storage, memory management, the cache  manager, and file systems. 
Part 2 concludes with a description of the startup and shutdown processes and a 
 description of crash-dump analysis.
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History of the Book

This is the sixth edition of a book that was originally called Inside Windows NT 
( Microsoft Press, 1992), written by Helen Custer (prior to the initial release of Microsoft 
Windows NT 3 .1) . Inside Windows NT was the first book ever published about Windows 
NT and provided key insights into the architecture and design of the system . Inside 
Windows NT, Second Edition (Microsoft Press, 1998) was written by David Solomon . It 
updated the original book to cover Windows NT 4 .0 and had a greatly increased level 
of technical depth . 

Inside Windows 2000, Third Edition (Microsoft Press, 2000) was authored by  David 
 Solomon and Mark Russinovich . It added many new topics, such as startup and 
 shutdown, service internals, registry internals, file-system drivers, and networking. It 
also covered kernel changes in Windows 2000, such as the Windows Driver Model 
(WDM), Plug and Play, power management, Windows Management Instrumentation 
(WMI), encryption, the job object, and Terminal Services . Windows Internals, Fourth 
 Edition was the Windows XP and Windows Server 2003 update and added more content 
focused on helping IT professionals make use of their knowledge of Windows internals, 
such as using key tools from Windows Sysinternals (www.microsoft.com/technet 
/sysinternals) and analyzing crash dumps . Windows Internals, Fifth Edition was the 
update for Windows Vista and Windows Server 2008 . New content included the image 
loader, user-mode debugging facility, and Hyper-V .

Sixth Edition Changes

This latest edition has been updated to cover the kernel changes made in Windows 7 
and Windows Server 2008 R2. Hands-on experiments have been updated to reflect 
changes in tools .

Hands-on Experiments

Even without access to the Windows source code, you can glean much about  Windows 
internals from tools such as the kernel debugger and tools from Sysinternals and 
 Winsider Seminars & Solutions . When a tool can be used to expose or demonstrate 
some aspect of the internal behavior of Windows, the steps for trying the tool yourself 
are listed in “EXPERIMENT” boxes . These appear throughout the book, and we encour-
age you to try these as you’re reading—seeing visible proof of how Windows works 
internally will make much more of an impression on you than just reading about it will .
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Topics Not Covered

Windows is a large and complex operating system . This book doesn’t cover everything 
relevant to Windows internals but instead focuses on the base system components . For 
example, this book doesn’t describe COM+, the Windows distributed object-oriented 
programming infrastructure, or the Microsoft  .NET Framework, the foundation of 
 managed code applications .

Because this is an internals book and not a user, programming, or system 
 administration book, it doesn’t describe how to use, program, or configure Windows.

A Warning and a Caveat

Because this book describes undocumented behavior of the internal architecture and 
the operation of the Windows operating system (such as internal kernel structures and 
functions), this content is subject to change between releases . (External interfaces, such 
as the Windows API, are not subject to incompatible changes .)

By “subject to change,” we don’t necessarily mean that details described in this 
book will change between releases, but you can’t count on them not changing . Any 
 software that uses these undocumented interfaces might not work on future releases 
of  Windows . Even worse, software that runs in kernel mode (such as device drivers) and 
uses these undocumented interfaces might experience a system crash when running on 
a newer release of Windows .

Acknowledgments

First, thanks to Jamie Hanrahan and Brian Catlin of Azius, LLC for joining us on this 
 project—the book would not have been finished without their help. They did the bulk 
of the updates on the “Security” and “Networking” chapters and contributed to the 
update of the “Management Mechanisms” and “Processes and Threads” chapters . Azius 
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Errata & Book Support

We’ve made every effort to ensure the accuracy of this book . Any errors that have 
been reported since this book was published are listed on our Microsoft Press site at 
oreilly .com: 

http://go.microsoft.com/FWLink/?Linkid=245675

If you find an error that is not already listed, you can report it to us through the 
same page .

If you need additional support, email Microsoft Press Book Support at  
mspinput@microsoft.com .

Please note that product support for Microsoft software is not offered through the 
addresses above .

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most 
valuable asset . Please tell us what you think of this book at: 

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas . Thanks in 
advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://go.microsoft.com/FWLink/?Linkid=245675
mailto:mspinput@microsoft.com
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C H A P T E R  1

Concepts and Tools

In this chapter, we’ll introduce the key Microsoft Windows operating system concepts and terms we’ll 
be using throughout this book, such as the Windows API, processes, threads, virtual memory, kernel 

mode and user mode, objects, handles, security, and the registry . We’ll also introduce the tools that 
you can use to explore Windows internals, such as the kernel debugger, the Performance Monitor, 
and key tools from Windows Sysinternals (www.microsoft.com/technet/sysinternals) . In addition, we’ll 
explain how you can use the Windows Driver Kit (WDK) and the Windows Software Development Kit 
(SDK) as resources for finding further information on Windows internals.

Be sure that you understand everything in this chapter—the remainder of the book is written 
 assuming that you do .

Windows Operating System Versions

This book covers the most recent version of the Microsoft Windows client and server operating 
systems: Windows 7 (32-bit and 64-bit versions) and Windows Server 2008 R2 (64-bit version only) . 
Unless specifically stated, the text applies to all versions. As background information, Table 1-1 lists 
the Windows product names, their internal version number, and their release date .

TABLE 1-1 Windows Operating System Releases

Product Name Internal Version Number Release Date

Windows NT 3 .1 3 .1 July 1993

Windows NT 3 .5 3 .5 September 1994

Windows NT 3 .51 3 .51 May 1995

Windows NT 4 .0 4 .0 July 1996

Windows 2000 5 .0 December 1999

Windows XP 5 .1 August 2001

Windows Server 2003 5 .2 March 2003

Windows Vista 6 .0 (Build 6000) January 2007

Windows Server 2008 6 .0 (Build 6001) March 2008

Windows 7 6 .1 (Build 7600) October 2009

Windows Server 2008 R2 6 .1 (Build 7600) October 2009
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Note The “7” in the “Windows 7” product name does not refer to the internal version 
number, but is rather a generational index . In fact, to minimize application compatibility 
issues, the version number for Windows 7 is actually 6 .1, as shown in Table 1-1 . This allows 
applications checking for the major version number to continue behaving on Windows 
7 as they did on Windows Vista . In fact, Windows 7 and Server 2008 R2 have identical 
 version/build numbers because they were built from the same Windows code base .

Foundation Concepts and Terms

In the course of this book, we’ll be referring to some structures and concepts that might be unfamiliar 
to some readers. In this section, we’ll define the terms we’ll be using throughout. You should become 
familiar with them before proceeding to subsequent chapters .

Windows API
The Windows application programming interface (API) is the user-mode system programming 
 interface to the Windows operating system family . Prior to the introduction of 64-bit versions of 
 Windows, the programming interface to the 32-bit versions of the Windows operating systems was 
called the Win32 API to distinguish it from the original 16-bit Windows API, which was the program-
ming interface to the original 16-bit versions of Windows . In this book, the term Windows API refers 
to both the 32-bit and 64-bit programming interfaces to Windows .

Note The Windows API is described in the Windows Software Development Kit (SDK) 
 documentation . (See the section “Windows Software Development Kit” later in this chap-
ter .) This documentation is available for free viewing online at www.msdn.microsoft.com . It 
is also included with all subscription levels to the Microsoft Developer Network (MSDN), 
Microsoft’s support program for developers . For more information, see www.msdn. 
microsoft.com . An excellent description of how to program the Windows base API is in 
the book Windows via C/C++, Fifth Edition by Jeffrey Richter and Christophe Nasarre 
(Microsoft Press, 2007) .

The Windows API consists of thousands of callable functions, which are divided into the following 
major categories:

 ■ Base Services

 ■ Component Services

 ■ User Interface Services
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 ■ Graphics and Multimedia Services

 ■ Messaging and Collaboration

 ■ Networking

 ■ Web Services

This book focuses on the internals of the key base services, such as processes and threads, memory 
management, I/O, and security .

What About .NET?
The Microsoft  .NET Framework consists of a library of classes called the Framework Class 
 Library (FCL) and a Common Language Runtime (CLR) that provides a managed code  execution 
 environment with features such as just-in-time compilation, type verification, garbage 
 collection, and code access security . By offering these features, the CLR provides a  development 
 environment that improves programmer productivity and reduces common programming 
 errors . For an excellent description of the  .NET Framework and its core architecture, see CLR via 
C#, Third Edition by Jeffrey Richter (Microsoft Press, 2010) .

The CLR is implemented as a classic COM server whose code resides in a standard  user-mode 
Windows DLL . In fact, all components of the  .NET Framework are implemented as standard 
user-mode Windows DLLs layered over unmanaged Windows API functions . (None of the 
 .NET Framework runs in kernel mode .) Figure 1-1 illustrates the relationship between these 
 components:

.NET Application
(Standard User-Mode EXEs)

Framework Class Library Assemblies
(Standard User-Mode DLLs)

CLR DLLs
(COM server)

Windows API DLLs

Windows Kernel

User mode
(managed code)

User mode
(unmanaged code)

Kernel mode

FIGURE 1-1 Relationship between  .NET Framework components
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History of the Win32 API
Interestingly, Win32 wasn’t slated to be the original programming interface to what was then 
called Windows NT . Because the Windows NT project started as a replacement for OS/2 ver-
sion 2, the primary programming interface was the 32-bit OS/2 Presentation Manager API . A 
year into the project, however, Microsoft Windows 3 .0 hit the market and took off . As a result, 
Microsoft changed direction and made Windows NT the future replacement for the Windows 
family of products as opposed to the replacement for OS/2 . It was at this juncture that the need 
to specify the Windows API arose—before this, in Windows 3 .0, the API existed only as a 16-bit 
interface .

Although the Windows API would introduce many new functions that hadn’t been available 
on Windows 3 .1, Microsoft decided to make the new API compatible with the 16-bit Windows 
API function names, semantics, and use of data types whenever possible to ease the burden of 
porting existing 16-bit Windows applications to Windows NT . This explains why many function 
names and interfaces might seem inconsistent: –this was required to ensure that the then new 
Windows API was compatible with the old 16-bit Windows API .

Services, Functions, and Routines
Several terms in the Windows user and programming documentation have different meanings in 
 different contexts . For example, the word service can refer to a callable routine in the operating 
 system, a device driver, or a server process . The following list describes what certain terms mean in 
this book:

 ■ Windows API functions Documented, callable subroutines in the Windows API . Examples 
include CreateProcess, CreateFile, and GetMessage .

 ■ Native system services (or system calls) The undocumented, underlying services in the 
operating system that are callable from user mode . For example, NtCreateUserProcess is the 
internal system service the Windows CreateProcess function calls to create a new process . For 
a definition of system calls, see the section “System Service Dispatching” in Chapter 3, “System 
Mechanisms .”

 ■ Kernel support functions (or routines) Subroutines inside the Windows  operating 
 system that can be called only from kernel mode (defined later in this chapter). For example, 
 ExAllocatePoolWithTag is the routine that device drivers call to allocate memory from the 
 Windows system heaps (called pools) .

 ■ Windows services Processes started by the Windows service control manager . For example, 
the Task Scheduler service runs in a user-mode process that supports the at command (which 
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is similar to the UNIX commands at or cron). (Note: although the registry defines Windows 
device drivers as “services,” they are not referred to as such in this book .)

 ■ DLLs (dynamic-link libraries) A set of callable subroutines linked together as a binary file 
that can be dynamically loaded by applications that use the subroutines . Examples include 
 Msvcrt .dll (the C run-time library) and Kernel32 .dll (one of the Windows API  subsystem 
 libraries) . Windows user-mode components and applications use DLLs extensively . The 
 advantage DLLs provide over static libraries is that applications can share DLLs, and Windows 
ensures that there is only one in-memory copy of a DLL’s code among the applications that are 
referencing it . Note that nonexecutable  .NET assemblies are compiled as DLLs but without any 
exported subroutines . Instead, the CLR parses  compiled metadata to access the corresponding 
types and members . 

Processes, Threads, and Jobs
Although programs and processes appear similar on the surface, they are fundamentally different . 
A program is a static sequence of instructions, whereas a process is a container for a set of resources 
used when executing the instance of the program . At the highest level of abstraction, a Windows 
process comprises the following:

 ■ A private virtual address space, which is a set of virtual memory addresses that the process can 
use

 ■ An executable program, which defines initial code and data and is mapped into the process’ 
virtual address space

 ■ A list of open handles to various system resources—such as semaphores, communication 
ports, and files—that are accessible to all threads in the process

 ■ A security context called an access token that identifies the user, security groups, privileges, 
User Account Control (UAC) virtualization state, session, and limited user account state 
 associated with the process

 ■ A unique identifier called a process ID (internally part of an identifier called a client ID)

 ■ At least one thread of execution (although an “empty” process is possible, it is not useful)

Each process also points to its parent or creator process . If the parent no longer exists, this 
 information is not updated . Therefore, it is possible for a process to refer to a nonexistent parent . 
This is not a problem, because nothing relies on this information being kept current . In the case of 
 ProcessExplorer, the start time of the parent process is taken into account to avoid attaching a child 
process based on a reused process ID . The following experiment illustrates this behavior .
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EXPERIMENT: Viewing the Process Tree
One unique attribute about a process that most tools don’t display is the parent or creator 
process ID . You can retrieve this value with the Performance Monitor (or programmatically) by 
querying the Creating Process ID . The Tlist .exe tool (in the Debugging Tools for Windows) can 
show the process tree by using the /t switch . Here’s an example of output from tlist /t:

C:\>tlist /t  
System Process (0) 
System (4) 
  smss.exe (224) 
csrss.exe (384) 
csrss.exe (444) 
  conhost.exe (3076) OleMainThreadWndName 
winlogon.exe (496) 
wininit.exe (504) 
  services.exe (580) 
    svchost.exe (696) 
    svchost.exe (796) 
    svchost.exe (912) 
    svchost.exe (948) 
    svchost.exe (988) 
    svchost.exe (244) 
      WUDFHost.exe (1008) 
      dwm.exe (2912) DWM Notification Window 
    btwdins.exe (268) 
    svchost.exe (1104) 
    svchost.exe (1192) 
    svchost.exe (1368) 
    svchost.exe (1400) 
    spoolsv.exe (1560) 
    svchost.exe (1860) 
    svchost.exe (1936) 
    svchost.exe (1124) 
    svchost.exe (1440) 
    svchost.exe (2276) 
    taskhost.exe (2816) Task Host Window 
    svchost.exe (892) 
  lsass.exe (588) 
  lsm.exe (596) 
explorer.exe (2968) Program Manager 
  cmd.exe (1832) Administrator: C:\Windows\system32\cmd.exe - "c:\tlist.exe"  /t 
    tlist.exe (2448)

The list indents each process to show its parent/child relationship . Processes whose parents 
aren’t alive are left-justified (as is Explorer.exe in the preceding example) because even if a 
grandparent process exists, there’s no way to find that relationship. Windows maintains only the 
creator process ID, not a link back to the creator of the creator, and so forth .
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To demonstrate the fact that Windows doesn’t keep track of more than just the parent 
 process ID, follow these steps:

1. Open a Command Prompt window .

2. Type title Parent (to change the window title to Parent) .

3. Type start cmd (which starts a second command prompt) .

4. Type title Child in the second command prompt .

5. Bring up Task Manager .

6. Type mspaint (which runs Microsoft Paint) in the second command prompt .

7. Go back to the second command prompt and type exit . (Notice that Paint remains .)

8. Switch to Task Manager .

9. Click on the Applications tab .

10. Right-click on the Parent task, and select Go To Process .

11. Right-click on this cmd .exe process, and select End Process Tree .

12. Click End Process Tree in the Task Manager confirmation message box.

The first command prompt window will disappear, but you should still see the Paint window 
because it was the grandchild of the command prompt process you terminated; and because 
the intermediate process (the parent of Paint) was terminated, there was no link between the 
parent and the grandchild .

A number of tools for viewing (and modifying) processes and process information are available . 
The following experiments illustrate the various views of process information you can obtain with 
some of these tools . While many of these tools are included within Windows itself and within the 
Debugging Tools for Windows and the Windows SDK, others are stand-alone tools from Sysinternals . 
Many of these tools show overlapping subsets of the core process and thread information, some-
times identified by different names.

Probably the most widely used tool to examine process activity is Task Manager . (Because there 
is no such thing as a “task” in the Windows kernel, the name of this tool, Task Manager, is a bit odd .) 
The following experiment shows the difference between what Task Manager lists as applications  
and processes .
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EXPERIMENT: Viewing Process Information with Task Manager
The built-in Windows Task Manager provides a quick list of the processes on the system . You 
can start Task Manager in one of four ways: (1) press Ctrl+Shift+Esc, (2) right-click on the taskbar 
and click Start Task Manager, (3) press Ctrl+Alt+Delete and click the Start Task Manager button, 
or (4) start the executable Taskmgr .exe . Once Task Manager has started, click on the Processes 
tab to see the list of processes. Notice that processes are identified by the name of the image 
of which they are an instance . Unlike some objects in Windows, processes can’t be given global 
names . To display additional details, choose Select Columns from the View menu and select 
 additional columns to be added, as shown here:

Although the Task Manager Processes tab shows a list of processes, what the Applications 
tab displays isn’t as obvious . The Applications tab lists the top-level visible windows on all the 
desktops in the interactive window station you are connected to . (By default, there is only one 
interactive desktop—an application can create more by using the Windows CreateDesktop 
function, as is done by the Sysinternals Desktops tool .) The Status column indicates whether 
or not the thread that owns the window is in a window message wait state . “Running” means 
the thread is waiting for windowing input; “Not Responding” means the thread isn’t waiting 
for  windowing input (for example, the thread might be running or waiting for I/O or some 
 Windows synchronization object) .
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On the Applications tab, you can match a task to the process that owns the thread that owns 
the task window by right-clicking on the task name and choosing Go To Process as shown in the 
previous tlist experiment .

Process Explorer, from Sysinternals, shows more details about processes and threads than any 
other available tool, which is why you will see it used in a number of experiments throughout the 
book . The following are some of the unique things that Process Explorer shows or enables:

 ■ Process security token (such as lists of groups and privileges and the virtualization state)

 ■ Highlighting to show changes in the process and thread list

 ■ List of services inside service-hosting processes, including the display name and description

 ■ Processes that are part of a job and job details

 ■ Processes hosting .NET applications and .NET-specific details (such as the list of AppDomains, 
loaded assemblies, and CLR performance counters)

 ■ Start time for processes and threads

 ■ Complete list of memory-mapped files (not just DLLs)

 ■ Ability to suspend a process or a thread

 ■ Ability to kill an individual thread
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 ■ Easy identification of which processes were consuming the most CPU time over a  period 
of time (The Performance Monitor can display process CPU utilization for a given set 
of  processes, but it won’t automatically show processes created after the performance 
 monitoring session has started—only a manual trace in binary output format can do that .)

Process Explorer also provides easy access to information in one place, such as:

 ■ Process tree (with the ability to collapse parts of the tree)

 ■ Open handles in a process (including unnamed handles)

 ■ List of DLLs (and memory-mapped files) in a process

 ■ Thread activity within a process

 ■ User-mode and kernel-mode thread stacks (including the mapping of addresses to names 
 using the Dbghelp .dll that comes with the Debugging Tools for Windows)

 ■ More accurate CPU percentage using the thread cycle count (an even better representation of 
precise CPU activity, as explained in Chapter 5, “Processes and Threads”)

 ■ Integrity level

 ■ Memory manager details such as peak commit charge and kernel memory paged and 
 nonpaged pool limits (other tools show only current size)

An introductory experiment using Process Explorer follows .

EXPERIMENT: Viewing Process Details with Process Explorer
Download the latest version of Process Explorer from Sysinternals and run it. The first time you 
run it, you will receive a message that symbols are not currently configured. If properly con-
figured, Process Explorer can access symbol information to display the symbolic name of the 
thread start function and functions on a thread’s call stack (available by double-clicking on a 
process and clicking on the Threads tab) . This is useful for identifying what threads are doing 
within a process . To access symbols, you must have the Debugging Tools for Windows installed 
(described later in this chapter). Then click on Options, choose Configure Symbols, and fill in the 
path to the Dbghelp .dll in the Debugging Tools folder and a valid symbol path . For example, on 
a 64-bit system this configuration is correct:
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In the preceding example, the on-demand symbol server is being used to access symbols 
and a copy of the symbol files is being stored on the local machine in the c:\symbols folder. For 
more information on configuring the use of the symbol server, see http://msdn.microsoft.com 
/en-us/windows/hardware/gg462988.aspx.

When Process Explorer starts, it shows by default the process tree view . It has an optional 
lower pane that can show open handles or mapped DLLs and memory-mapped files. (These are 
explored in Chapter 3, “System Mechanisms” in Part 1 and Chapter 10, “Memory Management” 
in Part 2 .) It also shows tooltips for several kinds of hosting processes:

 ■ The services inside a service-hosting process (Svchost .exe) if you hover your mouse over 
the name

 ■ The COM object tasks inside a Taskeng .exe process (started by the Task Scheduler)

 ■ The target of a Rundll32 .exe process (used for things such as Control Panel items)

 ■ The COM object being hosted inside a Dllhost .exe process

 ■ Internet Explorer tab processes

 ■ Console host processes

Here are a few steps to walk you through some basic capabilities of Process Explorer:

1. Notice that processes hosting services are highlighted by default in pink . Your own processes 
are highlighted in blue. (These colors can be configured.)
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2. Hover your mouse pointer over the image name for processes, and notice the full path 
 displayed by the tooltip . As noted earlier, certain types of processes have additional details in 
the tooltip .

3. Click on View, Select Columns from the Process Image tab, and add the image path .

4. Sort by clicking on the process column, and notice the tree view disappears . (You can either 
display tree view or sort by any of the columns shown .) Click again to sort from Z to A . Then 
click again, and the display returns to tree view .

5. Deselect View, Show Processes From All Users to show only your processes .

6. Go to Options, Difference Highlight Duration, and change the value to 5 seconds . Then 
launch a new process (anything), and notice the new process highlighted in green for 5 
 seconds . Exit this new process, and notice the process is highlighted in red for 5 seconds 
before disappearing from the display . This can be useful to see processes being created and 
exiting on your system .

7.  Finally, double-click on a process and explore the various tabs available from the process 
properties display . (These will be referenced in various experiments throughout the book 
where the information being shown is being explained .)

A thread is the entity within a process that Windows schedules for execution . Without it, the 
 process’ program can’t run . A thread includes the following essential components:

 ■ The contents of a set of CPU registers representing the state of the processor .

 ■ Two stacks—one for the thread to use while executing in kernel mode and one for executing 
in user mode .

 ■ A private storage area called thread-local storage (TLS) for use by subsystems, run-time 
 libraries, and DLLs .

 ■ A unique identifier called a thread ID (part of an internal structure called a client ID—process 
IDs and thread IDs are generated out of the same namespace, so they never overlap) .

 ■ Threads sometimes have their own security context, or token, that is often used by multi-
threaded server applications that impersonate the security context of the clients that they 
serve .

The volatile registers, stacks, and private storage area are called the thread’s context . Because 
this information is different for each machine architecture that Windows runs on, this structure, by 
necessity, is architecture-specific. The Windows GetThreadContext function provides access to this 
 architecture-specific information (called the CONTEXT block) .
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Note The threads of a 32-bit application running on a 64-bit version of Windows will 
 contain both 32-bit and 64-bit contexts, which Wow64 will use to switch the application 
from running in 32-bit to 64-bit mode when required . These threads will have two user 
stacks and two CONTEXT blocks, and the usual Windows API functions will return the 
 64-bit context instead . The Wow64GetThreadContext function, however, will return the 
 32-bit context . See Chapter 3 for more information on Wow64 .

Fibers and User-Mode Scheduler Threads
Because switching execution from one thread to another involves the kernel scheduler, it can 
be an expensive operation, especially if two threads are often switching between each other . 
Windows implements two mechanisms for reducing this cost: fibers and user-mode scheduling 
(UMS) .

Fibers allow an application to schedule its own “threads” of execution rather than rely on  
the priority-based scheduling mechanism built into Windows . Fibers are often called “light-
weight” threads, and in terms of scheduling, they’re invisible to the kernel because they’re 
implemented in user mode in Kernel32.dll. To use fibers, a call is first made to the Windows 
ConvertThreadToFiber function. This function converts the thread to a running fiber. Afterward, 
the newly converted fiber can create additional fibers with the CreateFiber function. (Each fiber 
can have its own set of fibers.) Unlike a thread, however, a fiber doesn’t begin execution until it’s 
manually selected through a call to the SwitchToFiber function. The new fiber runs until it exits 
or until it calls SwitchToFiber, again selecting another fiber to run. For more information, see the 
Windows SDK documentation on fiber functions.

UMS threads, which are available only on 64-bit versions of Windows, provide the same 
 basic advantages as fibers, without many of the disadvantages. UMS threads have their own 
kernel thread state and are therefore visible to the kernel, which allows multiple UMS threads 
to issue blocking system calls, share and contend on resources, and have per-thread state . 
However, as long as two or more UMS threads only need to perform work in user mode, they 
can periodically switch execution contexts (by yielding from one thread to another) without 
involving the scheduler: the context switch is done in user mode . From the kernel’s perspective, 
the same kernel thread is still running and nothing has changed . When a UMS thread performs 
an operation that requires entering the kernel (such as a system call), it switches to its dedicated 
kernel-mode thread (called a directed context switch) . See Chapter 5 for more information on 
UMS .

Although threads have their own execution context, every thread within a process shares the 
process’ virtual address space (in addition to the rest of the resources belonging to the process), 
meaning that all the threads in a process have full read-write access to the process virtual address 
space . Threads cannot accidentally reference the address space of another process, however, unless 
the other process makes available part of its private address space as a shared memory section (called 
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a file mapping object in the Windows API) or unless one process has the right to open another process 
to use cross-process memory functions such as ReadProcessMemory and WriteProcessMemory .

In addition to a private address space and one or more threads, each process has a security 
 context and a list of open handles to kernel objects such as files, shared memory sections, or one of 
the synchronization objects such as mutexes, events, or semaphores, as illustrated in Figure 1-2 .

Process
object

VAD VAD VAD

Virtual address descriptors (VADs)

Thread Thread Thread . . . 

Access token

Access token

Object

Object

Handle table

FIGURE 1-2 A process and its resources

Each process’ security context is stored in an object called an access token . The process access 
 token contains the security identification and credentials for the process. By default, threads don’t 
have their own access token, but they can obtain one, thus allowing individual threads to impersonate 
the security context of another process—including processes on a remote Windows system—with-
out affecting other threads in the process . (See Chapter 6, “Security,” for more details on process and 
thread security .)

The virtual address descriptors (VADs) are data structures that the memory manager uses to keep 
track of the virtual addresses the process is using . These data structures are described in more depth 
in Chapter 10 in Part 2 .

Windows provides an extension to the process model called a job . A job object’s main function is 
to allow groups of processes to be managed and manipulated as a unit . A job object allows control 
of certain attributes and provides limits for the process or processes associated with the job . It also 
records basic accounting information for all processes associated with the job and for all processes 
that were associated with the job but have since terminated . In some ways, the job object compen-
sates for the lack of a structured process tree in Windows—yet in many ways it is more powerful than 
a UNIX-style process tree .

You’ll find out much more about the internal structure of jobs, processes, and threads; the 
 mechanics of process and thread creation; and the thread-scheduling algorithms in Chapter 5 .
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Virtual Memory
Windows implements a virtual memory system based on a flat (linear) address space that provides 
each process with the illusion of having its own large, private address space . Virtual memory pro-
vides a logical view of memory that might not correspond to its physical layout . At run time, the 
memory manager, with assistance from hardware, translates, or maps, the virtual addresses into 
physical  addresses, where the data is actually stored . By controlling the protection and mapping, 
the  operating system can ensure that individual processes don’t bump into one another or over-
write operating system data . Figure 1-3 illustrates three virtually contiguous pages mapped to three 
 discontiguous pages in physical memory .

Physical memory

Virtual memory

FIGURE 1-3 Mapping virtual memory to physical memory

Because most systems have much less physical memory than the total virtual memory in use by 
the running processes, the memory manager transfers, or pages, some of the memory contents to 
disk . Paging data to disk frees physical memory so that it can be used for other processes or for the 
operating system itself . When a thread accesses a virtual address that has been paged to disk, the 
virtual memory manager loads the information back into memory from disk . Applications don’t have 
to be altered in any way to take advantage of paging because hardware support enables the memory 
manager to page without the knowledge or assistance of processes or threads .

The size of the virtual address space varies for each hardware platform . On 32-bit x86 systems, 
the total virtual address space has a theoretical maximum of 4 GB . By default, Windows allocates 
half this address space (the lower half of the 4-GB virtual address space, from 0x00000000 through 
0x7FFFFFFF) to processes for their unique private storage and uses the other half (the upper half, 
 addresses 0x80000000 through 0xFFFFFFFF) for its own protected operating system memory 
 utilization. The mappings of the lower half change to reflect the virtual address space of the currently 
executing process, but the mappings of the upper half always consist of the operating system’s virtual 
memory . Windows supports boot-time options (the increaseuserva qualifier in the Boot Configu-
ration Database, described in Chapter 13, “Startup and Shutdown,” in Part 2) that give processes 
 running specially marked programs (the large address space aware flag must be set in the header 
of the  executable image) the ability to use up to 3 GB of private address space (leaving 1 GB for the 
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 operating system) . This option allows applications such as database servers to keep larger portions of 
a database in the process address space, thus reducing the need to map subset views of the database . 
Figure 1-4 shows the two typical virtual address space layouts supported by 32-bit Windows . (The 
increaseuserva option allows anywhere from 2 to 3 GB to be used by marked applications .)

Default

2 GB User
process space

3 GB User space

2 GB System
space

3 GB User
process space

1 GB System
space

FIGURE 1-4 Typical address space layouts for 32-bit Windows

Although 3 GB is better than 2 GB, it’s still not enough virtual address space to map very large 
(multigigabyte) databases . To address this need on 32-bit systems, Windows provides a mechanism 
called Address Windowing Extension (AWE), which allows a 32-bit application to allocate up to 64 GB 
of physical memory and then map views, or windows, into its 2-GB virtual address space . Although 
using AWE puts the burden of managing mappings of virtual to physical memory on the programmer, 
it does address the need of being able to directly access more physical memory than can be mapped 
at any one time in a 32-bit process address space .

64-bit Windows provides a much larger address space for processes: 7152 GB on IA-64 systems 
and 8192 GB on x64 systems. Figure 1-5 shows a simplified view of the 64-bit system address space 
layouts . (For a detailed description, see Chapter 10 in Part 2 .) Note that these sizes do not represent 
the architectural limits for these platforms . Sixty-four bits of address space is over 17 billion GB, but 
current 64-bit hardware limits this to smaller values . And Windows implementation limits in the 
 current versions of 64-bit Windows further reduce this to 8192 GB (8 TB) .

x64

8192 GB
(8 TB) User

process space

IA-64

8192 GB
System space

7152 GB
(7 TB) User

process space

7152 GB
System space

FIGURE 1-5 Address space layouts for 64-bit Windows

Details of the implementation of the memory manager, including how address translation works 
and how Windows manages physical memory, are described in Chapter 10 in Part 2 .
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Kernel Mode vs. User Mode
To protect user applications from accessing and/or modifying critical operating system data, Windows 
uses two processor access modes (even if the processor on which Windows is running supports more 
than two): user mode and kernel mode . User application code runs in user mode, whereas operating 
system code (such as system services and device drivers) runs in kernel mode . Kernel mode refers to 
a mode of execution in a processor that grants access to all system memory and all CPU instructions . 
By providing the operating system software with a higher privilege level than the application software 
has, the processor provides a necessary foundation for operating system designers to ensure that a 
misbehaving application can’t disrupt the stability of the system as a whole .

Note The architectures of the x86 and x64 processors define four privilege levels (or rings) 
to protect system code and data from being overwritten either inadvertently or maliciously 
by code of lesser privilege . Windows uses privilege level 0 (or ring 0) for kernel mode and 
privilege level 3 (or ring 3) for user mode . The reason Windows uses only two levels is that 
some hardware architectures that were supported in the past (such as Compaq Alpha and 
Silicon Graphics MIPS) implemented only two privilege levels .

Although each Windows process has its own private memory space, the kernel-mode operating 
system and device driver code share a single virtual address space . Each page in virtual memory is 
tagged to indicate what access mode the processor must be in to read and/or write the page . Pages 
in system space can be accessed only from kernel mode, whereas all pages in the user address space 
are accessible from user mode . Read-only pages (such as those that contain static data) are not 
writable from any mode . Additionally, on processors that support no-execute memory protection, 
Windows marks pages containing data as nonexecutable, thus preventing inadvertent or malicious 
code execution in data areas . 

32-bit Windows doesn’t provide any protection to private read/write system memory being used 
by components running in kernel mode . In other words, once in kernel mode, operating system and 
device driver code has complete access to system space memory and can bypass Windows security to 
access objects . Because the bulk of the Windows operating system code runs in kernel mode, it is vital 
that components that run in kernel mode be carefully designed and tested to ensure that they don’t 
violate system security or cause system instability .

This lack of protection also emphasizes the need to take care when loading a third-party device 
driver, because once in kernel mode the software has complete access to all operating system data . 
This weakness was one of the reasons behind the driver-signing mechanism introduced in Windows, 
which warns (and, if configured as such, blocks) the user if an attempt is made to add an unsigned 
Plug and Play driver . (See Chapter 8, “I/O System,” in Part 2 for more information on driver  signing .) 
Also, a mechanism called Driver Verifier helps device driver writers to find bugs (such as buffer 
overruns or memory leaks) that can cause security or reliability issues. Driver Verifier is explained in 
Chapter 10 in Part 2 .

On 64-bit versions of Windows, the Kernel Mode Code Signing (KMCS) policy dictates that any 
64-bit device drivers (not just Plug and Play) must be signed with a cryptographic key assigned by 
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one of the major code certification authorities. The user cannot explicitly force the installation of 
an unsigned driver, even as an administrator, but, as a one-time exception, this restriction can be 
disabled manually at boot time by pressing F8 and choosing the advanced boot option Disable Driver 
Signature Enforcement . This causes a watermark on the desktop wallpaper and certain digital rights 
management (DRM) features to be disabled . 

As you’ll see in Chapter 2, “System Architecture,” user applications switch from user mode to kernel 
mode when they make a system service call . For example, a Windows ReadFile function eventually 
needs to call the internal Windows routine that actually handles reading data from a file. That routine, 
because it accesses internal system data structures, must run in kernel mode . The transition from user 
mode to kernel mode is accomplished by the use of a special processor instruction that causes the 
processor to switch to kernel mode and enter the system service dispatching code in the kernel which 
calls the appropriate internal function in Ntoskrnl .exe or Win32k .sys . Before returning control to the 
user thread, the processor mode is switched back to user mode . In this way, the operating system 
protects itself and its data from perusal and modification by user processes.

Note A transition from user mode to kernel mode (and back) does not affect thread 
scheduling per se—a mode transition is not a context switch . Further details on system 
 service dispatching are included in Chapter 3 .

Thus, it’s normal for a user thread to spend part of its time executing in user mode and part in 
 kernel mode . In fact, because the bulk of the graphics and windowing system also runs in kernel 
mode, graphics-intensive applications spend more of their time in kernel mode than in user mode . 
An easy way to test this is to run a graphics-intensive application such as Microsoft Paint or Microsoft 
Chess Titans and watch the time split between user mode and kernel mode using one of the perfor-
mance counters listed in Table 1-2 . More advanced applications can use newer technologies such as 
Direct2D and compositing, which perform bulk computations in user mode and send only the raw 
surface data to the kernel, reducing the time spent transitioning between user and kernel modes .

TABLE 1-2 Mode-Related Performance Counters

Object: Counter Function

Processor: % Privileged Time Percentage of time that an individual CPU (or all CPUs) has run in kernel mode 
during a specified interval

Processor: % User Time Percentage of time that an individual CPU (or all CPUs) has run in user mode 
during a specified interval

Process: % Privileged Time Percentage of time that the threads in a process have run in kernel mode during 
a specified interval

Process: % User Time Percentage of time that the threads in a process have run in user mode during a 
specified interval

Thread: % Privileged Time Percentage of time that a thread has run in kernel mode during a specified 
 interval

Thread: % User Time Percentage of time that a thread has run in user mode during a specified 
 interval
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EXPERIMENT: Kernel Mode vs. User Mode
You can use the Performance Monitor to see how much time your system spends executing in 
kernel mode vs . in user mode . Follow these steps:

1. Run the Performance Monitor by opening the Start menu and selecting All Programs 
/Administrative Tools/Performance Monitor . Select the Performance Monitor node under 
Performance/Monitoring Tools on the left-side tree .

2. Click the Add button (+) on the toolbar .

3. Expand the Processor counter section, click the % Privileged Time counter and, while 
 holding down the Ctrl key, click the % User Time counter .

4. Click Add, and then click OK .

5. Open a command prompt, and do a directory scan of your C drive over the network by 
 typing dir \\%computername%\c$ /s .

6. When you’re finished, just close the tool.
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You can also quickly see this by using Task Manager . Just click the Performance tab, and then 
select Show Kernel Times from the View menu . The CPU usage bar will show total CPU usage in 
green and kernel-mode time in red .

To see how the Performance Monitor itself uses kernel time and user time, run it again, but 
add the individual Process counters % User Time and % Privileged Time for every process in the 
system:

1. If it’s not already running, run the Performance Monitor again . (If it is already running, start 
with a blank display by right-clicking in the graph area and selecting Remove All Counters .)

2. Click the Add button (+) on the toolbar .

3. In the available counters area, expand the Process section .

4. Select the % Privileged Time and % User Time counters .

5. Select a few processes in the Instance box (such as mmc, csrss, and Idle) .

6. Click Add, and then click OK .

7.  Move the mouse rapidly back and forth .

8. Press Ctrl+H to turn on highlighting mode . This highlights the currently selected counter in 
black .

9. Scroll through the counters at the bottom of the display to identify the processes whose 
threads were running when you moved the mouse, and note whether they were running in 
user mode or kernel mode .

You should see the Performance Monitor process (by looking in the Instance column for the 
mmc process) kernel-mode and user-mode time go up when you move the mouse because it 
is executing application code in user mode and calling Windows functions that run in kernel 
mode . You’ll also notice kernel-mode thread activity in a process named csrss when you move 
the mouse . This activity occurs because the Windows subsystem’s kernel-mode raw input 
thread, which handles keyboard and mouse input, is attached to this process . (See Chapter 2 for 
more information about system threads .) Finally, the process named Idle that you see spending 
nearly 100 percent of its time in kernel mode isn’t really a process—it’s a fake process used to 
account for idle CPU cycles . As you can observe from the mode in which the threads in the Idle 
process run, when Windows has nothing to do, it does it in kernel mode .

Terminal Services and Multiple Sessions
Terminal Services refers to the support in Windows for multiple interactive user sessions on a single 
system . With Windows Terminal Services, a remote user can establish a session on another machine, 
log in, and run applications on the server . The server transmits the graphical user interface to the 
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 client (as well as other configurable resources such as audio and clipboard), and the client transmits 
the user’s input back to the server . (Similar to the X Window System, Windows permits running indi-
vidual applications on a server system with the display remoted to the client instead of remoting the 
entire desktop .)

The first session is considered the services session, or session zero, and contains system service 
hosting processes (explained in further detail in Chapter 4, “Management Mechanisms”). The first 
login session at the physical console of the machine is session one, and additional sessions can be 
created through the use of the remote desktop connection program (Mstsc .exe) or through the use 
of fast user switching (described later) .

Windows client editions permits a single remote user to connect to the machine, but if someone 
is logged in at the console, the workstation is locked (that is, someone can be using the system either 
locally or remotely, but not at the same time) . Windows editions that include Windows Media Center 
allow one interactive session and up to four Windows Media Center Extender sessions .

Windows server systems support two simultaneous remote connections (to facilitate remote 
management—for example, use of management tools that require being logged in to the machine 
being managed) and more than two remote sessions if it’s appropriately licensed and configured as a 
terminal server .

All Windows client editions support multiple sessions created locally through a feature called fast 
user switching that can be used one at a time . When a user chooses to disconnect her session instead 
of log off (for example, by clicking Start and choosing Switch User from the Shutdown submenu or by 
holding down the Windows key and pressing L and then clicking the Switch User button), the  current 
session (that is, the processes running in that session and all the sessionwide data structures that 
describe the session) remains active in the system and the system returns to the main logon screen . If 
a new user logs in, a new session is created .

For applications that want to be aware of running in a terminal server session, there are a set 
of Windows APIs for programmatically detecting that as well as for controlling various aspects of 
 Terminal Services . (See the Windows SDK and the Remote Desktop Services API for details .)

Chapter 2 describes briefly how sessions are created and has some experiments showing how to 
view session information with various tools, including the kernel debugger . The “Object Manager” 
section in Chapter 3 describes how the system namespace for objects is instantiated on a per-session 
basis and how applications that need to be aware of other instances of themselves on the same 
 system can accomplish that . Finally, Chapter 10 in Part 2 covers how the memory manager sets up 
and manages sessionwide data .

Objects and Handles
In the Windows operating system, a kernel object is a single, run-time instance of a statically defined 
object type . An object type comprises a system-defined data type, functions that operate on instances 
of the data type, and a set of object attributes . If you write Windows applications, you might encoun-
ter process, thread, file, and event objects, to name just a few examples. These objects are based on 
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lower-level objects that Windows creates and manages . In Windows, a process is an instance of the 
process object type, a file is an instance of the file object type, and so on.

An object attribute is a field of data in an object that partially defines the object’s state. An object 
of type process, for example, would have attributes that include the process ID, a base scheduling 
priority, and a pointer to an access token object . Object methods, the means for manipulating objects, 
usually read or change the object attributes . For example, the open method for a process would 
 accept a process identifier as input and return a pointer to the object as output.

Note Although there is a parameter named ObjectAttributes that a caller supplies when 
creating an object using the kernel object manager APIs, that parameter shouldn’t be 
 confused with the more general meaning of the term as used in this book .

The most fundamental difference between an object and an ordinary data structure is that the 
internal structure of an object is opaque . You must call an object service to get data out of an object 
or to put data into it . You can’t directly read or change data inside an object . This difference separates 
the underlying implementation of the object from code that merely uses it, a technique that allows 
object implementations to be changed easily over time .

Objects, through the help of a kernel component called the object manager, provide a convenient 
means for accomplishing the following four important operating system tasks:

 ■ Providing human-readable names for system resources

 ■ Sharing resources and data among processes

 ■ Protecting resources from unauthorized access

 ■ Reference tracking, which allows the system to know when an object is no longer in use so 
that it can be automatically deallocated

Not all data structures in the Windows operating system are objects . Only data that needs to be 
shared, protected, named, or made visible to user-mode programs (via system services) is placed in 
objects . Structures used by only one component of the operating system to implement internal func-
tions are not objects . Objects and handles (references to an instance of an object) are discussed in 
more detail in Chapter 3 .

Security
Windows was designed from the start to be secure and to meet the requirements of various formal 
government and industry security ratings, such as the Common Criteria for Information Technology 
Security Evaluation (CCITSE) specification. Achieving a government-approved security rating allows an 
operating system to compete in that arena . Of course, many of these capabilities are advantageous 
features for any multiuser system .

The core security capabilities of Windows include discretionary (need-to-know) and mandatory 
integrity protection for all shareable system objects (such as files, directories, processes, threads, and 
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so forth), security auditing (for accountability of subjects, or users and the actions they initiate), user 
authentication at logon, and the prevention of one user from accessing uninitialized resources (such 
as free memory or disk space) that another user has deallocated .

Windows has three forms of access control over objects. The first form—discretionary access 
control—is the protection mechanism that most people think of when they think of operating system 
security. It’s the method by which owners of objects (such as files or printers) grant or deny access 
to others . When users log in, they are given a set of security credentials, or a security context . When 
they attempt to access objects, their security context is compared to the access control list on the 
object they are trying to access to determine whether they have permission to perform the requested 
operation .

Privileged access control is necessary for those times when discretionary access control isn’t 
enough . It’s a method of ensuring that someone can get to protected objects if the owner isn’t 
 available . For example, if an employee leaves a company, the administrator needs a way to gain  access 
to files that might have been accessible only to that employee. In that case, under Windows, the 
 administrator can take ownership of the file so that he can manage its rights as necessary.

Finally, mandatory integrity control is required when an additional level of security control is 
required to protect objects that are being accessed from within the same user account . It’s used both 
to isolate Protected Mode Internet Explorer from a user’s configuration and to protect objects  created 
by an elevated administrator account from access by a nonelevated administrator account . (See 
 Chapter 6 for more information on User Account Control—UAC .)

Security pervades the interface of the Windows API . The Windows subsystem implements 
 object-based security in the same way the operating system does; the Windows subsystem protects 
shared Windows objects from unauthorized access by placing Windows security descriptors on them . 
The first time an application tries to access a shared object, the Windows subsystem verifies the appli-
cation’s right to do so . If the security check succeeds, the Windows subsystem allows the application 
to proceed .

For a comprehensive description of Windows security, see Chapter 6 .

Registry
If you’ve worked at all with Windows operating systems, you’ve probably heard about or looked at 
the registry . You can’t talk much about Windows internals without referring to the registry because 
it’s the system database that contains the information required to boot and configure the system, 
 systemwide software settings that control the operation of Windows, the security database, and 
 per-user configuration settings (such as which screen saver to use).

In addition, the registry is a window into in-memory volatile data, such as the current hardware 
state of the system (what device drivers are loaded, the resources they are using, and so on) as well as 
the Windows performance counters . The performance counters, which aren’t actually “in” the registry, 
are accessed through the registry functions . See Chapter 4 for more on how performance counter 
information is accessed from the registry .
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Although many Windows users and administrators will never need to look directly into the registry 
(because you can view or change most configuration settings with standard administrative utilities), 
it is still a useful source of Windows internals information because it contains many settings that 
 affect system performance and behavior . (If you decide to directly change registry settings, you must 
 exercise extreme caution; any changes might adversely affect system performance or, worse, cause 
the system to fail to boot successfully.) You’ll find references to individual registry keys through-
out this book as they pertain to the component being described . Most registry keys referred to in 
this book are under the systemwide configuration, HKEY_LOCAL_MACHINE, which we’ll abbreviate 
throughout as HKLM .

For further information on the registry and its internal structure, see Chapter 4 .

Unicode
Windows differs from most other operating systems in that most internal text strings are stored and 
processed as 16-bit-wide Unicode characters . Unicode is an international character set standard that 
defines unique 16-bit values for most of the world’s known character sets. 

Because many applications deal with 8-bit (single-byte) ANSI character strings, many Windows 
functions that accept string parameters have two entry points: a Unicode (wide, 16-bit) version and 
an ANSI (narrow, 8-bit) version . If you call the narrow version of a Windows function, there is a slight 
performance impact as input string parameters are converted to Unicode before being processed 
by the system and output parameters are converted from Unicode to ANSI before being returned to 
the application . Thus, if you have an older service or piece of code that you need to run on Windows 
but this code is written using ANSI character text strings, Windows will convert the ANSI characters 
into Unicode for its own use . However, Windows never converts the data inside files—it’s up to the 
 application to decide whether to store data as Unicode or as ANSI .

Regardless of language, all versions of Windows contain the same functions . Instead of having 
separate language versions, Windows has a single worldwide binary so that a single installation can 
support multiple languages (by adding various language packs) . Applications can also take advan-
tage of Windows functions that allow single worldwide application binaries that can support multiple 
languages .

For more information about Unicode, see www.unicode.org as well as the programming 
 documentation in the MSDN Library .

Digging into Windows Internals

Although much of the information in this book is based on reading the Windows source code and 
talking to the developers, you don’t have to take everything on faith . Many details about the internals 
of Windows can be exposed and demonstrated by using a variety of available tools, such as those that 
come with Windows and the Windows debugging tools. These tool packages are briefly described 
later in this section .
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To encourage your exploration of Windows internals, we’ve included “Experiment” sidebars 
throughout the book that describe steps you can take to examine a particular aspect of Windows 
internal behavior . (You already saw a few of these sections earlier in this chapter .) We encourage you 
to try these experiments so that you can see in action many of the internals topics described in this 
book .

Table 1-3 shows a list of the principal tools used in this book and where they come from .

TABLE 1-3 Tools for Viewing Windows Internals

Tool Image Name Origin

Startup Programs Viewer AUTORUNS Sysinternals 

Access Check ACCESSCHK Sysinternals

Dependency Walker DEPENDS www.dependencywalker.com

Global Flags GFLAGS Debugging tools

Handle Viewer HANDLE Sysinternals

Kernel debuggers WINDBG, KD Debugging tools, Windows SDK

Object Viewer WINOBJ Sysinternals

Performance Monitor PERFMON .MSC Windows built-in tool

Pool Monitor POOLMON Windows Driver Kit

Process Explorer PROCEXP Sysinternals

Process Monitor PROCMON Sysinternals

Task (Process) List TLIST Debugging tools

Task Manager TASKMGR Windows built-in tool

Performance Monitor
We’ll refer to the Performance Monitor found in the Administrative Tools folder on the Start menu 
(or via Control Panel) throughout this book; specifically, we’ll focus on the Performance Monitor and 
Resource Monitor . The Performance Monitor has three functions: system monitoring, viewing perfor-
mance counter logs, and setting alerts (by using data collector sets, which also contain performance 
counter logs and trace and configuration data). For simplicity, when we refer to the Performance 
Monitor, we are referring to the System Monitor function within the tool .

The Performance Monitor provides more information about how your system is operating than 
any other single utility . It includes hundreds of base and extensible counters for various objects . 
For each major topic described in this book, a table of the relevant Windows performance counters 
is included .

The Performance Monitor contains a brief description for each counter . To see the descriptions, 
select a counter in the Add Counters window and select the Show Description check box . 
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Although all the low-level system monitoring we’ll do in this book can be done with the 
 Performance Monitor, Windows also includes a Resource Monitor utility (accessible from the start 
menu or from the Task Manager Performance tab) that shows four primary system resources: CPU, 
Disk, Network, and Memory . In their basic states, these resources are displayed with the same level 
of information that you would find in Task Manager. However, they also provide sections that can be 
expanded for more information .

When expanded, the CPU tab displays information about per-process CPU usage, just like Task 
Manager . However, it adds a column for average CPU usage, which can give you a better idea of 
which processes are most active . The CPU tab also includes a separate display of services and their 
associated CPU usage and average. Each service hosting process is identified by the service group 
it is hosting . As with Process Explorer, selecting a process (by clicking its associated check box) will 
display a list of named handles opened by the process, as well as a list of modules (such as DLLs) that 
are loaded in the process address space . The Search Handles box can also be used to search for which 
processes have opened a handle to a given named resource .

The Memory section displays much of the same information that one can obtain with Task 
 Manager, but it is organized for the entire system . A physical memory bar graph displays the current 
organization of physical memory into either hardware reserved, in use, modified, standby, and free 
memory . See Chapter 10 in Part 2 for the exact meaning of these terms .

The Disk section, on the other hand, displays per-file information for I/Os in a way that makes it 
easy to identify the most accessed, written to, or read from files on the system. These results can be 
further filtered down by process.

The Networking section displays the active network connections and which processes own them, 
as well as how much data is going through them . This information makes it possible to see back-
ground network activity that might be hard to detect otherwise . In addition, the TCP connections 
that are active on the system are shown, organized by process, with data such as the remote and local 
port and address, and packet latency . Finally, a list of listening ports is displayed by process,  allowing 
an administrator to see which services (or applications) are currently waiting for connections on a 
given port. The protocol and firewall policy for each port and process is also shown.

Note that all of the Windows performance counters are accessible programmatically . The section 
“HKEY_PERFORMANCE_DATA” in Chapter 4 has a brief description of the components involved in 
retrieving performance counters through the Windows API .

Kernel Debugging
Kernel debugging means examining internal kernel data structures and/or stepping through  functions 
in the kernel . It is a useful way to investigate Windows internals because you can display internal 
system information not available through any other tools and get a clearer idea of code flows within 
the kernel .
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Before describing the various ways you can debug the kernel, let’s examine a set of files that you’ll 
need in order to perform any type of kernel debugging .

Symbols for Kernel Debugging
Symbol files contain the names of functions and variables and the layout and format of data 
 structures . They are generated by the linker and used by debuggers to reference and display these 
names during a debug session . This information is not usually stored in the binary image because it is 
not needed to execute the code . This means that binaries are smaller and faster . However, this means 
that when debugging, you must make sure that the debugger can access the symbol files that are 
 associated with the images you are referencing during a debugging session .

To use any of the kernel debugging tools to examine internal Windows kernel data structures (such 
as the process list, thread blocks, loaded driver list, memory usage information, and so on), you must 
have the correct symbol files for at least the kernel image, Ntoskrnl .exe . (The section “Architecture 
Overview” in Chapter 2 explains more about this file.) Symbol table files must match the version of 
the image they were taken from. For example, if you install a Windows Service Pack or hot fix that 
updates the kernel, you must obtain the matching, updated symbol files.

While it is possible to download and install symbols for various versions of Windows, updated 
symbols for hot fixes are not always available. The easiest solution to obtain the correct version of 
symbols for debugging is to use the Microsoft on-demand symbol server by using a special syntax for 
the symbol path that you specify in the debugger . For example, the following symbol path causes the 
debugging tools to load required symbols from the Internet symbol server and keep a local copy in 
the c:\symbols folder:

srv*c:\symbols*http://msdl.microsoft.com/download/symbols

For detailed instructions on how to use the symbol server, see the debugging tools help file or the 
Web page http://msdn.microsoft.com/en-us/windows/hardware/gg462988.aspx .

Debugging Tools for Windows
The Debugging Tools for Windows package contains advanced debugging tools used in this book 
to explore Windows internals . The latest version is included as part of the Windows Software 
 Development Kit (SDK) . These tools can be used to debug user-mode processes as well as the kernel . 
(See the following sidebar .)

Note The Debugging Tools for Windows are updated frequently and released 
 independently of Windows operating system versions, so check often for new versions .
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User-Mode Debugging
The debugging tools can also be used to attach to a user-mode process and examine and/or 
change process memory . There are two options when attaching to a process:

 ■ Invasive Unless specified otherwise, when you attach to a running process, the 
 DebugActiveProcess Windows function is used to establish a connection between the 
debugger and the debugee . This permits examining and/or changing process memory, 
setting breakpoints, and performing other debugging functions . Windows allows you to 
stop debugging without killing the target process, as long as the debugger is detached, 
not killed .

 ■ Noninvasive With this option, the debugger simply opens the process with the 
 OpenProcess function . It does not attach to the process as a debugger . This allows you to 
examine and/or change memory in the target process, but you cannot set breakpoints . 

You can also open user-mode process dump files with the debugging tools. User-mode 
dump files are explained in Chapter 3 in the section on exception dispatching.

There are two debuggers that can be used for kernel debugging: a command-line version (Kd .exe) 
and a graphical user interface (GUI) version (Windbg .exe) . Both provide the same set of commands, 
so which one you choose is a matter of personal preference . You can perform three types of kernel 
debugging with these tools:

 ■ Open a crash dump file created as a result of a Windows system crash . (See Chapter 14, “Crash 
Dump Analysis,” in Part 2 for more information on kernel crash dumps .)

 ■ Connect to a live, running system and examine the system state (or set breakpoints if you’re 
debugging device driver code) . This operation requires two computers—a target and a host . 
The target is the system being debugged, and the host is the system running the debugger . 
The target system can be connected to the host via a null modem cable, an IEEE 1394 cable, 
or a USB 2 .0 debugging cable . The target system must be booted in debugging mode (either 
by pressing F8 during the boot process and selecting Debugging Mode or by configuring 
the system to boot in debugging mode using Bcdedit or Msconfig.exe). You can also connect 
through a named pipe, which is useful when debugging through a virtual machine product 
such as Hyper-V, Virtual PC, or VMWare, by exposing the guest operating system’s serial port 
as a named pipe device .

 ■ Windows systems also allow you to connect to the local system and examine the system state . 
This is called local kernel debugging . To initiate local kernel debugging with WinDbg, open the 
File menu, choose Kernel Debug, click on the Local tab, and then click OK . The target system 
must be booted in debugging mode . An example output screen is shown in Figure 1-6 . Some 
kernel debugger commands do not work when used in local kernel debugging mode (such as 
creating a memory dump with the  .dump command—however, this can be done with LiveKd, 
described later in this section) .
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FIGURE 1-6 Local kernel debugging

Once connected in kernel debugging mode, you can use one of the many debugger extension 
commands (commands that begin with “!”) to display the contents of internal data structures such 
as threads, processes, I/O request packets, and memory management information . Throughout this 
book, the relevant kernel debugger commands and output are included as they apply to each topic 
being discussed . An excellent companion reference is the Debugger.chm help file, contained in the 
WinDbg installation folder, which documents all the kernel debugger functionality and extensions . In 
addition, the dt (display type) command can format over 1000 kernel structures because the kernel 
symbol files for Windows contain type information that the debugger can use to format structures.

EXPERIMENT: Displaying Type Information for Kernel Structures
To display the list of kernel structures whose type information is included in the kernel symbols, 
type dt nt!_* in the kernel debugger . A sample partial output is shown here:

lkd> dt nt!_*  
          nt!_LIST_ENTRY  
          nt!_LIST_ENTRY  
          nt!_IMAGE_NT_HEADERS  
          nt!_IMAGE_FILE_HEADER  
          nt!_IMAGE_OPTIONAL_HEADER  
          nt!_IMAGE_NT_HEADERS  
          nt!_LARGE_INTEGER

You can also use the dt command to search for specific structures by using its wildcard 
lookup capability . For example, if you were looking for the structure name for an interrupt 
object, type dt nt!_*interrupt*:

lkd> dt nt!_*interrupt*  
          nt!_KINTERRUPT  
          nt!_KINTERRUPT_MODE 
          nt!_KINTERRUPT_POLARITY 
          nt!_UNEXPECTED_INTERRUPT
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Then you can use dt to format a specific structure as shown next:

lkd> dt nt!_kinterrupt  
nt!_KINTERRUPT  
   +0x000 Type             : Int2B 
   +0x002 Size             : Int2B 
   +0x008 InterruptListEntry : _LIST_ENTRY 
   +0x018 ServiceRoutine   : Ptr64     unsigned char  
   +0x020 MessageServiceRoutine : Ptr64     unsigned char  
   +0x028 MessageIndex     : Uint4B 
   +0x030 ServiceContext   : Ptr64 Void 
   +0x038 SpinLock         : Uint8B 
   +0x040 TickCount        : Uint4B 
   +0x048 ActualLock       : Ptr64 Uint8B 
   +0x050 DispatchAddress  : Ptr64     void  
   +0x058 Vector           : Uint4B 
   +0x05c Irql             : UChar 
   +0x05d SynchronizeIrql  : UChar 
   +0x05e FloatingSave     : UChar 
   +0x05f Connected        : UChar 
   +0x060 Number           : Uint4B 
   +0x064 ShareVector      : UChar 
   +0x065 Pad              : [3] Char 
   +0x068 Mode             : _KINTERRUPT_MODE 
   +0x06c Polarity         : _KINTERRUPT_POLARITY 
   +0x070 ServiceCount     : Uint4B 
   +0x074 DispatchCount    : Uint4B 
   +0x078 Rsvd1            : Uint8B 
   +0x080 TrapFrame        : Ptr64 _KTRAP_FRAME 
   +0x088 Reserved         : Ptr64 Void 
   +0x090 DispatchCode     : [4] Uint4B

Note that dt does not show substructures (structures within structures) by default . To recurse 
through substructures, use the –r switch . For example, using this switch to display the kernel 
interrupt object shows the format of the _LIST_ENTRY structure stored at the InterruptListEntry 
field:

lkd> dt nt!_kinterrupt -r  
nt!_KINTERRUPT  
   +0x000 Type             : Int2B 
   +0x002 Size             : Int2B 
   +0x008 InterruptListEntry : _LIST_ENTRY 
      +0x000 Flink            : Ptr64 _LIST_ENTRY 
         +0x000 Flink            : Ptr64 _LIST_ENTRY 
         +0x008 Blink            : Ptr64 _LIST_ENTRY 
      +0x008 Blink            : Ptr64 _LIST_ENTRY 
         +0x000 Flink            : Ptr64 _LIST_ENTRY 
         +0x008 Blink            : Ptr64 _LIST_ENTRY
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The Debugging Tools for Windows help file also explains how to set up and use the kernel 
 debuggers . Additional details on using the kernel debuggers that are aimed primarily at device driver 
writers can be found in the Windows Driver Kit documentation . 

LiveKd Tool
LiveKd is a free tool from Sysinternals that allows you to use the standard Microsoft kernel debuggers 
just described to examine the running system without booting the system in debugging mode . This 
approach might be useful when kernel-level troubleshooting is required on a machine that wasn’t 
booted in debugging mode—certain issues might be hard to reproduce reliably, so a reboot with the 
debug option enabled might not readily exhibit the error .

You run LiveKd just as you would WinDbg or Kd . LiveKd passes any command-line options you 
specify to the debugger you select . By default, LiveKd runs the command-line kernel debugger (Kd) . 
To have it run WinDbg, specify the –w switch. To see the help files for LiveKd switches, specify the –? 
switch .

LiveKd presents a simulated crash dump file to the debugger, so you can perform any operations 
in LiveKd that are supported on a crash dump . Because LiveKd is relying on physical memory to back 
the simulated dump, the kernel debugger might run into situations in which data structures are in the 
middle of being changed by the system and are inconsistent . Each time the debugger is launched, 
it starts with a fresh view of the system state . If you want to refresh the snapshot, quit the  debugger 
(with the q command), and LiveKd will ask you whether you want to start it again . If the  debugger 
enters a loop in printing output, press Ctrl+C to interrupt the output and quit . If it hangs, press 
Ctrl+Break, which will terminate the debugger process . LiveKd will then ask you whether you want to 
run the debugger again .

Windows Software Development Kit
The Windows Software Development Kit (SDK) is available as part of the MSDN subscription program 
or can be downloaded for free from msdn.microsoft.com . Besides the Debugging Tools, it contains 
the documentation, C header files, and libraries necessary to compile and link Windows applications. 
(Although Microsoft Visual C++ comes with a copy of these header files, the versions contained in 
the Windows SDK always match the latest version of the Windows operating systems, whereas the 
version that comes with Visual C++ might be an older version that was current when Visual C++ was 
released .) From an internals perspective, items of interest in the Windows SDK include the Windows 
API header files (\Program Files\Microsoft SDKs\Windows\v7.0A\Include). A few of these tools are also 
shipped as sample source code in both the Windows SDK and the MSDN Library .

Windows Driver Kit
The Windows Driver Kit (WDK) is also available through the MSDN subscription program, and just 
like the Windows SDK, it is available for free download . The Windows Driver Kit documentation is 
included in the MSDN Library .
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Although the WDK is aimed at device driver developers, it is an abundant source of Windows 
 internals information . For example, while Chapter 8 in Part 2 describes the I/O system architecture, 
driver model, and basic device driver data structures, it does not describe the individual kernel 
 support functions in detail . The WDK documentation contains a comprehensive description of all 
the Windows kernel support functions and mechanisms used by device drivers in both a tutorial and 
reference form .

Besides including the documentation, the WDK contains header files (in particular, ntddk.h, ntifs.h, 
and wdm.h) that define key internal data structures and constants as well as interfaces to many 
internal system routines. These files are useful when exploring Windows internal data structures with 
the kernel debugger because although the general layout and content of these structures are shown 
in this book, detailed field-level descriptions (such as size and data types) are not. A number of these 
data structures (such as object dispatcher headers, wait blocks, events, mutants, semaphores, and so 
on) are, however, fully described in the WDK .

So if you want to dig into the I/O system and driver model beyond what is presented in this book, 
read the WDK documentation (especially the Kernel-Mode Driver Architecture Design Guide and 
Reference manuals). You might also find useful Programming the Microsoft Windows Driver Model, 
Second Edition by Walter Oney (Microsoft Press, 2002) and Developing Drivers with the Windows 
Driver Foundation by Penny Orwick and Guy Smith (Microsoft Press, 2007) .

Sysinternals Tools
Many experiments in this book use freeware tools that you can download from Sysinternals . Mark 
Russinovich, coauthor of this book, wrote most of these tools . The most popular tools include Process 
Explorer and Process Monitor . Note that many of these utilities involve the installation and execution 
of kernel-mode device drivers and thus require (elevated) administrator privileges, though they can 
run with limited functionality and output in a standard (or nonelevated) user account .

Since the Sysinternals tools are updated frequently, it is best to make sure you have the  latest 
 version. To be notified of tool updates, you can follow the Sysinternals Site Blog (which has an 
RSS feed) .

For a description of all the tools, a description of how to use them, and case studies of 
 problems solved, see Windows Sysinternals Administrator’s Reference (Microsoft Press, 2011) by 
Mark  Russinovich and Aaron Margosis .

For questions and discussions on the tools, use the Sysinternals Forums .

Conclusion

In this chapter, you’ve been introduced to the key Windows technical concepts and terms that will be 
used throughout the book . You’ve also had a glimpse of the many useful tools available for  digging 
into Windows internals . Now we’re ready to begin our exploration of the internal design of the 
 system, beginning with an overall view of the system architecture and its key components .
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C H A P T E R  2

System Architecture

Now that we’ve covered the terms, concepts, and tools you need to be familiar with, we’re ready 
to start our exploration of the internal design goals and structure of the Microsoft Windows 

operating system . This chapter explains the overall architecture of the system—the key components, 
how they interact with each other, and the context in which they run . To provide a framework for 
understanding the internals of Windows, let’s first review the requirements and goals that shaped the 
original design and specification of the system.

Requirements and Design Goals

The following requirements drove the specification of Windows NT back in 1989:

 ■ Provide a true 32-bit, preemptive, reentrant, virtual memory operating system

 ■ Run on multiple hardware architectures and platforms

 ■ Run and scale well on symmetric multiprocessing systems

 ■ Be a great distributed computing platform, both as a network client and as a server

 ■ Run most existing 16-bit MS-DOS and Microsoft Windows 3 .1 applications

 ■ Meet government requirements for POSIX 1003 .1 compliance

 ■ Meet government and industry requirements for operating system security

 ■ Be easily adaptable to the global market by supporting Unicode

To guide the thousands of decisions that had to be made to create a system that met these 
 requirements, the Windows NT design team adopted the following design goals at the beginning of 
the project:

 ■ Extensibility The code must be written to comfortably grow and change as market 
 requirements change .

 ■ Portability The system must be able to run on multiple hardware architectures and must be 
able to move with relative ease to new ones as market demands dictate .
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 ■ Reliability and robustness The system should protect itself from both internal  malfunction 
and external tampering . Applications should not be able to harm the operating system or 
other applications .

 ■ Compatibility Although Windows NT should extend existing technology, its user interface 
and APIs should be compatible with older versions of Windows and with MS-DOS . It should 
also interoperate well with other systems, such as UNIX, OS/2, and NetWare .

 ■ Performance Within the constraints of the other design goals, the system should be as fast 
and responsive as possible on each hardware platform .

As we explore the details of the internal structure and operation of Windows, you’ll see how these 
original design goals and market requirements were woven successfully into the construction of the 
system . But before we start that exploration, let’s examine the overall design model for Windows and 
compare it with other modern operating systems .

Operating System Model

In most multiuser operating systems, applications are separated from the operating system itself—
the operating system kernel code runs in a privileged processor mode (referred to as kernel mode in 
this book), with access to system data and to the hardware; application code runs in a nonprivileged 
processor mode (called user mode), with a limited set of interfaces available, limited access to system 
data, and no direct access to hardware . When a user-mode program calls a system service, the pro-
cessor executes a special instruction that switches the calling thread to kernel mode . When the system 
service completes, the operating system switches the thread context back to user mode and allows 
the caller to continue .

Windows is similar to most UNIX systems in that it’s a monolithic operating system in the sense 
that the bulk of the operating system and device driver code shares the same kernel-mode protected 
memory space . This means that any operating system component or device driver can potentially 
corrupt data being used by other operating system components . However, Windows does imple-
ment some kernel protection mechanisms, such as PatchGuard and Kernel Mode Code Signing (both 
described in Chapter 3, “System Mechanisms”), which help in the mitigation and prevention of issues 
related to the shared kernel-mode address space .

All these operating system components are, of course, fully protected from errant applications 
 because applications don’t have direct access to the code and data of the privileged part of the 
 operating system (although they can quickly call other kernel services) . This protection is one of the 
reasons that Windows has the reputation for being both robust and stable as an application server 
and as a workstation platform, yet fast and nimble from the perspective of core operating system 
services, such as virtual memory management, file I/O, networking, and file and print sharing.
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The kernel-mode components of Windows also embody basic object-oriented design principles . 
For example, in general they don’t reach into one another’s data structures to access information 
maintained by individual components . Instead, they use formal interfaces to pass parameters and 
 access and/or modify data structures .

Despite its pervasive use of objects to represent shared system resources, Windows is not an 
object-oriented system in the strict sense . Most of the operating system code is written in C for 
portability . The C programming language doesn’t directly support object-oriented constructs such as 
dynamic binding of data types, polymorphic functions, or class inheritance . Therefore, the C-based 
implementation of objects in Windows borrows from, but doesn’t depend on, features of particular 
object-oriented languages .

Architecture Overview

With this brief overview of the design goals and packaging of Windows, let’s take a look at the key 
system components that make up its architecture. A simplified version of this architecture is shown 
in Figure 2-1 . Keep in mind that this diagram is basic—it doesn’t show everything . (For example, the 
networking components and the various types of device driver layering are not shown .)

User mode

Kernel mode

Windowing
and graphics

Hardware abstraction layer (HAL)

Device driversKernel

Executive

System
support

processes

Service
processes

User
applications

Environment
subsystems

Subsystem DLLs

FIGURE 2-1 Simplified Windows architecture

In Figure 2-1, first notice the line dividing the user-mode and kernel-mode parts of the Windows 
operating system . The boxes above the line represent user-mode processes, and the components 
below the line are kernel-mode operating system services . As mentioned in Chapter 1, “Concepts 
and Tools,” user-mode threads execute in a protected process address space (although while they 
are executing in kernel mode, they have access to system space) . Thus, system support processes, 
service processes, user applications, and environment subsystems each have their own private process 
 address space .
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The four basic types of user-mode processes are described as follows:

 ■ Fixed (or hardwired) system support processes, such as the logon process and the Session 
Manager, that are not Windows services . (That is, they are not started by the service control 
manager . Chapter 4, “Management and Mechanisms,” describes services in detail .)

 ■ Service processes that host Windows services, such as the Task Scheduler and Print Spooler 
services . Services generally have the requirement that they run independently of user logons . 
Many Windows server applications, such as Microsoft SQL Server and Microsoft Exchange 
Server, also include components that run as services .

 ■ User applications, which can be one of the following types: Windows 32-bit or 64-bit, Windows 
3 .1 16-bit, MS-DOS 16-bit, or POSIX 32-bit or 64-bit . Note that 16-bit applications can be run 
only on 32-bit Windows .

 ■ Environment subsystem server processes, which implement part of the support for the 
 operating system environment, or personality, presented to the user and programmer . 
 Windows NT originally shipped with three environment subsystems: Windows, POSIX, and 
OS/2 . However, the POSIX and OS/2 subsystems last shipped with Windows 2000 . The Ultimate 
and Enterprise editions of Windows client as well as all of the server versions include support 
for an enhanced POSIX subsystem called Subsystem for Unix-based Applications (SUA) .

In Figure 2-1, notice the “Subsystem DLLs” box below the “Service processes” and “User 
 applications” boxes . Under Windows, user applications don’t call the native Windows operating 
system services directly; rather, they go through one or more subsystem dynamic-link libraries (DLLs) . 
The role of the subsystem DLLs is to translate a documented function into the appropriate internal 
(and generally undocumented) native system service calls . This translation might or might not involve 
sending a message to the environment subsystem process that is serving the user application .

The kernel-mode components of Windows include the following:

 ■ The Windows executive contains the base operating system services, such as memory 
 management, process and thread management, security, I/O, networking, and interprocess 
communication .

 ■ The Windows kernel consists of low-level operating system functions, such as thread 
 scheduling, interrupt and exception dispatching, and multiprocessor synchronization . It also 
provides a set of routines and basic objects that the rest of the executive uses to implement 
higher-level constructs .

 ■ Device drivers include both hardware device drivers, which translate user I/O function calls 
into specific hardware device I/O requests, as well as nonhardware device drivers such as file 
system and network drivers .

 ■ The hardware abstraction layer (HAL) is a layer of code that isolates the kernel, the device 
 drivers, and the rest of the Windows executive from platform-specific hardware differences 
(such as differences between motherboards) .
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 ■ The windowing and graphics system implements the graphical user interface (GUI) functions 
(better known as the Windows USER and GDI functions), such as dealing with windows, user 
interface controls, and drawing .

Table 2-1 lists the file names of the core Windows operating system components . (You’ll need 
to know these file names because we’ll be referring to some system files by name.) Each of these 
 components is covered in greater detail both later in this chapter and in the chapters that follow .

TABLE 2-1 Core Windows System Files

File Name Components

Ntoskrnl .exe Executive and kernel

Ntkrnlpa .exe (32-bit systems only) Executive and kernel, with support for Physical Address Extension (PAE), which 
allows 32-bit systems to address up to 64 GB of physical memory and to mark 
memory as nonexecutable (see the section “No Execute Page Prevention” in 
Chapter 10, “Memory Management,” in Part 2)

Hal .dll Hardware abstraction layer

Win32k .sys Kernel-mode part of the Windows subsystem

Ntdll .dll Internal support functions and system service dispatch stubs to executive 
 functions

Kernel32 .dll, Advapi32 .dll,  
User32 .dll, Gdi32 .dll

Core Windows subsystem DLLs

Before we dig into the details of these system components, though, let’s examine some basics 
about the Windows kernel design, starting with how Windows achieves portability across multiple 
hardware architectures .

Portability
Windows was designed to run on a variety of hardware architectures . The initial release of Windows 
NT supported the x86 and MIPS architectures . Support for the Digital Equipment Corporation (which 
was bought by Compaq, which later merged with Hewlett-Packard) Alpha AXP was added shortly 
thereafter . (Although Alpha AXP was a 64-bit processor, Windows NT ran in 32-bit mode . During the 
development of Windows 2000, a native 64-bit version was running on Alpha AXP, but this was never 
released .) Support for a fourth processor architecture, the Motorola PowerPC, was added in  Windows 
NT 3 .51 . Because of changing market demands, however, support for the MIPS and  PowerPC 
 architectures was dropped before development began on Windows 2000 . Later, Compaq withdrew 
support for the Alpha AXP architecture, resulting in Windows 2000 being supported only on the 
x86 architecture . Windows XP and Windows Server 2003 added support for three 64-bit processor 
families: the Intel Itanium IA-64 family, the AMD64 family, and the Intel 64-bit Extension Technology 
(EM64T) for x86 (which is compatible with the AMD64 architecture, although there are slight differ-
ences in  instructions supported) . The latter two processor families are called 64-bit extended systems 
and in this book are referred to as x64 . (How Windows runs 32-bit applications on 64-bit Windows is 
explained in Chapter 3 .)
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Windows achieves portability across hardware architectures and platforms in two primary ways:

 ■ Windows has a layered design, with low-level portions of the system that are processor- 
architecture-specific or platform-specific isolated into separate modules so that upper layers 
of the system can be shielded from the differences between architectures and among hard-
ware platforms . The two key components that provide operating system portability are the 
kernel (contained in Ntoskrnl .exe) and the hardware abstraction layer (or HAL, contained in 
Hal .dll) . Both these components are described in more detail later in this chapter . Functions 
that are architecture-specific (such as thread context switching and trap dispatching) are im-
plemented in the kernel . Functions that can differ among systems within the same architecture 
(for example, different motherboards) are implemented in the HAL . The only other component 
with a significant amount of architecture-specific code is the memory manager, but even that 
is a small amount compared to the system as a whole .

 ■ The vast majority of Windows is written in C, with some portions in C++ . Assembly language is 
used only for those parts of the operating system that need to communicate directly with sys-
tem hardware (such as the interrupt trap handler) or that are extremely performance- sensitive 
(such as context switching) . Assembly language code exists not only in the kernel and the 
HAL but also in a few other places within the core operating system (such as the routines that 
implement interlocked instructions as well as one module in the local procedure call facility), in 
the kernel-mode part of the Windows subsystem, and even in some user-mode libraries, such 
as the process startup code in Ntdll .dll (a system library explained later in this chapter) .

Symmetric Multiprocessing
Multitasking is the operating system technique for sharing a single processor among multiple threads 
of execution . When a computer has more than one processor, however, it can execute multiple 
threads simultaneously . Thus, whereas a multitasking operating system only appears to execute 
multiple threads at the same time, a multiprocessing operating system actually does it, executing one 
thread on each of its processors .

As mentioned at the beginning of this chapter, one of the key design goals for Windows was that it 
had to run well on multiprocessor computer systems . Windows is a symmetric multiprocessing (SMP) 
operating system . There is no master processor—the operating system as well as user threads can be 
scheduled to run on any processor . Also, all the processors share just one memory space . This model 
contrasts with asymmetric multiprocessing (ASMP), in which the operating system typically selects one 
processor to execute operating system kernel code while other processors run only user code . The 
differences in the two multiprocessing models are illustrated in Figure 2-2 .

Windows also supports three modern types of multiprocessor systems: multicore, Hyper-Threading 
enabled, and NUMA (non-uniform memory architecture). These are briefly mentioned in the  following 
paragraphs . (For a complete, detailed description of the scheduling support for these systems, see the 
thread scheduling section in Chapter 5, “Processes and Threads” .) 
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FIGURE 2-2 Symmetric vs . asymmetric multiprocessing

Hyper-Threading is a technology introduced by Intel that provides two logical processors for each 
physical core . Each logical processor has its own CPU state, but the execution engine and onboard 
cache are shared . This permits one logical CPU to make progress while the other logical CPU is stalled 
(such as after a cache miss or branch misprediction) . The scheduling algorithms are enhanced to make 
optimal use of Hyper-Threading-enabled machines, such as by scheduling threads on an idle  physical 
processor versus choosing an idle logical processor on a physical processor whose other logical 
 processors are busy . For more details on thread scheduling, see Chapter 5 .

In NUMA systems, processors are grouped in smaller units called nodes . Each node has its own 
processors and memory and is connected to the larger system through a cache-coherent intercon-
nect bus . Windows on a NUMA system still runs as an SMP system, in that all processors have access 
to all memory—it’s just that node-local memory is faster to reference than memory attached to other 
nodes . The system attempts to improve performance by scheduling threads on processors that are 
in the same node as the memory being used . It attempts to satisfy memory-allocation requests from 
within the node, but it will allocate memory from other nodes if necessary .

Naturally, Windows also natively supports multicore systems—because these systems have real 
physical cores (simply on the same package), the original SMP code in Windows treats them as 
 discrete processors, except for certain accounting and identification tasks (such as licensing, described 
shortly) that distinguish between cores on the same processor and cores on different sockets .
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Windows was not originally designed with a specific processor number limit in mind, other than 
the licensing policies that differentiate the various Windows editions . However, for convenience and 
efficiency, Windows does keep track of processors (total number, idle, busy, and other such details) 
in a bitmask (sometimes called an affinity mask) that is the same number of bits as the native data 
type of the machine (32-bit or 64-bit), which allows the processor to manipulate bits directly within a 
register . Due to this fact, Windows systems were originally limited to the number of CPUs in a native 
word, because the affinity mask couldn’t arbitrarily be increased. To maintain compatibility, as well as 
support larger processor systems, Windows implements a higher-order construct called a processor 
group. The processor group is a set of processors that can all be defined by a single affinity  bitmask, 
and the kernel as well as the applications can choose which group they refer to during affinity 
 updates . Compatible applications can query the number of supported groups (currently limited to 4) 
and then enumerate the bitmask for each group . Meanwhile, legacy applications continue to function 
by seeing only their current group . More information on how exactly Windows assigns processors to 
groups (which is also related to NUMA) is detailed in Chapter 5 .

As mentioned, the actual number of supported licensed processors depends on the edition of 
Windows being used . (See Table 2-2 later in this chapter .) This number is stored in the system  license 
policy file (\Windows\ServiceProfiles\NetworkService\AppData\Roaming\Microsoft 
\Software ProtectionPlatform\tokens.dat) as a policy value called “Kernel-RegisteredProcessors.”  
(Keep in mind that tampering with that data is a violation of the software license, and modifying 
licensing policies to allow the use of more processors involves more than just changing this value .)

Scalability
One of the key issues with multiprocessor systems is scalability . To run correctly on an SMP system, 
operating system code must adhere to strict guidelines and rules . Resource contention and other 
 performance issues are more complicated in multiprocessing systems than in uniprocessor systems 
and must be accounted for in the system’s design . Windows incorporates several features that are 
crucial to its success as a multiprocessor operating system:

 ■ The ability to run operating system code on any available processor and on multiple 
 processors at the same time

 ■ Multiple threads of execution within a single process, each of which can execute 
 simultaneously on different processors

 ■ Fine-grained synchronization within the kernel (such as spinlocks, queued spinlocks, and 
pushlocks, described in Chapter 3) as well as within device drivers and server processes, which 
allows more components to run concurrently on multiple processors

 ■ Programming mechanisms such as I/O completion ports (described in Chapter 8, “I/O System,” 
in Part 2) that facilitate the efficient implementation of multithreaded server processes that 
can scale well on multiprocessor systems
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The scalability of the Windows kernel has evolved over time . For example, Windows Server 2003 
introduced per-CPU scheduling queues, which permit thread scheduling decisions to occur in parallel 
on multiple processors . Windows 7 and Windows Server 2008 R2 eliminated global locking on the 
scheduling database . This step-wise improvement of the granularity of locking has also occurred in 
other areas, such as the memory manager . Further details on multiprocessor synchronization can be 
found in Chapter 3 .

Differences Between Client and Server Versions
Windows ships in both client and server retail packages . As of this writing, there are six client 
 versions of Windows 7: Windows 7 Home Basic, Windows 7 Home Premium, Windows 7 Professional, 
 Windows 7 Ultimate, Windows 7 Enterprise, and Windows 7 Starter . 

There are seven different versions of Windows Server 2008 R2: Windows Server 2008 R2 
 Foundation, Windows Server 2008 R2 Standard, Windows Server 2008 R2 Enterprise, Windows Server 
2008 R2 Datacenter, Windows Web Server 2008 R2, Windows HPC Server 2008 R2, and Windows 
Server 2008 R2 for Itanium-Based Systems (which is the last release of Windows to support the Intel 
Itanium processor) .

Additionally, there are “N” versions of the client that do not include Windows Media Player . Finally, 
the Standard, Enterprise, and Datacenter editions of Windows Server 2008 R2 also include “with 
Hyper-V” editions, which include Hyper-V . (Hyper-V virtualization is discussed in Chapter 3 .)

These versions differ by

 ■ The number of processors supported (in terms of sockets, not cores or threads)

 ■ The amount of physical memory supported (actually highest physical address usable for 
RAM—see Chapter 10 in Part 2 for more information on physical memory limits)

 ■ The number of concurrent network connections supported (For example, a maximum of 10 
concurrent connections are allowed to the file and print services in the client version.)

 ■ Support for Media Center

 ■ Support for Multi-Touch, Aero, and Desktop Compositing

 ■ Support for features such as BitLocker, VHD Booting, AppLocker, Windows XP Compatibility 
Mode, and more than 100 other configurable licensing policy values

 ■ Layered services that come with Windows Server editions that don’t come with the client 
 editions (for example, directory services and clustering)

Table 2-2 lists the differences in memory and processor support for Windows 7 and Windows 
Server 2008 R2 . For a detailed comparison chart of the different editions of Windows Server 2008 R2, 
see www.microsoft.com/windowsserver2008/en/us/r2-compare-specs.aspx .
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TABLE 2-2 Differences Between Windows 7 and Windows Server 2008 R2

Number 
of Sockets 
Supported  
(32-Bit Edition)

Physical 
Memory 
Supported  
(32-Bit Edition)

Number 
of Sockets 
Supported  
(64-Bit Edition)

Physical 
Memory 
Supported 
(Itanium 
Editions)

Physical Memory 
Supported  
(x64 Editions)

Windows 7 Starter 1 2 GB Not available Not available 2 GB

Windows 7 Home 
Basic

1 4 GB 1 Not available 8 GB

Windows 7 Home 
Premium

1 4 GB 1 Not available 16 GB

Windows 7 
Professional

2 4 GB 2 Not available 192 GB

Windows 7 
Enterprise

2 4 GB 2 Not available 192 GB

Windows 7 
Ultimate

2 4 GB 2 Not available 192 GB

Windows 
Server 2008 R2 
Foundation

Not available Not available 1 Not available 8 GB

Windows Web 
Server 2008 R2

Not available Not available 4 Not available 32 GB

Windows Server 
2008 R2 Standard 

Not available Not available 4 Not available 32 GB

Windows HPC 
Server 2008 R2 

Not available Not available 4 Not available 128 GB

Windows Server 
2008 R2 Enterprise 

Not available Not available 8 Not available 2048 GB

Windows 
Server 2008 R2 
Datacenter 

Not available  Not available 64 Not available 2048 GB

Windows Server 
2008 R2 for 
Itanium-Based 
Systems

Not available Not available 64 2048 GB Not available

Although there are several client and server retail packages of the Windows operating system, they 
share a common set of core system files, including the kernel image, Ntoskrnl .exe (and the PAE ver-
sion, Ntkrnlpa .exe); the HAL libraries; the device drivers; and the base system utilities and DLLs . These 
files are identical for all editions of Windows 7 and Windows Server 2008 R2.

With so many different editions of Windows and each having the same kernel image, how does the 
system know which edition is booted? By querying the registry values ProductType and  ProductSuite 
under the HKLM\SYSTEM\CurrentControlSet\Control\ProductOptions key. ProductType is used to 
distinguish whether the system is a client system or a server system (of any flavor). These values are 
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loaded into the registry based on the licensing policy file described earlier. The valid values are listed 
in Table 2-3 . This can be queried from the user-mode GetVersionEx function or from a device driver 
using the kernel-mode support function RtlGetVersion .

TABLE 2-3 ProductType Registry Values

Edition of Windows Value of ProductType

Windows client WinNT

Windows server (domain controller) LanmanNT

Windows server (server only) ServerNT

A different registry value, ProductPolicy, contains a cached copy of the data inside the tokens .dat 
file, which differentiates between the editions of Windows and the features that they enable.

If user programs need to determine which edition of Windows is running, they can call the 
Windows VerifyVersionInfo function, documented in the Windows Software Development Kit (SDK) . 
Device drivers can call the kernel-mode function RtlVerifyVersionInfo, documented in the WDK .

So if the core files are essentially the same for the client and server versions, how do the systems 
differ in operation? In short, server systems are optimized by default for system throughput as high-
performance application servers, whereas the client version (although it has server capabilities) is 
optimized for response time for interactive desktop use . For example, based on the product type, 
several resource allocation decisions are made differently at system boot time, such as the size and 
number of operating system heaps (or pools), the number of internal system worker threads, and the 
size of the system data cache . Also, run-time policy decisions, such as the way the memory manager 
trades off system and process memory demands, differ between the server and client editions . Even 
some thread scheduling details have different default behavior in the two families (the default length 
of the time slice, or thread quantum—see Chapter 5 for details). Where there are significant opera-
tional differences in the two products, these are highlighted in the pertinent chapters throughout the 
rest of this book . Unless otherwise noted, everything in this book applies to both the client and server 
versions .

EXPERIMENT: Determining Features Enabled by Licensing Policy
As mentioned earlier, Windows supports more than 100 different features that can be enabled 
through the software licensing mechanism . These policy settings determine the various differ-
ences not only between a client and server installation, but also between each edition (or SKU) 
of the operating system, such as BitLocker support (available on Windows server as well as the 
Ultimate and Enterprise editions of Windows client) . You can use the SlPolicy tool available from 
Winsider Seminars & Solutions (www.winsiderss.com/tools/slpolicy.htm) to display these policy 
values on your machine .
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Policy settings are organized by a facility, which represents the owner module for which the 
policy applies . You can display a list of all facilities on your system by running Slpolicy .exe with 
the –f switch: 

C:\>SlPolicy.exe -f  
SlPolicy v1.05 - Show Software Licensing Policies 
Copyright (C) 2008-2011 Winsider Seminars & Solutions Inc. 
www.winsiderss.com 
 
Software Licensing Facilities: 
 
Kernel 
Licensing and Activation 
Core 
DWM 
SMB 
IIS 
. 
. 
.

You can then add the name of any facility after the switch to display the policy value for that 
facility . For example, to look at the limitations on CPUs and available memory, use the Kernel 
facility . Here’s the expected output on a machine running Windows 7 Ultimate:

C:\>SlPolicy.exe -f Kernel 
 
 
SlPolicy v1.05 - Show Software Licensing Policies 
Copyright (C) 2008-2011 Winsider Seminars & Solutions Inc. 
www.winsiderss.com 
 
Kernel 
------ 
Processor Limit: 2 
Maximum Memory Allowed (x86): 4096 
Maximum Memory Allowed (x64): 196608 
Maximum Memory Allowed (IA64): 196608 
Maximum Physical Page: 4096 
Addition of Physical Memory Allowed: No 
Addition of Physical Memory Allowed, if virtualized: Yes 
Product Information: 1 
Dynamic Partitioning Supported: No 
Virtual Dynamic Partitioning Supported: No 
Memory Mirroring Supported: No 
Native VHD Boot Supported: Yes 
Bad Memory List Persistance Supported: No 
Number of MUI Languages Allowed: 1000 
List of Allowed Languages: EMPTY 
List of Disallowed Languages: EMPTY 
MUI Language SKU: 
Expiration Date: 0
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Checked Build
There is a special debug version of Windows called the checked build (available only with an MSDN 
Operating Systems subscription) . It is a recompilation of the Windows source code with a compile-
time flag defined called “DBG” (to cause compile-time, conditional debugging and tracing code to 
be included) . Also, to make it easier to understand the machine code, the post-processing of the 
Windows binaries to optimize code layout for faster execution is not performed . (See the section 
“ Debugging Performance-Optimized Code” in the Debugging Tools for Windows help file.)

The checked build is provided primarily to aid device driver developers because it performs more 
stringent error checking on kernel-mode functions called by device drivers or other system code . 
For example, if a driver (or some other piece of kernel-mode code) makes an invalid call to a system 
function that is checking parameters (such as acquiring a spinlock at the wrong interrupt level), the 
system will stop execution when the problem is detected rather than allow some data structure to be 
corrupted and the system to possibly crash at a later time .

EXPERIMENT: Determining If You Are Running the Checked Build
There is no built-in tool to display whether you are running the checked build or the retail build 
(called the free build) . However, this information is available through the “Debug” property of 
the Windows Management Instrumentation (WMI) Win32_OperatingSystem class . The following 
sample Microsoft Visual Basic script displays this property:

strComputer = "."  
Set objWMIService = GetObject("winmgmts:" _  
 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")  
Set colOperatingSystems = objWMIService.ExecQuery _  
 ("SELECT * FROM Win32_OperatingSystem")  
For Each objOperatingSystem in colOperatingSystems  
 Wscript.Echo "Caption: " & objOperatingSystem.Caption  
 Wscript.Echo "Debug: " & objOperatingSystem.Debug  
 Wscript.Echo "Version: " & objOperatingSystem.Version  
Next

To try this, type in the preceding script and save it as file. The following is the output from 
running the script:

C:\>cscript osversion.vbs  
Microsoft (R) Windows Script Host Version 5.8 
Copyright (C) Microsoft Corporation. All rights reserved.  
  
Caption: Microsoft Windows Server 2008 R2 Enterprise 
Debug: False  
Version: 6.1.7600

This system is not running the checked build, because the Debug flag shown here says False.

Much of the additional code in the checked-build binaries is a result of using the ASSERT and/or 
NT_ASSERT macros, which are defined in the WDK header file Wdm.h and documented in the WDK 
documentation . These macros test a condition (such as the validity of a data structure or parameter), 
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and if the expression evaluates to FALSE, the macros call the kernel-mode function RtlAssert, which 
calls DbgPrintEx to send the text of the debug message to a debug message buffer . If a kernel debug-
ger is attached, this message is displayed automatically followed by a prompt asking the user what 
to do about the assertion failure (breakpoint, ignore, terminate process, or terminate thread) . If the 
system wasn’t booted with the kernel debugger (using the debug option in the Boot Configuration 
Database—BCD) and no kernel debugger is currently attached, failure of an ASSERT test will bug-
check the system . For a list of ASSERT checks made by some of the kernel support routines, see the 
section “Checked Build ASSERTs” in the WDK documentation .

The checked build is also useful for system administrators because of the additional detailed 
informational tracing that can be enabled for certain components . (For detailed instructions, see the 
Microsoft Knowledge Base Article number 314743, titled HOWTO: Enable Verbose Debug Tracing in 
Various Drivers and Subsystems .) This information output is sent to an internal debug message buffer 
using the DbgPrintEx function referred to earlier . To view the debug messages, you can either attach a 
kernel debugger to the target system (which requires booting the target system in debugging mode), 
use the !dbgprint command while performing local kernel debugging, or use the Dbgview .exe tool 
from Sysinternals (www.microsoft.com/technet/sysinternals) .

You don’t have to install the entire checked build to take advantage of the debug version of the 
operating system . You can just copy the checked version of the kernel image (Ntoskrnl .exe) and 
the appropriate HAL (Hal .dll) to a normal retail installation . The advantage of this approach is that 
device drivers and other kernel code get the rigorous checking of the checked build without  having 
to run the slower debug versions of all components in the system . For detailed instructions on how 
to do this, see the section “Installing Just the Checked Operating System and HAL” in the WDK 
 documentation . 

Finally, the checked build can also be useful for testing user-mode code only because the timing of 
the system is different . (This is because of the additional checking taking place within the kernel and 
the fact that the components are compiled without optimizations .) Often, multithreaded synchroni-
zation bugs are related to specific timing conditions. By running your tests on a system running the 
checked build (or at least the checked kernel and HAL), the fact that the timing of the whole system is 
different might cause latent timing bugs to surface that do not occur on a normal retail system .

Key System Components

Now that we’ve looked at the high-level architecture of Windows, let’s delve deeper into the internal 
structure and the role each key operating system component plays . Figure 2-3 is a more detailed and 
complete diagram of the core Windows system architecture and components than was shown earlier 
in the chapter (in Figure 2-1) . Note that it still does not show all components (networking in particular, 
which is explained in Chapter 7, “Networking .”

The following sections elaborate on each major element of this diagram . Chapter 3 explains the 
primary control mechanisms the system uses (such as the object manager, interrupts, and so forth) . 
Chapter 13, “Startup and Shutdown,” in Part 2 describes the process of starting and shutting down 
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Windows, and Chapter 4 details management mechanisms such as the registry, service processes, 
and Windows Management Instrumentation . Other chapters explore in even more detail the internal 
structure and operation of key areas such as processes and threads, memory management, security, 
the I/O manager, storage management, the cache manager, the Windows file system (NTFS), and 
networking .
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Environment Subsystems and Subsystem DLLs
The role of an environment subsystem is to expose some subset of the base Windows executive 
system services to application programs . Each subsystem can provide access to different subsets of 
the native services in Windows . That means that some things can be done from an application built 
on one subsystem that can’t be done by an application built on another subsystem . For example, a 
Windows application can’t use the SUA fork function .

Each executable image ( .exe) is bound to one and only one subsystem . When an image is run, the 
process creation code examines the subsystem type code in the image header so that it can notify the 
proper subsystem of the new process. This type code is specified with the /SUBSYSTEM qualifier of the 
link command in Microsoft Visual C++ .

As mentioned earlier, user applications don’t call Windows system services directly . Instead, they 
go through one or more subsystem DLLs . These libraries export the documented interface that the 
programs linked to that subsystem can call . For example, the Windows subsystem DLLs (such as 
Kernel32 .dll, Advapi32 .dll, User32 .dll, and Gdi32 .dll) implement the Windows API functions . The SUA 
subsystem DLL (Psxdll .dll) implements the SUA API functions .

EXPERIMENT: Viewing the Image Subsystem Type
You can see the image subsystem type by using the Dependency Walker tool (Depends .exe) 
(available at www.dependencywalker.com) . For example, notice the image types for two different 
Windows images, Notepad .exe (the simple text editor) and Cmd .exe (the Windows command 
prompt):

This shows that Notepad is a GUI program, while Cmd is a console, or character-based, 
program . And although this implies there are two different subsystems for GUI and character-
based programs, there is just one Windows subsystem, and GUI programs can have consoles, 
just like console programs can display GUIs .
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When an application calls a function in a subsystem DLL, one of three things can occur:

 ■ The function is entirely implemented in user mode inside the subsystem DLL . In other words, 
no message is sent to the environment subsystem process, and no Windows executive system 
services are called . The function is performed in user mode, and the results are returned 
to the caller . Examples of such functions include GetCurrentProcess (which always returns 
–1, a value that is defined to refer to the current process in all process-related functions) 
and  GetCurrentProcessId . (The process ID doesn’t change for a running process, so this ID is 
 retrieved from a cached location, thus avoiding the need to call into the kernel .)

 ■ The function requires one or more calls to the Windows executive . For example, the Windows 
ReadFile and WriteFile functions involve calling the underlying internal (and undocumented) 
Windows I/O system services NtReadFile and NtWriteFile, respectively .

 ■ The function requires some work to be done in the environment subsystem process . (The 
environment subsystem processes, running in user mode, are responsible for maintaining the 
state of the client applications running under their control .) In this case, a client/server request 
is made to the environment subsystem via a message sent to the subsystem to perform some 
operation . The subsystem DLL then waits for a reply before returning to the caller .

Some functions can be a combination of the second and third items just listed, such as the 
 Windows CreateProcess and CreateThread functions .

Subsystem Startup
Subsystems are started by the Session Manager (Smss .exe) process . The subsystem startup 
 information is stored under the registry key HKLM\SYSTEM\CurrentControlSet\Control 
\Session Manager\SubSystems. Figure 2-4 shows the values under this key.

FIGURE 2-4 Registry Editor showing Windows startup information

The Required value lists the subsystems that load when the system boots . The value has two 
strings: Windows and Debug. The Windows value contains the file specification of the Windows 
subsystem, Csrss .exe, which stands for Client/Server Run-Time Subsystem . Debug is blank (because 
it’s used for internal testing) and therefore does nothing . The Optional value indicates that the 
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SUA subsystem will be started on demand . The registry value Kmode contains the file name of the 
 kernel-mode portion of the Windows subsystem, Win32k .sys (explained later in this chapter) .

Let’s take a closer look at each of the environment subsystems .

Windows Subsystem
Although Windows was designed to support multiple, independent environment subsystems, from 
a practical perspective, having each subsystem implement all the code to handle windowing and 
display I/O would result in a large amount of duplication of system functions that, ultimately, would 
negatively affect both system size and performance . Because Windows was the primary subsystem, 
the Windows designers decided to locate these basic functions there and have the other subsystems 
call on the Windows subsystem to perform display I/O . Thus, the SUA subsystem calls services in the 
Windows subsystem to perform display I/O .

As a result of this design decision, the Windows subsystem is a required component for any 
 Windows system, even on server systems with no interactive users logged in . Because of this, the 
 process is marked as a critical process (which means if for any reason it exits, the system crashes) .

The Windows subsystem consists of the following major components:

 ■ For each session, an instance of the environment subsystem process (Csrss .exe) loads three 
DLLs (Basesrv .dll, Winsrv .dll, and Csrsrv .dll) that contain support for the following:

• Creating and deleting processes and threads

• Portions of the support for 16-bit virtual DOS machine (VDM) processes (32-bit Windows 
only)

• Side-by-Side (SxS)/Fusion and manifest support

• Other miscellaneous functions—such as GetTempFile, DefineDosDevice, ExitWindowsEx, and 
several natural language support functions

 ■ A kernel-mode device driver (Win32k .sys) that contains the following:

• The window manager, which controls window displays; manages screen output; collects 
input from keyboard, mouse, and other devices; and passes user messages to applications .

• The Graphics Device Interface (GDI), which is a library of functions for graphics 
 output  devices. It includes functions for line, text, and figure drawing and for graphics 
 manipulation .

• Wrappers for DirectX support that is implemented in another kernel driver (Dxgkrnl .sys) .

 ■ The console host process (Conhost .exe), which provides support for console (character cell) 
applications .

 ■ Subsystem DLLs (such as Kernel32 .dll, Advapi32 .dll, User32 .dll, and Gdi32 .dll) that  translate 
documented Windows API functions into the appropriate and mostly undocumented 
 kernel-mode system service calls in Ntoskrnl .exe and Win32k .sys .
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 ■ Graphics device drivers for hardware-dependent graphics display drivers, printer drivers, and 
video miniport drivers .

Note As part of a refactoring effort in the Windows architecture called MinWin, the 
 subsystem DLLs are now generally composed of specific libraries that implement API 
Sets, which are then linked together into the subsystem DLL and resolved using a special 
redirection scheme . More information on this refactoring is available in Chapter 5 in the 
“Image Loader” section .

Applications call the standard USER functions to create user interface controls, such as windows 
and buttons, on the display . The window manager communicates these requests to the GDI, which 
passes them to the graphics device drivers, where they are formatted for the display device . A display 
driver is paired with a video miniport driver to complete video display support .

The GDI provides a set of standard two-dimensional functions that let applications communicate 
with graphics devices without knowing anything about the devices . GDI functions mediate between 
applications and graphics devices such as display drivers and printer drivers . The GDI interprets appli-
cation requests for graphic output and sends the requests to graphics display drivers . It also provides 
a standard interface for applications to use varying graphics output devices . This interface enables 
application code to be independent of the hardware devices and their drivers . The GDI tailors its mes-
sages to the capabilities of the device, often dividing the request into manageable parts . For example, 
some devices can understand directions to draw an ellipse; others require the GDI to interpret the 
command as a series of pixels placed at certain coordinates . For more information about the graphics 
and video driver architecture, see the “Design Guide” section of the “Display (Adapters and Monitors)” 
chapter in the Windows Driver Kit .

Because much of the subsystem—in particular, display I/O functionality—runs in kernel mode, only 
a few Windows functions result in sending a message to the Windows subsystem process:  process 
and thread creation and termination, network drive letter mapping, and creation of temporary files. 
In general, a running Windows application won’t be causing many, if any, context switches to the 
 Windows subsystem process .

Console Window Host
In the original Windows subsystem design, the subsystem process (Csrss .exe) was  responsible 
for the managing of console windows and each console application (such as Cmd .exe, the 
 command prompt) communicated with Csrss . Windows now uses a separate process, the 
console window host (Conhost .exe), for each console window on the system . (A single console 
window can be shared by multiple console applications, such as when you launch a command 
prompt from the command prompt . By default, the second command prompt shares the 
 console window of the first.)
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Whenever a console application registers itself with the Csrss instance running in the current 
session, Csrss creates a new instance of Conhost using the client process’ security token instead 
of Csrss’ System token . It then maps a shared memory section that is used to allow all Conhosts 
to share part of their memory with Csrss for efficient buffer handling (because these threads do 
not live within Csrss anymore) and creates a named Asynchronous Local Procedure Call (ALPC) 
port in the \RPC Control object directory. (For more information on ALPC, see  Chapter 3.) The 
name of the port is of the format console-PID-lpc-handle, where PID is the process ID of the 
Conhost process . It then registers its PID with the kernel process structure associated with 
the user application, which can then query this information to open the newly created ALPC 
port . This process also creates a mapping of a shared section memory object between the 
 command-line application and its Conhost so that the two can share data . Finally, a wait event 
is created in the session 0 BaseNamedObjects directory (named ConsoleEvent-PID) so that 
the command-line application and the Conhost can notify each other of new buffer data . The 
 following figure shows a Conhost process with handles open to its ALPC port and event.

Because the Conhost is running with the user’s credentials (which also implies the user’s 
privilege level), as well as in a process associated with the console application itself, the User 
Interface Privilege Isolation (UIPI, described in Chapter 6, “Security”) security mechanism 
covers console processes. In addition, CPU-bound console applications can be identified 
with their supporting console host process (which a user can kill if needed) . As a side effect, 
 because  Conhost processes now run outside the special enclave of the Csrss subsystem, console 
 applications (whose windows are actually owned by Conhost) can be fully themed, load third-
party DLLs, and run with full windowing capabilities . 
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Subsystem for Unix-based Applications
The Subsystem for UNIX-based Applications (SUA) enables compiling and running custom 
 UNIX-based applications on a computer running Windows Server or the Enterprise or Ultimate 
editions of Windows client . SUA provides nearly 2000 UNIX functions and 300 UNIX-like tools and 
utilities . (See http://technet.microsoft.com/en-us/library/cc771470.aspx for more information on SUA .) 
For more information on how Windows handles running SUA applications, see the section “Flow of 
 CreateProcess” in Chapter 5 .

Original POSIX Subsystem
POSIX, an acronym loosely defined as “a portable operating system interface based on UNIX,” 
refers to a collection of international standards for UNIX-style operating system interfaces . The 
POSIX standards encourage vendors implementing UNIX-style interfaces to make them com-
patible so that programmers can move their applications easily from one system to another .

Windows initially implemented only one of the many POSIX standards, POSIX .1, formally 
known as ISO/IEC 9945-1:1990 or IEEE POSIX standard 1003 .1-1990 . This standard was included 
primarily to meet U .S . government procurement requirements set in the mid-to-late 1980s that 
mandated POSIX.1 compliance as specified in Federal Information Processing Standard (FIPS) 
151-2, developed by the National Institute of Standards and Technology . Windows NT 3 .5, 3 .51, 
and 4 were formally tested and certified according to FIPS 151-2.

Because POSIX .1 compliance was a mandatory goal for Windows, the operating system 
was designed to ensure that the required base system support was present to allow for the 
implementation of a POSIX .1 subsystem (such as the fork function, which is implemented in the 
Windows executive, and the support for hard file links in the Windows file system). 

Ntdll.dll
Ntdll .dll is a special system support library primarily for the use of subsystem DLLs . It contains two 
types of functions:

 ■ System service dispatch stubs to Windows executive system services

 ■ Internal support functions used by subsystems, subsystem DLLs, and other native images

The first group of functions provides the interface to the Windows executive system services 
that can be called from user mode . There are more than 400 such functions, such as NtCreateFile, 
 NtSetEvent, and so on . As noted earlier, most of the capabilities of these functions are accessible 
through the Windows API . (A number are not, however, and are for use only within the operating 
system .)



54 Windows Internals, Sixth Edition, Part 1

For each of these functions, Ntdll contains an entry point with the same name . The code inside 
the function contains the architecture-specific instruction that causes a transition into kernel mode 
to invoke the system service dispatcher (explained in more detail in Chapter 3), which, after verify-
ing some parameters, calls the actual kernel-mode system service that contains the real code inside 
Ntoskrnl .exe .

Ntdll also contains many support functions, such as the image loader (functions that start with Ldr), 
the heap manager, and Windows subsystem process communication functions (functions that start 
with Csr) . Ntdll also includes general run-time library routines (functions that start with Rtl), support 
for user-mode debugging (functions that start with DbgUi), and Event Tracing for Windows (functions 
starting in Etw), and the user-mode asynchronous procedure call (APC) dispatcher and exception 
dispatcher. (APCs and exceptions are explained in Chapter 3.) Finally, you’ll find a small subset of the 
C Run-Time (CRT) routines in Ntdll, limited to those routines that are part of the string and standard 
libraries (such as memcpy, strcpy, itoa, and so on) .

Executive
The Windows executive is the upper layer of Ntoskrnl .exe . (The kernel is the lower layer .) The 
 executive includes the following types of functions:

 ■ Functions that are exported and callable from user mode . These functions are called 
 system services and are exported via Ntdll . Most of the services are accessible through the 
 Windows API or the APIs of another environment subsystem . A few services, however, aren’t 
 available through any documented subsystem function . (Examples include ALPC and vari-
ous query functions such as NtQueryInformationProcess, specialized functions such as 
 NtCreatePagingFile, and so on .)

 ■ Device driver functions that are called through the use of the DeviceIoControl function . This 
provides a general interface from user mode to kernel mode to call functions in device drivers 
that are not associated with a read or write .

 ■ Functions that can be called only from kernel mode that are exported and are documented in 
the WDK .

 ■ Functions that are exported and callable from kernel mode but are not documented in the 
WDK (such as the functions called by the boot video driver, which start with Inbv) . 

 ■ Functions that are defined as global symbols but are not exported. These include  internal 
 support functions called within Ntoskrnl, such as those that start with Iop (internal I/O 
 manager support functions) or Mi (internal memory management support functions) .

 ■ Functions that are internal to a module that are not defined as global symbols.

The executive contains the following major components, each of which is covered in detail in a 
subsequent chapter of this book:

 ■ The configuration manager (explained in Chapter 4) is responsible for implementing and 
 managing the system registry .



 CHAPTER 2 System Architecture 55

 ■ The process manager (explained in Chapter 5) creates and terminates processes and threads . 
The underlying support for processes and threads is implemented in the Windows kernel; the 
executive adds additional semantics and functions to these lower-level objects .

 ■ The security reference monitor (or SRM, described in Chapter 6) enforces security policies 
on the local computer . It guards operating system resources, performing run-time object 
 protection and auditing .

 ■ The I/O manager (explained in Chapter 8 in Part 2) implements device-independent I/O and is 
responsible for dispatching to the appropriate device drivers for further processing .

 ■ The Plug and Play (PnP) manager (explained in Chapter 8 in Part 2) determines which drivers 
are required to support a particular device and loads those drivers . It retrieves the hardware 
resource requirements for each device during enumeration . Based on the resource require-
ments of each device, the PnP manager assigns the appropriate hardware resources such as 
I/O ports, IRQs, DMA channels, and memory locations . It is also responsible for sending proper 
event notification for device changes (addition or removal of a device) on the system.

 ■ The power manager (explained in Chapter 8 in Part 2) coordinates power events and  generates 
power management I/O notifications to device drivers. When the system is idle, the power 
manager can be configured to reduce power consumption by putting the CPU to sleep. 
Changes in power consumption by individual devices are handled by device drivers but are 
coordinated by the power manager .

 ■ The Windows Driver Model Windows Management Instrumentation routines (explained in 
Chapter 4) enable device drivers to publish performance and configuration information and 
receive commands from the user-mode WMI service . Consumers of WMI information can be 
on the local machine or remote across the network .

 ■ The cache manager (explained in Chapter 11, “Cache Manager,” in Part 2) improves the 
 performance of file-based I/O by causing recently referenced disk data to reside in main 
memory for quick access (and by deferring disk writes by holding the updates in memory for 
a short time before sending them to the disk) . As you’ll see, it does this by using the memory 
manager’s support for mapped files.

 ■ The memory manager (explained in Chapter 10 in Part 2) implements virtual memory, a 
 memory management scheme that provides a large, private address space for each pro-
cess that can exceed available physical memory . The memory manager also provides the 
 underlying support for the cache manager .

 ■ The logical prefetcher and Superfetch (explained in Chapter 10 in Part 2) accelerate system and 
process startup by optimizing the loading of data referenced during the startup of the system 
or a process .
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In addition, the executive contains four main groups of support functions that are used by the 
 executive components just listed . About a third of these support functions are documented in the 
WDK because device drivers also use them . These are the four categories of support functions:

 ■ The object manager, which creates, manages, and deletes Windows executive objects and 
abstract data types that are used to represent operating system resources such as  processes, 
threads, and the various synchronization objects . The object manager is explained in 
 Chapter 3 .

 ■ The Advanced LPC facility (ALPC, explained in Chapter 3) passes messages between a client 
process and a server process on the same computer . Among other things, ALPC is used as a 
 local transport for remote procedure call (RPC), an industry-standard communication facility 
for client and server processes across a network .

 ■ A broad set of common run-time library functions, such as string processing, arithmetic 
 operations, data type conversion, and security structure processing .

 ■ Executive support routines, such as system memory allocation (paged and nonpaged 
pool),  interlocked memory access, as well as three special types of synchronization objects: 
 resources, fast mutexes, and pushlocks .

The executive also contains a variety of other infrastructure routines, some of which we will 
 mention only briefly throughout the book: 

 ■ The kernel debugger library, which allows debugging of the kernel from a debugger 
 supporting KD, a portable protocol supported over a variety of transports (such as USB and 
IEEE 1394) and implemented by WinDbg and the Kd .exe utilities .

 ■ The user-mode debugging framework, which is responsible for sending events to the 
 user-mode debugging API and allowing breakpoints and stepping through code to work, as 
well as for changing contexts of running threads .

 ■ The kernel transaction manager, which provides a common, two-phase commit mechanism to 
resource managers, such as the transactional registry (TxR) and transactional NTFS (TxF) .

 ■ The hypervisor library, part of the Hyper-V stack in Windows Server 2008, provides kernel 
support for the virtual machine environment and optimizes certain parts of the code when the 
system knows it’s running in a client partition (virtual environment) .

 ■ The errata manager provides workarounds for nonstandard or noncompliant hardware 
 devices .

 ■ The Driver Verifier implements optional integrity checks of kernel-mode drivers and code .

 ■ Event Tracing for Windows provides helper routines for systemwide event tracing for 
 kernel-mode and user-mode components .

 ■ The Windows diagnostic infrastructure enables intelligent tracing of system activity based on 
diagnostic scenarios .
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 ■ The Windows hardware error architecture support routines provide a common framework for 
reporting hardware errors .

 ■ The file-system runtime library provides common support routines for file system drivers.

Kernel
The kernel consists of a set of functions in Ntoskrnl .exe that provides fundamental mechanisms (such 
as thread scheduling and synchronization services) used by the executive components, as well as 
 low-level hardware architecture–dependent support (such as interrupt and exception  dispatching) 
that is different on each processor architecture . The kernel code is written primarily in C, with 
 assembly code reserved for those tasks that require access to specialized processor instructions and 
registers not easily accessible from C .

Like the various executive support functions mentioned in the preceding section, a number of 
functions in the kernel are documented in the WDK (and can be found by searching for functions 
beginning with Ke) because they are needed to implement device drivers .

Kernel Objects
The kernel provides a low-level base of well-defined, predictable operating system primitives and 
mechanisms that allow higher-level components of the executive to do what they need to do . The 
kernel separates itself from the rest of the executive by implementing operating system mechanisms 
and avoiding policy making . It leaves nearly all policy decisions to the executive, with the exception of 
thread scheduling and dispatching, which the kernel implements .

Outside the kernel, the executive represents threads and other shareable resources as objects . 
These objects require some policy overhead, such as object handles to manipulate them, security 
checks to protect them, and resource quotas to be deducted when they are created . This overhead is 
eliminated in the kernel, which implements a set of simpler objects, called kernel objects, that help the 
kernel control central processing and support the creation of executive objects . Most executive-level 
objects encapsulate one or more kernel objects, incorporating their kernel-defined attributes.

One set of kernel objects, called control objects, establishes semantics for controlling various 
 operating system functions . This set includes the APC object, the deferred procedure call (DPC) object, 
and several objects the I/O manager uses, such as the interrupt object .

Another set of kernel objects, known as dispatcher objects, incorporates synchronization 
 capabilities that alter or affect thread scheduling . The dispatcher objects include the kernel thread, 
mutex (called mutant internally), event, kernel event pair, semaphore, timer, and waitable timer . The 
executive uses kernel functions to create instances of kernel objects, to manipulate them, and to 
construct the more complex objects it provides to user mode . Objects are explained in more detail in 
Chapter 3, and processes and threads are described in Chapter 5 .
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Kernel Processor Control Region and Control Block (KPCR and KPRCB)
The kernel uses a data structure called the processor control region, or KPCR, to store 
 processor- specific data. The KPCR contains basic information such as the processor’s interrupt 
dispatch table (IDT), task-state segment (TSS), and global descriptor table (GDT) . It also includes the 
interrupt controller state, which it shares with other modules, such as the ACPI driver and the HAL . To 
 provide easy access to the KPCR, the kernel stores a pointer to it in the fs register on 32-bit Windows 
and in the gs register on an x64 Windows system . On IA64 systems, the KPCR is always located at 
0xe0000000ffff0000 .

The KPCR also contains an embedded data structure called the kernel processor control block 
(KPRCB) . Unlike the KPCR, which is documented for third-party drivers and other internal Windows 
kernel components, the KPRCB is a private structure used only by the kernel code in Ntoskrnl .exe . It 
contains scheduling information such as the current, next, and idle threads scheduled for execution 
on the processor; the dispatcher database for the processor (which includes the ready queues for each 
priority level); the DPC queue; CPU vendor and identifier information (model, stepping, speed, feature 
bits); CPU and NUMA topology (node information, cores per package, logical processors per core, and 
so on); cache sizes; time accounting information (such as the DPC and interrupt time); and more . The 
KPRCB also contains all the statistics for the processor, such as I/O statistics, cache manager statistics 
(see Chapter 11, “Cache Manager,” in Part 2 for a description of these), DPC statistics, and memory 
manager statistics . (See Chapter 10 in Part 2 for more information .) Finally, the KPRCB is  sometimes 
used to store cache-aligned, per-processor structures to optimize memory access, especially on 
NUMA systems . For example, the nonpaged and paged-pool system look-aside lists are stored in 
the KPRCB .

EXPERIMENT: Viewing the KPCR and KPRCB
You can view the contents of the KPCR and KPRCB by using the !pcr and !prcb kernel debugger 
commands. If you don’t include flags, the debugger will display information for CPU 0 by de-
fault; otherwise, you can specify a CPU by adding its number after the command (for example, 
!pcr 2) . The following example shows what the output of the !pcr and !prcb commands looks 
like . If the system had pending DPCs, those would also be shown .

lkd> !pcr 
KPCR for Processor 0 at 81d09800: 
    Major 1 Minor 1 
    NtTib.ExceptionList: 9b31ca3c 
        NtTib.StackBase: 00000000 
       NtTib.StackLimit: 00000000 
     NtTib.SubSystemTib: 80150000 
          NtTib.Version: 1c47209e 
      NtTib.UserPointer: 00000001 
          NtTib.SelfTib: 7ffde000 
 
                SelfPcr: 81d09800 
                   Prcb: 81d09920 
                   Irql: 00000002 
                    IRR: 00000000 
                    IDR: ffffffff 
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          InterruptMode: 00000000 
                    IDT: 82fb8400 
                    GDT: 82fb8000 
                    TSS: 80150000 
 
          CurrentThread: 86d317e8 
             NextThread: 00000000 
             IdleThread: 81d0d640 
 
              DpcQueue:  
 
lkd> !prcb 
PRCB for Processor 0 at 81d09920: 
Current IRQL -- 0 
Threads--  Current 86d317e8 Next 00000000 Idle 81d0d640 
Number 0 SetMember 1 
Interrupt Count -- 294ccce0 
Times -- Dpc    0002a87f Interrupt 00010b87  
         Kernel 026270a1 User      00140e5e

You can use the dt command to directly dump the _KPCR and _KPRCB data structures 
 because both debugger commands give you the address of the structure (shown in bold for 
clarity in the previous output) . For example, if you wanted to determine the speed of the 
 processor, you could look at the MHz field with the following command: 

lkd> dt nt!_KPRCB 81d09920 MHz 
 
   +0x3c4 MHz : 0xbb4 
lkd> ? bb4 
Evaluate expression: 2996 = 00000bb4

On this machine, the processor was running at about 3 GHz .

Hardware Support
The other major job of the kernel is to abstract or isolate the executive and device drivers from 
 variations between the hardware architectures supported by Windows . This job includes han-
dling variations in functions such as interrupt handling, exception dispatching, and multiprocessor 
 synchronization .

Even for these hardware-related functions, the design of the kernel attempts to maximize the 
amount of common code . The kernel supports a set of interfaces that are portable and semantically 
identical across architectures . Most of the code that implements these portable interfaces is also 
identical across architectures .

Some of these interfaces are implemented differently on different architectures or are partially 
 implemented with architecture-specific code. These architecturally independent interfaces can 
be called on any machine, and the semantics of the interface will be the same whether or not the 
code varies by architecture . Some kernel interfaces (such as spinlock routines, which are described 
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in  Chapter 3) are actually implemented in the HAL (described in the next section) because their 
 implementation can vary for systems within the same architecture family .

The kernel also contains a small amount of code with x86-specific interfaces needed to support 
old MS-DOS programs . These x86 interfaces aren’t portable in the sense that they can’t be called on a 
machine based on any other architecture; they won’t be present. This x86-specific code, for example, 
supports calls to manipulate global descriptor tables (GDTs) and local descriptor tables (LDTs), which 
are hardware features of the x86 .

Other examples of architecture-specific code in the kernel include the interfaces to provide 
 translation buffer and CPU cache support . This support requires different code for the different 
 architectures because of the way caches are implemented .

Another example is context switching . Although at a high level the same algorithm is used for 
thread selection and context switching (the context of the previous thread is saved, the context of 
the new thread is loaded, and the new thread is started), there are architectural differences among 
the implementations on different processors . Because the context is described by the processor state 
(registers and so on), what is saved and loaded varies depending on the architecture .

Hardware Abstraction Layer
As mentioned at the beginning of this chapter, one of the crucial elements of the Windows design is 
its portability across a variety of hardware platforms . The hardware abstraction layer (HAL) is a key 
part of making this portability possible . The HAL is a loadable kernel-mode module (Hal .dll) that 
provides the low-level interface to the hardware platform on which Windows is running . It hides 
hardware-dependent details such as I/O interfaces, interrupt controllers, and multiprocessor commu-
nication mechanisms—any functions that are both architecture-specific and machine-dependent.

So rather than access hardware directly, Windows internal components as well as user-written 
device drivers maintain portability by calling the HAL routines when they need platform-dependent 
information. For this reason, the HAL routines are documented in the WDK. To find out more about 
the HAL and its use by device drivers, refer to the WDK .

Although several HALs are included (as shown in Table 2-4), Windows has the ability to detect at 
boot-up time which HAL should be used, eliminating the problem that existed on earlier versions of 
Windows when attempting to boot a Windows installation on a different kind of system .

TABLE 2-4 List of x86 HALs 

HAL File Name Systems Supported

Halacpi .dll Advanced Configuration and Power Interface (ACPI) PCs. Implies uniprocessor-only machine, 
without APIC support (the presence of either one would make the system use the HAL below 
instead) .

Halmacpi .dll Advanced Programmable Interrupt Controller (APIC) PCs with an ACPI . The existence of an 
APIC implies SMP support .
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Note On x64 machines, there is only one HAL image, called Hal .dll . This results from all 
x64 machines having the same motherboard configuration, because the processors require 
ACPI and APIC support . Therefore, there is no need to support machines without ACPI or 
with a standard PIC .

EXPERIMENT: Determining Which HAL You’re Running
You can determine which version of the HAL you’re running by using WinDbg and opening a 
local kernel debugging session . Be sure you have the symbols loaded by entering  .reload, and 
then typing lm vm hal . For example, the following output is from a system running the ACPI 
HAL:

lkd> lm vm hal 
start    end        module name 
fffff800'0181b000 fffff800'01864000   hal        (deferred) 
    Loaded symbol image file: halmacpi.dll 
    Image path: halmacpi.dll 
    Image name: halmacpi.dll 
    Timestamp:        Mon Jul 13 21:27:36 2009 (4A5BDF08) 
    CheckSum:         0004BD36 
    ImageSize:        00049000 
    File version:     6.1.7600.16385 
    Product version:  6.1.7600.16385 
    File flags:       0 (Mask 3F) 
    File OS:          40004 NT Win32 
    File type:        2.0 Dll 
    File date:        00000000.00000000 
    Translations:     0409.04b0 
    CompanyName:      Microsoft Corporation 
    ProductName:      Microsoft® Windows® Operating System 
    InternalName:     halmacpi.dll 
    OriginalFilename: halmacpi.dll 
    ProductVersion:   6.1.7600.16385 
    FileVersion:      6.1.7600.16385 (win7_rtm.090713-1255) 
    FileDescription:  Hardware Abstraction Layer DLL 
    LegalCopyright:   © Microsoft Corporation. All rights reserved.

EXPERIMENT: Viewing NTOSKRNL and HAL Image Dependencies
You can view the relationship of the kernel and HAL images by examining their export and 
import tables using the Dependency Walker tool (Depends .exe) . To examine an image in the 
Dependency Walker, select Open from the File menu to open the desired image file.
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Here is a sample of output you can see by viewing the dependencies of Ntoskrnl using 
this tool:

Notice that Ntoskrnl is linked against the HAL, which is in turn linked against Ntoskrnl . (They 
both use functions in each other .) Ntoskrnl is also linked to the following binaries:

 ■ Pshed.dll, the Platform-Specific Hardware Error Driver. PSHED provides an abstraction of 
the hardware error reporting facilities of the underlying platform by hiding the details 
of a platform’s error-handling mechanisms from the operating system and exposing a 
 consistent interface to the Windows operating system .

 ■ On 32-bit systems only, Bootvid .dll, the Boot Video Driver . Bootvid provides support 
for the VGA commands required to display boot text and the boot logo during startup . 
On x64 systems, this library is built into the kernel to avoid conflicts with Kernel Patch 
 Protection (KPP) . (See Chapter 3 for more information on KPP and PatchGuard .)

 ■ Kdcom .dll, the Kernel Debugger Protocol (KD) Communications Library .

 ■ Ci .dll, the code integrity library . (See Chapter 3 for more information on code integrity .)

 ■ Clfs.sys, the common logging file system driver, used by, among other things, the Kernel 
Transaction Manager (KTM) . (See Chapter 3 for more information on the KTM .)

For a detailed description of the information displayed by this tool, see the Dependency 
Walker help file (Depends.hlp).
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Device Drivers
Although device drivers are explained in detail in Chapter 8 in Part 2, this section provides a brief 
 overview of the types of drivers and explains how to list the drivers installed and loaded on your 
system .

Device drivers are loadable kernel-mode modules (typically ending in  .sys) that interface between 
the I/O manager and the relevant hardware . They run in kernel mode in one of three contexts:

 ■ In the context of the user thread that initiated an I/O function

 ■ In the context of a kernel-mode system thread

 ■ As a result of an interrupt (and therefore not in the context of any particular process or 
thread—whichever process or thread was current when the interrupt occurred)

As stated in the preceding section, device drivers in Windows don’t manipulate hardware directly, 
but rather they call functions in the HAL to interface with the hardware . Drivers are typically written 
in C (sometimes C++) and therefore, with proper use of HAL routines, can be source-code portable 
across the CPU architectures supported by Windows and binary portable within an architecture 
 family .

There are several types of device drivers:

 ■ Hardware device drivers manipulate hardware (using the HAL) to write output to or retrieve 
 input from a physical device or network . There are many types of hardware device drivers, 
such as bus drivers, human interface drivers, mass storage drivers, and so on .

 ■ File system drivers are Windows drivers that accept file-oriented I/O requests and translate 
them into I/O requests bound for a particular device .

 ■ File system filter drivers, such as those that perform disk mirroring and encryption, intercept  
I/Os, and perform some added-value processing before passing the I/O to the next layer .

 ■ Network redirectors and servers are file system drivers that transmit file system I/O requests to 
a machine on the network and receive such requests, respectively .

 ■ Protocol drivers implement a networking protocol such as TCP/IP, NetBEUI, and IPX/SPX .

 ■ Kernel streaming filter drivers are chained together to perform signal processing on data 
streams, such as recording or displaying audio and video .

Because installing a device driver is the only way to add user-written kernel-mode code to the 
system, some programmers have written device drivers simply as a way to access internal operating 
system functions or data structures that are not accessible from user mode (but that are documented 
and supported in the WDK) . For example, many of the utilities from Sysinternals combine a Windows 
GUI application and a device driver that is used to gather internal system state and call kernel-mode-
only accessible functions not available from the user-mode Windows API .
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Windows Driver Model (WDM) 
Windows 2000 added support for Plug and Play, Power Options, and an extension to the Windows 
NT driver model called the Windows Driver Model (WDM) . Windows 2000 and later can run legacy 
Windows NT 4 drivers, but because these don’t support Plug and Play and Power Options, systems 
running these drivers will have reduced capabilities in these two areas .

From the WDM perspective, there are three kinds of drivers:

 ■ A bus driver services a bus controller, adapter, bridge, or any device that has child devices . Bus 
drivers are required drivers, and Microsoft generally provides them; each type of bus (such as 
PCI, PCMCIA, and USB) on a system has one bus driver . Third parties can write bus drivers to 
provide support for new buses, such as VMEbus, Multibus, and Futurebus .

 ■ A function driver is the main device driver and provides the operational interface for its device . 
It is a required driver unless the device is used raw (an implementation in which I/O is done by 
the bus driver and any bus filter drivers, such as SCSI PassThru). A function driver is by defini-
tion the driver that knows the most about a particular device, and it is usually the only driver 
that accesses device-specific registers.

 ■ A filter driver is used to add functionality to a device (or existing driver) or to modify I/O 
 requests or responses from other drivers (and is often used to fix hardware that provides 
incorrect information about its hardware resource requirements) . Filter drivers are optional 
and can exist in any number, placed above or below a function driver and above a bus driver . 
Usually, system original equipment manufacturers (OEMs) or independent hardware vendors 
(IHVs) supply filter drivers.

In the WDM driver environment, no single driver controls all aspects of a device: a bus driver 
is concerned with reporting the devices on its bus to the PnP manager, while a function driver 
 manipulates the device .

In most cases, lower-level filter drivers modify the behavior of device hardware. For example, if 
a device reports to its bus driver that it requires 4 I/O ports when it actually requires 16 I/O ports, 
a lower-level, device-specific function filter driver could intercept the list of hardware resources 
 reported by the bus driver to the PnP manager and update the count of I/O ports .

Upper-level filter drivers usually provide added-value features for a device. For example, an 
 upper-level device filter driver for a keyboard can enforce additional security checks.

Interrupt processing is explained in Chapter 3 . Further details about the I/O manager, WDM, Plug 
and Play, and Power Options are included in Chapter 8 in Part 2 .

Windows Driver Foundation
The Windows Driver Foundation (WDF) simplifies Windows driver development by providing two 
frameworks: the Kernel-Mode Driver Framework (KMDF) and the User-Mode Driver Framework 
(UMDF) . Developers can use KMDF to write drivers for Windows 2000 SP4 and later, while UMDF 
 supports Windows XP and later .
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KMDF provides a simple interface to WDM and hides its complexity from the driver writer without 
modifying the underlying bus/function/filter model. KMDF drivers respond to events that they can 
register and call into the KMDF library to perform work that isn’t specific to the hardware they are 
managing, such as generic power management or synchronization . (Previously, each driver had to 
implement this on its own .) In some cases, more than 200 lines of WDM code can be replaced by a 
single KMDF function call .

UMDF enables certain classes of drivers (mostly USB-based or other high-latency protocol 
 buses)—such as those for video cameras, MP3 players, cell phones, PDAs, and printers—to be 
 implemented as user-mode drivers . UMDF runs each user-mode driver in what is essentially a user-
mode service, and it uses ALPC to communicate to a kernel-mode wrapper driver that provides actual 
access to hardware . If a UMDF driver crashes, the process dies and usually restarts, so the system 
doesn’t become unstable—the device simply becomes unavailable while the service hosting the 
driver restarts . Finally, UMDF drivers are written in C++ using COM-like classes and semantics, further 
 lowering the bar for programmers to write device drivers .

EXPERIMENT: Viewing the Installed Device Drivers
You can list the installed drivers by running Msinfo32 . (To launch this, click Start and then type 
Msinfo32 and then press Enter .) Under System Summary, expand Software Environment and 
open System Drivers . Here’s an example output of the list of installed drivers:

This window displays the list of device drivers defined in the registry, their type, and their 
state (Running or Stopped). Device drivers and Windows service processes are both defined in 
the same place: HKLM\SYSTEM\CurrentControlSet\Services. However, they are distinguished 
by a type code—for example, type 1 is a kernel-mode device driver . (For a complete list of the 
information stored in the registry for device drivers, see Table 4-7 in Chapter 4 .)

Alternatively, you can list the currently loaded device drivers by selecting the System process 
in Process Explorer and opening the DLL view . 
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Peering into Undocumented Interfaces
Examining the names of the exported or global symbols in key system images (such as   
Ntoskrnl .exe, Hal .dll, or Ntdll .dll) can be enlightening—you can get an idea of the kinds of 
things Windows can do versus what happens to be documented and supported today . Of 
course, just because you know the names of these functions doesn’t mean that you can or 
should call them—the interfaces are undocumented and are subject to change . We suggest 
that you look at these functions purely to gain more insight into the kinds of internal functions 
Windows performs, not to bypass supported interfaces .

For example, looking at the list of functions in Ntdll .dll gives you the list of all the  system 
services that Windows provides to user-mode subsystem DLLs versus the subset that each 
 subsystem exposes . Although many of these functions map clearly to documented and 
 supported Windows functions, several are not exposed via the Windows API . (See the article 
“Inside the Native API” from Sysinternals .)

Conversely, it’s also interesting to examine the imports of Windows subsystem DLLs (such as 
Kernel32 .dll or Advapi32 .dll) and which functions they call in Ntdll .

Another interesting image to dump is Ntoskrnl .exe—although many of the exported 
 routines that kernel-mode device drivers use are documented in the Windows Driver Kit, quite a 
few are not. You might also find it interesting to take a look at the import table for Ntoskrnl and 
the HAL; this table shows the list of functions in the HAL that Ntoskrnl uses and vice versa .

Table 2-5 lists most of the commonly used function name prefixes for the executive 
 components. Each of these major executive components also uses a variation of the prefix to 
denote internal functions—either the first letter of the prefix followed by an i (for internal) or 
the full prefix followed by a p (for private) . For example, Ki represents internal kernel functions, 
and Psp refers to internal process support functions .

TABLE 2-5 Commonly Used Prefixes

Prefix Component

Alpc Advanced Local Inter-Process Communication

Cc Common Cache

Cm Configuration manager

Dbgk Debugging Framework for User-Mode

Em Errata Manager

Etw Event Tracing for Windows

Ex Executive support routines

FsRtl File system driver run-time library
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Prefix Component

Hvl Hypervisor Library

Io I/O manager

Kd Kernel Debugger

Ke Kernel

Lsa Local Security Authority

Mm Memory manager

Nt NT system services (most of which are exported as Windows functions)

Ob Object manager

Pf Prefetcher

Po Power manager

Pp PnP manager

Ps Process support

Rtl Run-time library

Se Security

Sm Store Manager

Tm Transaction Manager

Vf Verifier

Wdi Windows Diagnostic Infrastructure

Whea Windows Hardware Error Architecture

Wmi Windows Management Instrumentation

Zw Mirror entry point for system services (beginning with Nt) that sets previous 
 access mode to kernel, which eliminates parameter validation, because Nt 
 system services validate parameters only if previous access mode is user

You can decipher the names of these exported functions more easily if you understand the 
naming convention for Windows system routines . The general format is

<Prefix><Operation><Object>

In this format, Prefix is the internal component that exports the routine, Operation tells what 
is being done to the object or resource, and Object identifies what is being operated on.

For example, ExAllocatePoolWithTag is the executive support routine to allocate from a 
paged or nonpaged pool . KeInitializeThread is the routine that allocates and sets up a kernel 
thread object .
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System Processes
The following system processes appear on every Windows system . (Two of these—Idle and System—
are not full processes because they are not running a user-mode executable .)

 ■ Idle process (contains one thread per CPU to account for idle CPU time)

 ■ System process (contains the majority of the kernel-mode system threads)

 ■ Session manager (Smss .exe)

 ■ Local session manager (Lsm .exe)

 ■ Windows subsystem (Csrss .exe)

 ■ Session 0 initialization (Wininit .exe)

 ■ Logon process (Winlogon .exe)

 ■ Service control manager (Services .exe) and the child service processes it creates (such as the 
system-supplied generic service-host process, Svchost .exe)

 ■ Local security authentication server (Lsass .exe)

To understand the relationship of these processes, it is helpful to view the process “tree”—that is, 
the parent/child relationship between processes . Seeing which process created each process helps 
to understand where each process comes from . Figure 2-5 is a screen snapshot of the process tree 
viewed after taking a Process Monitor boot trace . Using Process Monitor allows you to see processes 
that have since exited (indicated by the muted icon) . 

FIGURE 2-5 Initial system process tree
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The next sections explain the key system processes shown in Figure 2-5 . Although these sections 
briefly indicate the order of process startup, Chapter 13 in Part 2 contains a detailed description of 
the steps involved in booting and starting Windows .

System Idle Process
The first process listed in Figure 2-5 is the system idle process . As we’ll explain in Chapter 5, processes 
are identified by their image name. However, this process (as well as the process named System) 
isn’t running a real user-mode image (in that there is no “System Idle Process.exe” in the \Windows 
 directory) . In addition, the name shown for this process differs from utility to utility (because of 
implementation details) . Table 2-6 lists several of the names given to the Idle process (process ID 0) . 
The Idle process is explained in detail in Chapter 5 .

TABLE 2-6 Names for Process ID 0 in Various Utilities

Utility Name for Process ID 0

Task Manager System Idle Process

Process Status (Pstat .exe) Idle Process

Process Explorer (Procexp .exe) System Idle Process

Task List (Tasklist .exe) System Idle Process

Tlist (Tlist .exe) System Process

Now let’s look at system threads and the purpose of each of the system processes that are running 
real images .

System Process and System Threads
The System process (process ID 4) is the home for a special kind of thread that runs only in kernel 
mode: a kernel-mode system thread . System threads have all the attributes and contexts of regular 
user-mode threads (such as a hardware context, priority, and so on) but are different in that they run 
only in kernel-mode executing code loaded in system space, whether that is in Ntoskrnl .exe or in any 
other loaded device driver . In addition, system threads don’t have a user process address space and 
hence must allocate any dynamic storage from operating system memory heaps, such as a paged or 
nonpaged pool .

System threads are created by the PsCreateSystemThread function (documented in the WDK), 
which can be called only from kernel mode . Windows, as well as various device drivers, create system 
threads during system initialization to perform operations that require thread context, such as issuing 
and waiting for I/Os or other objects or polling a device . For example, the memory manager uses 
system threads to implement such functions as writing dirty pages to the page file or mapped files, 
swapping processes in and out of memory, and so forth . The kernel creates a system thread called 
the balance set manager that wakes up once per second to possibly initiate various scheduling and 
memory management related events . The cache manager also uses system threads to  implement 
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both read-ahead and write-behind I/Os. The file server device driver (Srv2.sys) uses system threads 
to  respond to network I/O requests for file data on disk partitions shared to the network. Even the 
 floppy driver has a system thread to poll the floppy device. (Polling is more efficient in this case 
because an interrupt-driven floppy driver consumes a large amount of system resources.) Fur-
ther  information on specific system threads is included in the chapters in which the component is 
 described .

By default, system threads are owned by the System process, but a device driver can create a 
system thread in any process . For example, the Windows subsystem device driver (Win32k .sys) creates 
a system thread inside the Canonical Display Driver (Cdd .dll) part of the Windows subsystem process 
(Csrss .exe) so that it can easily access data in the user-mode address space of that process .

When you’re troubleshooting or going through a system analysis, it’s useful to be able to map the 
execution of individual system threads back to the driver or even to the subroutine that contains the 
code. For example, on a heavily loaded file server, the System process will likely be consuming con-
siderable CPU time . But the knowledge that when the System process is running that “some system 
thread” is running isn’t enough to determine which device driver or operating system component is 
running .

So if threads in the System process are running, first determine which ones are running (for 
 example, with the Performance Monitor tool). Once you find the thread (or threads) that is running, 
look up in which driver the system thread began execution (which at least tells you which driver 
likely created the thread) or examine the call stack (or at least the current address) of the thread in 
 question, which would indicate where the thread is currently executing .

Both of these techniques are illustrated in the following experiment .

EXPERIMENT: Mapping a System Thread to a Device Driver
In this experiment, we’ll see how to map CPU activity in the System process to the responsible 
system thread (and the driver it falls in) generating the activity . This is important because when 
the System process is running, you must go to the thread granularity to really understand 
what’s going on . For this experiment, we will generate system thread activity by generating 
file server activity on your machine. (The file server driver, Srv2.sys, creates system threads to 
handle inbound requests for file I/O. See Chapter 7 for more information on this component.)

1. Open a command prompt .

2. Do a directory listing of your entire C drive using a network path to access your C 
drive . For example, if your computer name is COMPUTER1, type dir \\computer1\c$ 
/s (The /s switch lists all subdirectories .)

3. Run Process Explorer, and double-click on the System process .
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4. Click on the Threads tab .

5. Sort by the CSwitch Delta (context switch delta) column . You should see one or more 
threads in Srv2 .sys running, such as the following:

If you see a system thread running and you are not sure what the driver is, click 
the Module button, which will bring up the file properties. Clicking the Module 
 button while highlighting the thread in the Srv2 .sys previously shown results in the 
 following display .
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Session Manager (Smss)
The session manager (%SystemRoot%\System32\Smss.exe) is the first user-mode process created in 
the system. The kernel-mode system thread that performs the final phase of the initialization of the 
executive and kernel creates this process .

When Smss starts, it checks whether it is the first instance (the master Smss) or an instance of itself 
that the master Smss launched to create a session . (If command-line arguments are present, it is the 
latter .) By creating multiple instances of itself during boot-up and Terminal Services session creation, 
Smss can create multiple sessions at the same time (at maximum, four concurrent sessions, plus one 
more for each extra CPU beyond one) . This ability enhances logon performance on Terminal Server 
systems where multiple users connect at the same time. Once a session finishes initializing, the copy 
of Smss terminates . As a result, only the initial Smss .exe process remains active . (For a description of 
Terminal Services, see the section “Terminal Services and Multiple Sessions” in Chapter 1 .)

The master Smss performs the following one-time initialization steps:

1. Marks the process and the initial thread as critical . (If a process or thread marked critical exits 
for any reason, Windows crashes . See Chapter 5 for more information .)

2. Increases the process base priority to 11 .

3. If the system supports hot processor add, enables automatic processor affinity updates so 
that if new processors are added new sessions will take advantage of the new processors . 
(For more information about dynamic processor additions, see Chapter 5 .)
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4. Creates named pipes and mailslots used for communication between Smss, Csrss, and Lsm 
(described in upcoming paragraphs) .

5. Creates ALPC port to receive commands .

6. Creates systemwide environment variables as defined in HKLM\SYSTEM\CurrentControlSet 
\Control\Session Manager\Environment.

7.  Creates symbolic links for devices defined in HKLM\SYSTEM\CurrentControlSet\Control 
\Session Manager\DOS Devices under the \Global?? directory in the Object Manager 
namespace .

8. Creates root \Sessions directory in the Object Manager namespace.

9. Runs the programs in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager 
\BootExecute. (The default is Autochk .exe, which performs a check disk .)

10. Processes pending file renames as specified in HKLM\SYSTEM\CurrentControlSet\Control 
\Session Manager\PendingFileRenameOperations.

11. Initializes paging file(s).

12. Initializes the rest of the registry (HKLM Software, SAM, and Security hives) .

13. Runs the programs in HKLM\SYSTEM\CurrentControlSet\Control\Session Manager 
\SetupExecute.

14. Opens known DLLs (HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs) 
and maps them as permanent sections (mapped files).

15. Creates a thread to respond to session create requests .

16. Creates the Smss to initialize session 0 (noninteractive session) .

17. Creates the Smss to initialize session 1 (interactive session) .

Once these steps have been completed, Smss waits forever on the handle to the session 0 instance 
of Csrss .exe . Because Csrss is marked as a critical process (see Chapter 5), if Csrss exits, this wait will 
never complete because the system will crash .

A session startup instance of Smss does the following:

1. Calls NtSetSystemInformation with a request to set up kernel-mode session data structures . 
This in turn calls the internal memory manager function MmSessionCreate, which sets up the 
session virtual address space that will contain the session paged pool and the per-session data 
structures allocated by the kernel-mode part of the Windows subsystem (Win32k .sys) and 
other session-space device drivers . (See Chapter 10 in Part 2 for more details .)

2. Creates the subsystem process(es) for the session (by default, the Windows subsystem  
Csrss .exe) .

3. Creates an instance of Winlogon (interactive sessions) or Wininit (for session 0) . See the 
 upcoming paragraphs for more information on these two processes .
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Then this intermediate Smss process exits (leaving the subsystem processes and Winlogon or 
 Wininit as parent-less processes) .

Windows Initialization Process (Wininit.exe)
The Wininit .exe process performs the following system initialization functions:

 ■ Marks itself critical so that if it exits prematurely and the system is booted in debugging mode, 
it will break into the debugger (if not, the system will crash) .

 ■ Initializes the user-mode scheduling infrastructure .

 ■ Creates the %windir%\temp folder.

 ■ Creates a window station (Winsta0) and two desktops (Winlogon and Default) for processes to 
run on in session 0 .

 ■ Creates Services .exe (Service Control Manager or SCM) . See upcoming paragraphs for a brief 
description or Chapter 4 for more details .

 ■ Starts Lsass .exe (Local Security Authentication Subsystem Server) . See Chapter 6 for more 
information on Lsass .

 ■ Starts Lsm .exe (Local Session Manager) . See the upcoming “Local Session Manager (Lsm .exe),” 
section for a brief description .

 ■ Waits forever for system shutdown .

Service Control Manager (SCM)
Recall from earlier in the chapter that “services” on Windows can refer either to a server process or to 
a device driver . This section deals with services that are user-mode processes . Services are like UNIX 
“daemon processes” or VMS “detached processes” in that they can be configured to start automati-
cally at system boot time without requiring an interactive logon . They can also be started manually 
(such as by running the Services administrative tool or by calling the Windows StartService function) . 
Typically, services do not interact with the logged-on user, although there are special conditions when 
this is possible . (See Chapter 4 .)

The service control manager is a special system process running the image %SystemRoot% 
\System32\Services.exe that is responsible for starting, stopping, and interacting with service 
 processes . Service programs are really just Windows images that call special Windows functions to 
 interact with the service control manager to perform such actions as registering the service’s suc-
cessful startup, responding to status requests, or pausing or shutting down the service . Services are 
defined in the registry under HKLM\SYSTEM\CurrentControlSet\Services. 

Keep in mind that services have three names: the process name you see running on the system, the 
internal name in the registry, and the display name shown in the Services administrative tool . (Not all 
services have a display name—if a service doesn’t have a display name, the internal name is shown .) 
With Windows, services can also have a description field that further details what the service does.
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To map a service process to the services contained in that process, use the tlist /s or tasklist /svc 
command . Note that there isn’t always one-to-one mapping between service processes and running 
services, however, because some services share a process with other services . In the registry, the type 
code indicates whether the service runs in its own process or shares a process with other services in 
the image .

A number of Windows components are implemented as services, such as the Print Spooler, Event 
Log, Task Scheduler, and various networking components . For more details on services, see Chapter 4 .

EXPERIMENT: Listing Installed Services
To list the installed services, select Administrative Tools from Control Panel, and then select 
Services . You should see output like this:

To see the detailed properties about a service, right-click on a service and select 
 Properties . For example, here are the properties for the Print Spooler service (highlighted 
in the previous screen shot):
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Notice that the Path To Executable field identifies the program that contains this service. 
Remember that some services share a process with other services—mapping isn’t always one 
to one .

EXPERIMENT: Viewing Service Details Inside Service Processes
Process Explorer highlights processes hosting one service or more. (You can configure this by 
selecting the Configure Colors entry in the Options menu.) If you double-click on a service-
hosting process, you will see a Services tab that lists the services inside the process, the name 
of the registry key that defines the service, the display name seen by the administrator, the 
description text for that service (if present), and for Svchost services, the path to the DLL that 
implements the service . For example, listing the services in a Svchost .exe process running under 
the System account looks like the following:

Local Session Manager (Lsm.exe)
The Local Session Manager (Lsm .exe) manages the state of terminal server sessions on the local 
 machine . It sends requests to Smss through the ALPC port SmSsWinStationApiPort to start new 
 sessions (for example, creating the Csrss and Winlogon processes) such as when a user selects Switch 
User from Explorer . Lsm also communicates with Winlogon and Csrss (using a local system RPC) . It 
notifies Csrss of events such as connect, disconnect, terminate, and broadcast system message. It 
receives notification from Winlogon for the following events:

 ■ Logon and logoff
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 ■ Shell start and termination

 ■ Connect to a session

 ■ Disconnect from a session

 ■ Lock or unlock desktop

Winlogon, LogonUI, and Userinit
The Windows logon process (%SystemRoot%\System32\Winlogon.exe) handles interactive user logons 
and logoffs. Winlogon is notified of a user logon request when the secure attention sequence (SAS) 
keystroke combination is entered . The default SAS on Windows is the combination Ctrl+Alt+Delete . 
The reason for the SAS is to protect users from password-capture programs that simulate the logon 
process, because this keyboard sequence cannot be intercepted by a user-mode application .

The identification and authentication aspects of the logon process are implemented through 
DLLs called credential providers . The standard Windows credential providers implement the default 
Windows authentication interfaces: password and smartcard . However, developers can provide their 
own credential providers to implement other identification and authentication mechanisms in place 
of the standard Windows user name/password method (such as one based on a voice print or a 
biometric device such as a fingerprint reader). Because Winlogon is a critical system process on which 
the system depends, credential providers and the UI to display the logon dialog box run inside a 
child process of Winlogon called LogonUI . When Winlogon detects the SAS, it launches this process, 
which initializes the credential providers . Once the user enters her credentials or dismisses the logon 
 interface, the LogonUI process terminates .

In addition, Winlogon can load additional network provider DLLs that need to perform  secondary 
authentication. This capability allows multiple network providers to gather identification and 
 authentication information all at one time during normal logon .

Once the user name and password have been captured, they are sent to the local security 
 authentication server process (%SystemRoot%\System32\Lsass.exe, described in Chapter 6) to be 
authenticated . LSASS calls the appropriate authentication package (implemented as a DLL) to perform 
the actual verification, such as checking whether a password matches what is stored in the Active 
 Directory or the SAM (the part of the registry that contains the definition of the local users and 
groups) .

Upon a successful authentication, LSASS calls a function in the security reference monitor (for 
example, NtCreateToken) to generate an access token object that contains the user’s security profile. 
If User Account Control (UAC) is used and the user logging on is a member of the administrators 
group or has administrator privileges, LSASS will create a second, restricted version of the token . This 
access token is then used by Winlogon to create the initial process(es) in the user’s session . The initial 
process(es) are stored in the registry value Userinit under the registry key HKLM\SOFTWARE 
\Microsoft\Windows NT\CurrentVersion\Winlogon. (The default is Userinit.exe, but there can be more 
than one image in the list .)
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Userinit performs some initialization of the user environment (such as running the login script and 
applying group policies) and then looks in the registry at the Shell value (under the same Winlogon 
key referred to previously) and creates a process to run the system-defined shell (by default,  
Explorer .exe) . Then Userinit exits . This is the reason Explorer .exe is shown with no parent—its  parent 
has exited, and as explained in Chapter 1, tlist left-justifies processes whose parent isn’t running. 
 (Another way of looking at it is that Explorer is the grandchild of Winlogon .)

Winlogon is active not only during user logon and logoff but also whenever it intercepts 
the SAS from the keyboard . For example, when you press Ctrl+Alt+Delete while logged on, the 
 Windows  Security screen comes up, providing the options to log off, start the Task Manager, lock 
the  workstation, shut down the system, and so forth . Winlogon and LogonUI are the processes that 
handle this interaction .

For a complete description of the steps involved in the logon process, see the section “Smss, Csrss, 
and Wininit” in Chapter 13 in Part 2 . For more details on security authentication, see Chapter 6 . For 
details on the callable functions that interface with LSASS (the functions that start with Lsa), see the 
documentation in the Windows SDK .

Conclusion

In this chapter, we’ve taken a broad look at the overall system architecture of Windows . We’ve 
 examined the key components of Windows and seen how they interrelate . In the next chapter, we’ll 
look in more detail at the core system mechanisms that these components are built on, such as the 
object manager and synchronization .
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C H A P T E R  3

System Mechanisms

The Windows operating system provides several base mechanisms that kernel-mode components 
such as the executive, the kernel, and device drivers use . This chapter explains the following 

 system mechanisms and describes how they are used:

 ■ Trap dispatching, including interrupts, deferred procedure calls (DPCs), asynchronous 
 procedure calls (APCs), exception dispatching, and system service dispatching

 ■ The executive object manager

 ■ Synchronization, including spinlocks, kernel dispatcher objects, how waits are implemented, as 
well as user-mode-specific synchronization primitives that avoid trips to kernel mode (unlike 
typical dispatcher objects)

 ■ System worker threads

 ■ Miscellaneous mechanisms such as Windows global flags

 ■ Advanced Local Procedure Calls (ALPCs)

 ■ Kernel event tracing

 ■ Wow64

 ■ User-mode debugging

 ■ The image loader

 ■ Hypervisor (Hyper-V)

 ■ Kernel Transaction Manager (KTM)

 ■ Kernel Patch Protection (KPP)

 ■ Code integrity

Trap Dispatching

Interrupts and exceptions are operating system conditions that divert the processor to code outside 
the normal flow of control. Either hardware or software can detect them. The term trap refers to a 
processor’s mechanism for capturing an executing thread when an exception or an interrupt  occurs 
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and transferring control to a fixed location in the operating system. In Windows, the processor 
 transfers control to a trap handler, which is a function specific to a particular interrupt or exception. 
Figure 3-1 illustrates some of the conditions that activate trap handlers .

The kernel distinguishes between interrupts and exceptions in the following way . An interrupt is 
an asynchronous event (one that can occur at any time) that is unrelated to what the processor is 
executing . Interrupts are generated primarily by I/O devices, processor clocks, or timers, and they can 
be enabled (turned on) or disabled (turned off) . An exception, in contrast, is a synchronous condition 
that usually results from the execution of a particular instruction . (Aborts, such as machine checks, 
is a type of processor exception that’s typically not associated with instruction execution .) Running 
a program a second time with the same data under the same conditions can reproduce exceptions . 
Examples of exceptions include memory-access violations, certain debugger instructions, and divide-
by-zero errors . The kernel also regards system service calls as exceptions (although technically they’re 
system traps) .

Virtual memory
manager’s
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Exception
dispatcher

System
services

Interrupt
service
routines

Exception
handlers

Hardware exceptions
Software exceptions

Virtual address
exceptions

(Exception
frame)

System service call

Interrupt
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FIGURE 3-1 Trap dispatching

Either hardware or software can generate exceptions and interrupts . For example, a bus error 
exception is caused by a hardware problem, whereas a divide-by-zero exception is the result of a soft-
ware bug . Likewise, an I/O device can generate an interrupt, or the kernel itself can issue a software 
interrupt (such as an APC or DPC, both of which are described later in this chapter) .

When a hardware exception or interrupt is generated, the processor records enough machine state 
on the kernel stack of the thread that’s interrupted to return to that point in the control flow and 
continue execution as if nothing had happened . If the thread was executing in user mode, Windows 
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switches to the thread’s kernel-mode stack . Windows then creates a trap frame on the kernel stack of 
the interrupted thread into which it stores the execution state of the thread . The trap frame is a subset 
of a thread’s complete context, and you can view its definition by typing dt nt!_ktrap_frame in the 
kernel debugger . (Thread context is described in Chapter 5, “Processes and Threads .”) The kernel 
handles software interrupts either as part of hardware interrupt handling or synchronously when a 
thread invokes kernel functions related to the software interrupt .

In most cases, the kernel installs front-end, trap-handling functions that perform general trap- 
handling tasks before and after transferring control to other functions that field the trap. For example, 
if the condition was a device interrupt, a kernel hardware interrupt trap handler transfers control to 
the interrupt service routine (ISR) that the device driver provided for the interrupting device . If the 
condition was caused by a call to a system service, the general system service trap handler transfers 
control to the specified system service function in the executive. The kernel also installs trap han-
dlers for traps that it doesn’t expect to see or doesn’t handle . These trap handlers typically execute 
the system function KeBugCheckEx, which halts the computer when the kernel detects problematic 
or  incorrect behavior that, if left unchecked, could result in data corruption . (For more information 
on bug checks, see Chapter 14, “Crash Dump Analysis,” in Part 2 .) The following sections describe 
 interrupt, exception, and system service dispatching in greater detail .

Interrupt Dispatching
Hardware-generated interrupts typically originate from I/O devices that must notify the processor 
when they need service . Interrupt-driven devices allow the operating system to get the maximum 
use out of the processor by overlapping central processing with I/O operations . A thread starts an 
I/O transfer to or from a device and then can execute other useful work while the device completes 
the transfer. When the device is finished, it interrupts the processor for service. Pointing devices, 
printers, keyboards, disk drives, and network cards are generally interrupt driven .

System software can also generate interrupts . For example, the kernel can issue a software 
 interrupt to initiate thread dispatching and to asynchronously break into the execution of a thread . 
The kernel can also disable interrupts so that the processor isn’t interrupted, but it does so only 
infrequently—at critical moments while it’s programming an interrupt controller or dispatching an 
exception, for example .

The kernel installs interrupt trap handlers to respond to device interrupts . Interrupt trap handlers 
transfer control either to an external routine (the ISR) that handles the interrupt or to an internal 
 kernel routine that responds to the interrupt . Device drivers supply ISRs to service device interrupts, 
and the kernel provides interrupt-handling routines for other types of interrupts .

In the following subsections, you’ll find out how the hardware notifies the processor of device 
interrupts, the types of interrupts the kernel supports, the way device drivers interact with the kernel 
(as a part of interrupt processing), and the software interrupts the kernel recognizes (plus the kernel 
objects that are used to implement them) .
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Hardware Interrupt Processing
On the hardware platforms supported by Windows, external I/O interrupts come into one of the lines 
on an interrupt controller . The controller, in turn, interrupts the processor on a single line . Once the 
processor is interrupted, it queries the controller to get the interrupt request (IRQ) . The interrupt con-
troller translates the IRQ to an interrupt number, uses this number as an index into a structure called 
the interrupt dispatch table (IDT), and transfers control to the appropriate interrupt dispatch routine . 
At system boot time, Windows fills in the IDT with pointers to the kernel routines that handle each 
interrupt and exception .

Windows maps hardware IRQs to interrupt numbers in the IDT, and the system also uses the IDT 
to configure trap handlers for exceptions. For example, the x86 and x64 exception number for a page 
fault (an exception that occurs when a thread attempts to access a page of virtual memory that isn’t 
defined or present) is 0xe (14). Thus, entry 0xe in the IDT points to the system’s page-fault handler. 
Although the architectures supported by Windows allow up to 256 IDT entries, the number of IRQs a 
particular machine can support is determined by the design of the interrupt controller the machine 
uses .

EXPERIMENT: Viewing the IDT
You can view the contents of the IDT, including information on what trap handlers Windows has 
assigned to interrupts (including exceptions and IRQs), using the !idt kernel debugger com-
mand . The !idt command with no flags shows simplified output that includes only registered 
hardware interrupts (and, on 64-bit machines, the processor trap handlers) .

The following example shows what the output of the !idt command looks like:

lkd> !idt 
 
Dumping IDT: 
 
 
00:    fffff80001a7ec40 nt!KiDivideErrorFault 
01:    fffff80001a7ed40 nt!KiDebugTrapOrFault 
02:    fffff80001a7ef00 nt!KiNmiInterrupt    Stack = 0xFFFFF80001865000 
03:    fffff80001a7f280 nt!KiBreakpointTrap 
04:    fffff80001a7f380 nt!KiOverflowTrap 
05:    fffff80001a7f480 nt!KiBoundFault 
06:    fffff80001a7f580 nt!KiInvalidOpcodeFault 
07:    fffff80001a7f7c0 nt!KiNpxNotAvailableFault 
08:    fffff80001a7f880 nt!KiDoubleFaultAbort    Stack = 0xFFFFF80001863000 
09:    fffff80001a7f940 nt!KiNpxSegmentOverrunAbort 
0a:    fffff80001a7fa00 nt!KiInvalidTssFault 
0b:    fffff80001a7fac0 nt!KiSegmentNotPresentFault 
0c:    fffff80001a7fc00 nt!KiStackFault 
0d:    fffff80001a7fd40 nt!KiGeneralProtectionFault 
0e:    fffff80001a7fe80 nt!KiPageFault 
10:    fffff80001a80240 nt!KiFloatingErrorFault 
11:    fffff80001a803c0 nt!KiAlignmentFault 
12:    fffff80001a804c0 nt!KiMcheckAbort    Stack = 0xFFFFF80001867000 
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13:    fffff80001a80840 nt!KiXmmException 
1f:    fffff80001a5ec10 nt!KiApcInterrupt 
2c:    fffff80001a80a00 nt!KiRaiseAssertion 
2d:    fffff80001a80b00 nt!KiDebugServiceTrap 
2f:    fffff80001acd590 nt!KiDpcInterrupt 
37:    fffff8000201c090 hal!PicSpuriousService37 (KINTERRUPT fffff8000201c000) 
3f:    fffff8000201c130 hal!PicSpuriousService37 (KINTERRUPT fffff8000201c0a0) 
51:    fffffa80045babd0 dxgkrnl!DpiFdoLineInterruptRoutine (KINTERRUPT fffffa80045bab40) 
52:    fffffa80029f1390 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1300) 
62:    fffffa80029f15d0 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1540) 
                     USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1240) 
72:    fffffa80029f1e10 ataport!IdePortInterrupt (KINTERRUPT fffffa80029f1d80) 
81:    fffffa80045bae10 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 
fffffa80045bad80) 
82:    fffffa80029f1ed0 ataport!IdePortInterrupt (KINTERRUPT fffffa80029f1e40) 
90:    fffffa80045bad50 Vid+0x7918 (KINTERRUPT fffffa80045bacc0) 
91:    fffffa80045baed0 i8042prt!I8042MouseInterruptService (KINTERRUPT fffffa80045bae40) 
a0:    fffffa80045bac90 vmbus!XPartPncIsr (KINTERRUPT fffffa80045bac00) 
a2:    fffffa80029f1210 sdbus!SdbusInterrupt (KINTERRUPT fffffa80029f1180) 
                     rimmpx64+0x9FFC (KINTERRUPT fffffa80029f10c0) 
                     rimspx64+0x7A14 (KINTERRUPT fffffa80029f1000) 
                     rixdpx64+0x9C50 (KINTERRUPT fffffa80045baf00) 
a3:    fffffa80029f1510 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f1480) 
                     HDAudBus!HdaController::Isr (KINTERRUPT fffffa80029f1c00) 
a8:    fffffa80029f1bd0 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1b40) 
a9:    fffffa80029f1b10 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1a80) 
aa:    fffffa80029f1a50 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f19c0) 
ab:    fffffa80029f1990 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1900) 
ac:    fffffa80029f18d0 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1840) 
ad:    fffffa80029f1810 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1780) 
ae:    fffffa80029f1750 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f16c0) 
af:    fffffa80029f1690 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1600) 
b0:    fffffa80029f1d50 NDIS!ndisMiniportMessageIsr (KINTERRUPT fffffa80029f1cc0) 
b1:    fffffa80029f1f90 ACPI!ACPIInterruptServiceRoutine (KINTERRUPT fffffa80029f1f00) 
b3:    fffffa80029f1450 USBPORT!USBPORT_InterruptService (KINTERRUPT fffffa80029f13c0) 
c1:    fffff8000201c3b0 hal!HalpBroadcastCallService (KINTERRUPT fffff8000201c320) 
d1:    fffff8000201c450 hal!HalpHpetClockInterrupt (KINTERRUPT fffff8000201c3c0) 
d2:    fffff8000201c4f0 hal!HalpHpetRolloverInterrupt (KINTERRUPT fffff8000201c460) 
df:    fffff8000201c310 hal!HalpApicRebootService (KINTERRUPT fffff8000201c280) 
e1:    fffff80001a8e1f0 nt!KiIpiInterrupt 
e2:    fffff8000201c270 hal!HalpDeferredRecoveryService (KINTERRUPT fffff8000201c1e0) 
e3:    fffff8000201c1d0 hal!HalpLocalApicErrorService (KINTERRUPT fffff8000201c140) 
fd:    fffff8000201c590 hal!HalpProfileInterrupt (KINTERRUPT fffff8000201c500) 
fe:    fffff8000201c630 hal!HalpPerfInterrupt (KINTERRUPT fffff8000201c5a0)

On the system used to provide the output for this experiment, the keyboard device driver’s 
(I8042prt .sys) keyboard ISR is at interrupt number 0x81 . You can also see that interrupt 0xe 
 corresponds to KiPageFault, as explained earlier .

Each processor has a separate IDT so that different processors can run different ISRs, if  appropriate . 
For example, in a multiprocessor system, each processor receives the clock interrupt, but only one 
processor updates the system clock in response to this interrupt . All the processors, however, use the 
interrupt to measure thread quantum and to initiate rescheduling when a thread’s quantum ends . 
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Similarly, some system configurations might require that a particular processor handle certain device 
interrupts .

x86 Interrupt Controllers
Most x86 systems rely on either the i8259A Programmable Interrupt Controller (PIC) or a variant of 
the i82489 Advanced Programmable Interrupt Controller (APIC); today’s computers include an APIC . 
The PIC standard originates with the original IBM PC . The i8259A PIC works only with uniprocessor 
systems and has only eight interrupt lines. However, the IBM PC architecture defined the addition of 
a second PIC, called the slave, whose interrupts are multiplexed into one of the master PIC’s inter-
rupt lines . This provides 15 total interrupts (seven on the master and eight on the slave, multiplexed 
through the master’s eighth interrupt line) . APICs and Streamlined Advanced Programmable Inter-
rupt Controllers (SAPICs, discussed shortly) work with multiprocessor systems and have 256 interrupt 
lines. Intel and other companies have defined the Multiprocessor Specification (MP Specification), 
a design standard for x86 multiprocessor systems that centers on the use of APIC . To provide com-
patibility with uniprocessor operating systems and boot code that starts a multiprocessor system 
in  uniprocessor mode, APICs support a PIC compatibility mode with 15 interrupts and delivery of 
 interrupts to only the primary processor . Figure 3-2 depicts the APIC architecture . 

The APIC actually consists of several components: an I/O APIC that receives interrupts from 
devices, local APICs that receive interrupts from the I/O APIC on the bus and that interrupt the CPU 
they are associated with, and an i8259A-compatible interrupt controller that translates APIC input into 
PIC-equivalent signals . Because there can be multiple I/O APICs on the system, motherboards typi-
cally have a piece of core logic that sits between them and the processors . This logic is responsible for 
implementing interrupt routing algorithms that both balance the device interrupt load across proces-
sors and attempt to take advantage of locality, delivering device interrupts to the same processor 
that has just fielded a previous interrupt of the same type. Software programs can reprogram the I/O 
APICs with a fixed routing algorithm that bypasses this piece of chipset logic. Windows does this by 
programming the APICs in an “interrupt one processor in the following set” routing mode .

CPU 0

Local APIC

Processor Core

CPU 1

i8259A-
equivalent

PIC

I/O
APIC

Device
interrupts

Local APIC

Processor Core

FIGURE 3-2 x86 APIC architecture 
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x64 Interrupt Controllers
Because the x64 architecture is compatible with x86 operating systems, x64 systems must provide 
the same interrupt controllers as the x86. A significant difference, however, is that the x64 versions of 
Windows will not run on systems that do not have an APIC because they use the APIC for interrupt 
control .

IA64 Interrupt Controllers
The IA64 architecture relies on the Streamlined Advanced Programmable Interrupt Controller (SAPIC), 
which is an evolution of the APIC. Even if load balancing and routing are present in the firmware, 
Windows does not take advantage of it; instead, it statically assigns interrupts to processors in a 
round-robin manner .

EXPERIMENT: Viewing the PIC and APIC
You can view the configuration of the PIC on a uniprocessor and the current local APIC on a 
multiprocessor by using the !pic and !apic kernel debugger commands, respectively . Here’s the 
output of the !pic command on a uniprocessor . (Note that the !pic command doesn’t work if 
your system is using an APIC HAL .)

lkd> !pic  
----- IRQ Number ----- 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F  
Physically in service:  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  
Physically masked:      .  .  .  Y  .  .  Y  Y  .  .  Y  .  .  Y  .  .  
Physically requested:   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  
Level Triggered:        .  .  .  .  .  Y  .  .  .  Y  .  Y  .  .  .  .

Here’s the output of the !apic command on a system running with an APIC HAL . Note that 
during local kernel debugging, this command shows the APIC associated with the current 
processor—in other words, whichever processor the debugger’s thread happens to be running 
on as you enter the command . When looking at a crash dump or remote system, you can use 
the ~(tilde) command followed by the processor number to switch the processor of whose local 
APIC you want to see .

lkd> !apic 
Apic @ fffe0000  ID:0 (50014)  LogDesc:01000000  DestFmt:ffffffff  TPR 20 
TimeCnt: 00000000clk  SpurVec:3f  FaultVec:e3  error:0 
Ipi Cmd: 01000000'0000002f  Vec:2F  FixedDel  Ph:01000000      edg high        
Timer..: 00000000'000300fd  Vec:FD  FixedDel    Dest=Self      edg high      m 
Linti0.: 00000000'0001003f  Vec:3F  FixedDel    Dest=Self      edg high      m 
Linti1.: 00000000'000004ff  Vec:FF  NMI         Dest=Self      edg high        
TMR: 51-52, 62, A3, B1, B3 
IRR:  
ISR:: 

The various numbers following the Vec labels indicate the associated vector in the IDT with 
the given command . For example, in this output, interrupt number 0xFD is associated with 
the APIC Timer, and interrupt number 0xE3 handles APIC errors . Because this experiment was 
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run on the same machine as the earlier !idt experiment, you can notice that 0xFD is the HAL’s 
 Profiling Interrupt (which uses a timer for profile intervals), and 0xe3 is the HAL’s Local APIC 
 Error Handler, as expected .

The following output is for the !ioapic command, which displays the configuration of the I/O 
APICs, the interrupt controller components connected to devices:

lkd> !ioapic 
IoApic @ FEC00000  ID:0 (51)  Arb:A951 
Inti00.: 0000a951'0000a951  Vec:51  LowestDl  Lg:0000a951      lvl low 

Software Interrupt Request Levels (IRQLs)
Although interrupt controllers perform interrupt prioritization, Windows imposes its own interrupt 
priority scheme known as interrupt request levels (IRQLs) . The kernel represents IRQLs internally as a 
number from 0 through 31 on x86 and from 0 to 15 on x64 and IA64, with higher numbers repre-
senting higher-priority interrupts. Although the kernel defines the standard set of IRQLs for software 
interrupts, the HAL maps hardware-interrupt numbers to the IRQLs. Figure 3-3 shows IRQLs defined 
for the x86 architecture, and Figure 3-4 shows IRQLs for the x64 and IA64 architectures .

High

Power fail

Interprocessor interrupt

Device n

Device 1

Clock

Profile/Synch

APC

Passive/Low

DPC/dispatch

•
•
•

Software interrupts

Normal thread execution

Hardware interrupts

31

30

29

28

27

26

3

2

1

0

Corrected Machine Check Interrupt

4

5

•••

FIGURE 3-3 x86 interrupt request levels (IRQLs) 

Interrupts are serviced in priority order, and a higher-priority interrupt preempts the  servicing of 
a lower-priority interrupt . When a high-priority interrupt occurs, the processor saves the  interrupted 
thread’s state and invokes the trap dispatchers associated with the interrupt . The trap dispatcher  raises 
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the IRQL and calls the interrupt’s service routine . After the service routine executes, the  interrupt 
dispatcher lowers the processor’s IRQL to where it was before the interrupt occurred and then loads 
the saved machine state . The interrupted thread resumes executing where it left off . When the kernel 
lowers the IRQL, lower-priority interrupts that were masked might materialize . If this  happens, the 
kernel repeats the process to handle the new interrupts .
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FIGURE 3-4 x64 and IA64 interrupt request levels (IRQLs) 

IRQL priority levels have a completely different meaning than thread-scheduling priorities (which 
are described in Chapter 5) . A scheduling priority is an attribute of a thread, whereas an IRQL is an 
 attribute of an interrupt source, such as a keyboard or a mouse . In addition, each processor has an 
IRQL setting that changes as operating system code executes .

Each processor’s IRQL setting determines which interrupts that processor can receive . IRQLs are 
also used to synchronize access to kernel-mode data structures. (You’ll find out more about synchro-
nization later in this chapter .) As a kernel-mode thread runs, it raises or lowers the processor’s IRQL 
 either directly by calling KeRaiseIrql and KeLowerIrql or, more commonly, indirectly via calls to func-
tions that acquire kernel synchronization objects . As Figure 3-5 illustrates, interrupts from a source 
with an IRQL above the current level interrupt the processor, whereas interrupts from sources with 
IRQLs equal to or below the current level are masked until an executing thread lowers the IRQL .

Because accessing a PIC is a relatively slow operation, HALs that require accessing the I/O bus to 
change IRQLs, such as for PIC and 32-bit Advanced Configuration and Power Interface (ACPI) systems, 
implement a performance optimization, called lazy IRQL, that avoids PIC accesses . When the IRQL 
is raised, the HAL notes the new IRQL internally instead of changing the interrupt mask . If a lower-
priority interrupt subsequently occurs, the HAL sets the interrupt mask to the settings appropriate 
for the first interrupt and does not quiesce the lower-priority interrupt until the IRQL is lowered (thus 
keeping the interrupt pending) . Thus, if no lower-priority interrupts occur while the IRQL is raised, the 
HAL doesn’t need to modify the PIC .
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A kernel-mode thread raises and lowers the IRQL of the processor on which it’s running, 
 depending on what it’s trying to do . For example, when an interrupt occurs, the trap handler (or 
perhaps the processor) raises the processor’s IRQL to the assigned IRQL of the interrupt source . This 
elevation masks all interrupts at and below that IRQL (on that processor only), which ensures that 
the processor servicing the interrupt isn’t waylaid by an interrupt at the same level or a lower level . 
The masked interrupts are either handled by another processor or held back until the IRQL drops . 
Therefore, all components of the system, including the kernel and device drivers, attempt to keep the 
IRQL at  passive level (sometimes called low level) . They do this because device drivers can respond to 
hardware interrupts in a timelier manner if the IRQL isn’t kept unnecessarily elevated for long periods .

Note An exception to the rule that raising the IRQL blocks interrupts of that level and 
lower relates to APC-level interrupts . If a thread raises the IRQL to APC level and then 
is rescheduled because of a dispatch/DPC-level interrupt, the system might deliver an 
 APC-level interrupt to the newly scheduled thread . Thus, APC level can be considered a 
thread-local rather than processor-wide IRQL .

EXPERIMENT: Viewing the IRQL
You can view a processor’s saved IRQL with the !irql debugger command . The saved IRQL 
 represents the IRQL at the time just before the break-in to the debugger, which raises the IRQL 
to a static, meaningless value:

kd> !irql  
Debugger saved IRQL for processor 0x0 -- 0 (LOW_LEVEL)
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Note that the IRQL value is saved in two locations. The first, which represents the current 
IRQL, is the processor control region (PCR), while its extension, the processor region control 
block (PRCB), contains the saved IRQL in the DebuggerSaveIrql field. The PCR and PRCB contain 
information about the state of each processor in the system, such as the current IRQL, a pointer 
to the hardware IDT, the currently running thread, and the next thread selected to run . The 
kernel and the HAL use this information to perform architecture-specific and machine-specific 
actions. Portions of the PCR and PRCB structures are defined publicly in the Windows Driver Kit 
(WDK) header file Ntddk.h.

You can view the contents of the current processor’s PCR with the kernel debugger by using 
the !pcr command. To view the PCR of a specific processor, add the processor’s number after 
the command, separated with a space:

lkd> !pcr 0 
KPCR for Processor 0 at fffff80001bfad00: 
    Major 1 Minor 1 
    NtTib.ExceptionList: fffff80001853000 
        NtTib.StackBase: fffff80001854080 
       NtTib.StackLimit: 000000000026ea28 
     NtTib.SubSystemTib: fffff80001bfad00 
          NtTib.Version: 0000000001bfae80 
      NtTib.UserPointer: fffff80001bfb4f0 
          NtTib.SelfTib: 000007fffffdb000 
 
                SelfPcr: 0000000000000000 
                   Prcb: fffff80001bfae80 
                   Irql: 0000000000000000 
                    IRR: 0000000000000000 
                    IDR: 0000000000000000 
          InterruptMode: 0000000000000000 
                    IDT: 0000000000000000 
                    GDT: 0000000000000000 
                    TSS: 0000000000000000 
 
          CurrentThread: fffff80001c08c40 
             NextThread: 0000000000000000 
             IdleThread: fffff80001c08c40 
 
              DpcQueue: 

Because changing a processor’s IRQL has such a significant effect on system operation, the 
change can be made only in kernel mode—user-mode threads can’t change the processor’s 
IRQL . This means that a processor’s IRQL is always at passive level when it’s executing user-
mode code . Only when the processor is executing kernel-mode code can the IRQL be higher .

Each interrupt level has a specific purpose. For example, the kernel issues an interprocessor 
interrupt (IPI) to request that another processor perform an action, such as dispatching a par-
ticular thread for execution or updating its translation look-aside buffer (TLB) cache . The system 
clock generates an interrupt at regular intervals, and the kernel responds by updating the clock 
and measuring thread execution time . If a hardware platform supports two clocks, the kernel 
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adds another clock interrupt level to measure performance . The HAL provides a number of 
interrupt levels for use by interrupt-driven devices; the exact number varies with the processor 
and system configuration. The kernel uses software interrupts (described later in this chapter) to 
initiate thread scheduling and to asynchronously break into a thread’s execution .

Mapping Interrupts to IRQLs
IRQL levels aren’t the same as the interrupt requests (IRQs) defined by interrupt controllers—
the architectures on which Windows runs don’t implement the concept of IRQLs in hardware . 
So how does Windows determine what IRQL to assign to an interrupt? The answer lies in the 
HAL . In Windows, a type of device driver called a bus driver determines the presence of devices 
on its bus (PCI, USB, and so on) and what interrupts can be assigned to a device . The bus driver 
reports this information to the Plug and Play manager, which decides, after taking into account 
the acceptable interrupt assignments for all other devices, which interrupt will be assigned to 
each device . Then it calls a Plug and Play interrupt arbiter, which maps interrupts to IRQLs . (The 
root arbiter is used on non-ACPI systems, while the ACPI HAL has its own arbiter on ACPI- 
compatible systems .)

The algorithm for assignment differs for the various HALs that Windows includes . On ACPI 
systems (including x86, x64, and IA64), the HAL computes the IRQL for a given interrupt by 
dividing the interrupt vector assigned to the IRQ by 16 . As for selecting an interrupt vector for 
the IRQ, this depends on the type of interrupt controller present on the system . On today’s APIC 
systems, this number is generated in a round-robin fashion, so there is no computable way to 
figure out the IRQ based on the interrupt vector or the IRQL. However, an experiment later in 
this section shows how the debugger can query this information from the interrupt arbiter .

Predefined IRQLs
Let’s take a closer look at the use of the predefined IRQLs, starting from the highest level shown 
in Figure 3-4:

 ■ The kernel uses high level only when it’s halting the system in KeBugCheckEx and masking 
out all interrupts .

 ■ Power fail level originated in the original Windows NT design documents, which specified 
the behavior of system power failure code, but this IRQL has never been used .

 ■ Interprocessor interrupt level is used to request another processor to perform an action, 
such as updating the processor’s TLB cache, system shutdown, or system crash .

 ■ Clock level is used for the system’s clock, which the kernel uses to track the time of day as 
well as to measure and allot CPU time to threads .

 ■ The system’s real-time clock (or another source, such as the local APIC timer) uses profile 
level when kernel profiling (a performance-measurement mechanism) is enabled. When 
kernel profiling is active, the kernel’s profiling trap handler records the address of the code 
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that was executing when the interrupt occurred . A table of address samples is constructed 
over time that tools can extract and analyze. You can obtain Kernrate, a kernel profil-
ing tool that you can use to configure and view profiling-generated statistics, from the 
 Windows Driver Kit (WDK) . See the Kernrate experiment for more information on using 
this tool .

 ■ The synchronization IRQL is internally used by the dispatcher and scheduler code to 
protect access to global thread scheduling and wait/synchronization code . It is typically 
defined as the highest level right after the device IRQLs.

 ■ The device IRQLs are used to prioritize device interrupts . (See the previous section for how 
hardware interrupt levels are mapped to IRQLs .)

 ■ The corrected machine check interrupt level is used to signal the operating system after 
a serious but corrected hardware condition or error that was reported by the CPU or 
 firmware through the Machine Check Error (MCE) interface .

 ■ DPC/dispatch-level and APC-level interrupts are software interrupts that the kernel and 
device drivers generate . (DPCs and APCs are explained in more detail later in this chapter .)

 ■ The lowest IRQL, passive level, isn’t really an interrupt level at all; it’s the setting at which 
normal thread execution takes place and all interrupts are allowed to occur .

EXPERIMENT: Using Kernel Profiler (Kernrate) to Profile Execution
You can use the Kernel Profiler tool (Kernrate) to enable the system-profiling timer, collect 
samples of the code that is executing when the timer fires, and display a summary showing 
the frequency distribution across image files and functions. It can be used to track CPU usage 
consumed by individual processes and/or time spent in kernel mode independent of processes 
(for example, interrupt service routines). Kernel profiling is useful when you want to obtain a 
breakdown of where the system is spending time .

In its simplest form, Kernrate samples where time has been spent in each kernel module (for 
example, Ntoskrnl, drivers, and so on) . For example, after installing the Windows Driver Kit, try 
performing the following steps:

1. Open a command prompt .

2. Type cd C:\WinDDK\7600 .16385 .1\tools\other (the path to your installation of the 
Windows 7/Server 2008R2 WDK) .

3. Type dir . (You will see directories for each platform .)

4. Run the image that matches your platform (with no arguments or switches) . For 
 example, i386\kernrate.exe is the image for an x86 system .
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5. While Kernrate is running, perform some other activity on the system . For example, 
run Windows Media Player and play some music, run a graphics-intensive game, or 
perform network activity such as doing a directory listing of a remote network share .

6. Press Ctrl+C to stop Kernrate . This causes Kernrate to display the statistics from the 
sampling period .

In the following sample output from Kernrate, Windows Media Player was running, playing a 
recorded movie from disk:

C:\WinDDK\7600.16385.1\tools\Other\i386>kernrate.exe 
 
 /==============================\ 
<         KERNRATE LOG           > 
 \==============================/ 
Date: 2011/03/09   Time: 16:44:24 
Machine Name: TEST-LAPTOP 
Number of Processors: 2 
PROCESSOR_ARCHITECTURE: x86 
PROCESSOR_LEVEL: 6 
PROCESSOR_REVISION: 0f06 
Physical Memory: 3310 MB 
Pagefile Total: 7285 MB 
Virtual Total: 2047 MB 
PageFile1: \??\C:\pagefile.sys, 4100MB 
OS Version: 6.1 Build 7601 Service-Pack: 1.0 
WinDir: C:\Windows 
 
Kernrate Executable Location: C:\WINDDK\7600.16385.1\TOOLS\OTHER\I386 
 
Kernrate User-Specified Command Line: 
kernrate.exe 
 
 
Kernel Profile (PID = 0): Source= Time, 
Using Kernrate Default Rate of 25000 events/hit 
Starting to collect profile data 
 
***> Press ctrl-c to finish collecting profile data 
===> Finished Collecting Data, Starting to Process Results 
 
------------Overall Summary:-------------- 
 
P0     K 0:00:00.000 ( 0.0%)  U 0:00:00.234 ( 4.7%)  I 0:00:04.789 (95.3%)   
DPC 0:00:00.000 ( 0.0%)  Interrupt 0:00:00.000 ( 0.0%) 
       Interrupts= 9254, Interrupt Rate= 1842/sec. 
 
P1     K 0:00:00.031 ( 0.6%)  U 0:00:00.140 ( 2.8%)  I 0:00:04.851 (96.6%)   
DPC 0:00:00.000 ( 0.0%)  Interrupt 0:00:00.000 ( 0.0%) 
       Interrupts= 7051, Interrupt Rate= 1404/sec. 
 
TOTAL  K 0:00:00.031 ( 0.3%)  U 0:00:00.374 ( 3.7%)  I 0:00:09.640 (96.0%)   
DPC 0:00:00.000 ( 0.0%)  Interrupt 0:00:00.000 ( 0.0%) 
       Total Interrupts= 16305, Total Interrupt Rate= 3246/sec. 
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Total Profile Time = 5023 msec 
 
                                       BytesStart          BytesStop        BytesDiff. 
    Available Physical Memory   ,      1716359168,      1716195328,         -163840 
    Available Pagefile(s)       ,      5973733376,      5972783104,         -950272 
    Available Virtual           ,      2122145792,      2122145792,               0 
    Available Extended Virtual  ,               0,               0,               0 
    Committed Memory Bytes      ,      1665404928,      1666355200,          950272 
    Non Paged Pool Usage Bytes  ,        66211840,        66211840,               0 
    Paged Pool Usage Bytes      ,       189083648,       189087744,            4096 
    Paged Pool Available Bytes  ,       150593536,       150593536,               0 
    Free System PTEs            ,           37322,           37322,               0 
 
                                  Total          Avg. Rate 
    Context Switches     ,        30152,         6003/sec. 
    System Calls         ,       110807,         22059/sec. 
    Page Faults          ,          226,         45/sec. 
    I/O Read Operations  ,          730,         145/sec. 
    I/O Write Operations ,         1038,         207/sec. 
    I/O Other Operations ,          858,         171/sec. 
    I/O Read Bytes       ,      2013850,         2759/ I/O 
    I/O Write Bytes      ,        28212,         27/ I/O 
    I/O Other Bytes      ,        19902,         23/ I/O 
 
----------------------------- 
 
Results for Kernel Mode: 
----------------------------- 
 
OutputResults: KernelModuleCount = 167 
Percentage in the following table is based on the Total Hits for the Kernel 
 
Time   3814 hits, 25000 events per hit -------- 
Module                                 Hits       msec  %Total  Events/Sec 
NTKRNLPA                               3768       5036    98 %    18705321 
NVLDDMKM                                 12       5036     0 %       59571 
HAL                                      12       5036     0 %       59571 
WIN32K                                   10       5037     0 %       49632 
DXGKRNL                                   9       5036     0 %       44678 
NETW4V32                                  2       5036     0 %        9928 
FLTMGR                                    1       5036     0 %        4964 
 
================================= END OF RUN ================================== 
============================== NORMAL END OF RUN ==============================

The overall summary shows that the system spent 0 .3 percent of the time in kernel mode, 
3 .7 percent in user mode, 96 .0 percent idle, 0 .0 percent at DPC level, and 0 .0 percent at inter-
rupt level . The module with the highest hit rate was Ntkrnlpa .exe, the kernel for machines with 
 Physical Address Extension (PAE) or NX support . The module with the second highest hit rate 
was nvlddmkm .sys, the driver for the video card on the machine used for the test . This makes 
sense because the major activity going on in the system was Windows Media Player sending 
video I/O to the video driver .
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If you have symbols available, you can zoom in on individual modules and see the time spent 
by function name. For example, profiling the system while rapidly dragging a window around 
the screen resulted in the following (partial) output:

 C:\WinDDK\7600.16385.1\tools\Other\i386>kernrate.exe -z ntkrnlpa -z win32k 
 /==============================\ 
<         KERNRATE LOG           > 
 \==============================/ 
Date: 2011/03/09   Time: 16:49:56 
  
Time   4191 hits, 25000 events per hit -------- 
Module                                 Hits       msec  %Total  Events/Sec 
NTKRNLPA                               3623       5695    86 %    15904302 
WIN32K                                  303       5696     7 %     1329880 
INTELPPM                                141       5696     3 %      618855 
HAL                                      61       5695     1 %      267778 
CDD                                      30       5696     0 %      131671 
NVLDDMKM                                 13       5696     0 %       57057 
  
----- Zoomed module WIN32K.SYS (Bucket size = 16 bytes, Rounding Down) -------- 
Module                                 Hits       msec  %Total  Events/Sec 
BltLnkReadPat                            34       5696    10 %      149227 
memmove                                  21       5696     6 %       92169 
vSrcTranCopyS8D32                        17       5696     5 %       74613 
memcpy                                   12       5696     3 %       52668 
RGNOBJ::bMerge                           10       5696     3 %       43890 
HANDLELOCK::vLockHandle                   8       5696     2 %       35112 
  
----- Zoomed module NTKRNLPA.EXE (Bucket size = 16 bytes, Rounding Down) -------- 
Module                                 Hits       msec  %Total  Events/Sec 
KiIdleLoop                             3288       5695    87 %    14433713 
READ_REGISTER_USHORT                     95       5695     2 %      417032 
READ_REGISTER_ULONG                      93       5695     2 %      408252 
RtlFillMemoryUlong                       31       5695     0 %      136084 
KiFastCallEntry                          18       5695     0 %       79016

The module with the second hit rate was Win32k .sys, the windowing system driver . Also high 
on the list were the video driver and Cdd .dll, a global video driver used for the 3D-accelerated 
Aero desktop theme . These results make sense because the main activity in the system was 
drawing on the screen . Note that in the zoomed display for Win32k .sys, the functions with the 
highest hits are related to merging, copying, and moving bits, the main GDI operations for 
painting a window dragged on the screen .

One important restriction on code running at DPC/dispatch level or above is that it can’t wait 
for an object if doing so necessitates the scheduler to select another thread to execute, which is 
an illegal operation because the scheduler relies on DPC-level software interrupts to schedule 
threads . Another restriction is that only nonpaged memory can be accessed at IRQL DPC/dis-
patch level or higher . 

This rule is actually a side effect of the first restriction because attempting to access memory 
that isn’t resident results in a page fault . When a page fault occurs, the memory manager initi-
ates a disk I/O and then needs to wait for the file system driver to read the page in from disk. 
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This wait would, in turn, require the scheduler to perform a context switch (perhaps to the idle 
thread if no user thread is waiting to run), thus violating the rule that the scheduler can’t be 
invoked (because the IRQL is still DPC/dispatch level or higher at the time of the disk read) . A 
further problem results in the fact that I/O completion typically occurs at APC_LEVEL, so even in 
cases where a wait wouldn’t be required, the I/O would never complete because the completion 
APC would not get a chance to run .

If either of these two restrictions is violated, the system crashes with an IRQL_NOT_LESS_
OR_EQUAL or a DRIVER_IRQL_NOT_LESS_OR_EQUAL crash code . (See Chapter 14 in Part 2 for a 
thorough discussion of system crashes .) Violating these restrictions is a common bug in device 
drivers. The Windows Driver Verifier (explained in the section “Driver Verifier” in Chapter 10, 
“Memory Management,” in Part 2) has an option you can set to assist in finding this particular 
type of bug .

Interrupt Objects
The kernel provides a portable mechanism—a kernel control object called an interrupt object—
that allows device drivers to register ISRs for their devices . An interrupt object contains all the 
information the kernel needs to associate a device ISR with a particular level of interrupt, includ-
ing the address of the ISR, the IRQL at which the device interrupts, and the entry in the kernel’s 
interrupt dispatch table (IDT) with which the ISR should be associated . When an interrupt object 
is initialized, a few instructions of assembly language code, called the dispatch code, are copied 
from an interrupt-handling template, KiInterruptTemplate, and stored in the object . When an 
interrupt occurs, this code is executed .

This interrupt-object resident code calls the real interrupt dispatcher, which is typically 
either the kernel’s KiInterruptDispatch or KiChainedDispatch routine, passing it a pointer to the 
interrupt object . KiInterruptDispatch is the routine used for interrupt vectors for which only 
one interrupt object is registered, and KiChainedDispatch is for vectors shared among multiple 
interrupt objects . The interrupt object contains information that this second dispatcher routine 
needs to locate and properly call the ISR the device driver provides . 

The interrupt object also stores the IRQL associated with the interrupt so that 
 KiInterruptDispatch or KiChainedDispatch can raise the IRQL to the correct level before calling 
the ISR and then lower the IRQL after the ISR has returned . This two-step process is required 
because there’s no way to pass a pointer to the interrupt object (or any other argument for that 
matter) on the initial dispatch because the initial dispatch is done by hardware . On a multipro-
cessor system, the kernel allocates and initializes an interrupt object for each CPU, enabling the 
local APIC on that CPU to accept the particular interrupt . 

On x64 Windows systems, the kernel optimizes interrupt dispatch by using specific routines that 
save processor cycles by omitting functionality that isn’t needed, such as KiInterruptDispatchNoLock, 
which is used for interrupts that do not have an associated kernel-managed spinlock (typically used 
by drivers that want to synchronize with their ISRs), and KiInterruptDispatchNoEOI, which is used for 
interrupts that have programmed the APIC in “Auto-End-of-Interrupt” (Auto-EOI) mode—because 
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the interrupt controller will send the EOI signal automatically, the kernel does not need to the extra 
code to do perform the EOI itself. Finally, for the performance/profiling interrupt specifically, the 
 KiInterruptDispatchLBControl handler is used, which supports the Last Branch Control MSR available 
on modern CPUs . This register enables the kernel to track/save the branch instruction when  tracing; 
during an interrupt, this information would be lost because it’s not stored in the normal thread 
register context, so special code must be added to preserve it. The HAL’s performance and profiling 
interrupts use this functionality, for example, while the other HAL interrupt routines take advantage of 
the “no-lock” dispatch code, because the HAL does not require the kernel to synchronize with its ISR .

Another kernel interrupt handler is KiFloatingDispatch, which is used for interrupts that require 
 saving the floating-point state. Unlike kernel-mode code, which typically is not allowed to use 
floating-point (MMX, SSE, 3DNow!) operations because these registers won’t be saved across con-
text switches, ISRs might need to use these registers (such as the video card ISR performing a quick 
 drawing operation) . When connecting an interrupt, drivers can set the FloatingSave argument to 
TRUE, requesting that the kernel use the floating-point dispatch routine, which will save the floating 
registers . (However, this greatly increases interrupt latency .) Note that this is supported only on 32-bit 
systems .

Figure 3-6 shows typical interrupt control flow for interrupts associated with interrupt objects.
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EXPERIMENT: Examining Interrupt Internals
Using the kernel debugger, you can view details of an interrupt object, including its IRQL, ISR 
address, and custom interrupt-dispatching code . First, execute the !idt command and locate the 
entry that includes a reference to I8042KeyboardInterruptService, the ISR routine for the PS2 
keyboard device:

81:    fffffa80045bae10 i8042prt!I8042KeyboardInterruptService (KINTERRUPT 
fffffa80045bad80)

To view the contents of the interrupt object associated with the interrupt, execute    
dt nt!_kinterrupt with the address following KINTERRUPT:

lkd> dt nt!_KINTERRUPT fffffa80045bad80 
   +0x000 Type             : 22 
   +0x002 Size             : 160 
   +0x008 InterruptListEntry : _LIST_ENTRY [ 0x00000000'00000000 - 0x0 ] 
   +0x018 ServiceRoutine   : 0xfffff880'0356ca04     unsigned char 
  i8042prt!I8042KeyboardInterruptService+0 
   +0x020 MessageServiceRoutine : (null)  
   +0x028 MessageIndex     : 0 
   +0x030 ServiceContext   : 0xfffffa80'02c839f0  
   +0x038 SpinLock         : 0 
   +0x040 TickCount        : 0 
   +0x048 ActualLock       : 0xfffffa80'02c83b50  -> 0 
   +0x050 DispatchAddress  : 0xfffff800'01a7db90     void  nt!KiInterruptDispatch+0 
   +0x058 Vector           : 0x81 
   +0x05c Irql             : 0x8 '' 
   +0x05d SynchronizeIrql  : 0x9 '' 
   +0x05e FloatingSave     : 0 '' 
   +0x05f Connected        : 0x1 '' 
   +0x060 Number           : 0 
   +0x064 ShareVector      : 0 '' 
   +0x065 Pad              : [3]  "" 
   +0x068 Mode             : 1 ( Latched ) 
   +0x06c Polarity         : 0 ( InterruptPolarityUnknown ) 
   +0x070 ServiceCount     : 0 
   +0x074 DispatchCount    : 0 
   +0x078 Rsvd1            : 0 
   +0x080 TrapFrame        : 0xfffff800'0185ab00 _KTRAP_FRAME 
   +0x088 Reserved         : (null)  
   +0x090 DispatchCode     : [4] 0x8d485550

In this example, the IRQL that Windows assigned to the interrupt is 8 . Although there is 
no direct mapping between an interrupt vector and an IRQ, Windows does keep track of this 
translation when managing device resources through what are called arbiters . For each resource 
type, an arbiter maintains the relationship between virtual resource usage (such as an interrupt 
vector) and physical resources (such as an interrupt line) . As such, you can query either the root 
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IRQ arbiter (on systems without ACPI) or the ACPI IRQ arbiter and obtain this mapping . Use the 
!apciirqarb command to obtain information on the ACPI IRQ arbiter:

lkd> !acpiirqarb 
 
Processor 0 (0, 0): 
Device Object: 0000000000000000 
Current IDT Allocation: 
... 
   0000000000000081 - 0000000000000081   D   fffffa80029b4c20  (i8042prt)  
A:0000000000000000 IRQ:0 
...

If you don’t have an ACPI system, you can use !arbiter 4 (4 tells the debugger to display only 
IRQ arbiters):

lkd> !arbiter 4 
 
DEVNODE fffffa80027c6d90 (HTREE\ROOT\0) 
  Interrupt Arbiter "RootIRQ" at fffff80001c82500 
    Allocated ranges: 
      0000000000000081 - 0000000000000081   Owner    fffffa80029b4c20 (i8042prt)

In both cases, you will be given the owner of the vector, in the type of a device object . You 
can then use the !devobj command to get information on the i8042prt device in this example 
(which corresponds to the PS/2 driver):

lkd> !devobj fffffa80029b4c20 
Device object (fffffa80029b4c20) is for: 
 00000061 \Driver\ACPI DriverObject fffffa8002888e70 
Current Irp 00000000 RefCount 1 Type 00000032 Flags 00003040 
Dacl fffff9a100096a41 DevExt fffffa800299f740 DevObjExt fffffa80029b4d70 DevNode 
fffffa80029b54b0  
The device object is associated to a device node, which stores all the device's physical 
resources.  
You can now dump these resources with the !devnode command, and using the 6 flag to ask  
for resource information: 
lkd> !devnode fffffa80029b54b0 6 
DevNode 0xfffffa80029b54b0 for PDO 0xfffffa80029b4c20 
  Parent 0xfffffa800299b390   Sibling 0xfffffa80029b5230   Child 0000000000 
  InstancePath is "ACPI\PNP0303\4&17aa870d&0" 
  ServiceName is "i8042prt" 
... 
  CmResourceList at 0xfffff8a00185bf40  Version 1.1  Interface 0xf  Bus #0 
    Entry 0 - Port (0x1) Device Exclusive (0x1) 
      Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE  
      Range starts at 0x60 for 0x1 bytes 
    Entry 1 - Port (0x1) Device Exclusive (0x1) 
      Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE  
      Range starts at 0x64 for 0x1 bytes 
    Entry 2 - Port (0x1) Device Exclusive (0x1) 
      Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE  
      Range starts at 0x62 for 0x1 bytes 
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    Entry 3 - Port (0x1) Device Exclusive (0x1) 
      Flags (0x11) - PORT_MEMORY PORT_IO 16_BIT_DECODE  
      Range starts at 0x66 for 0x1 bytes 
    Entry 4 - Interrupt (0x2) Device Exclusive (0x1) 
      Flags (0x01) - LATCHED  
      Level 0x1, Vector 0x1, Group 0, Affinity 0xffffffff

The device node tells you that this device has a resource list with 4 entries, one of which is an 
interrupt entry corresponding to IRQ 1 . (The level and vector numbers represent the IRQ vector, 
not the interrupt vector .) IRQ 1 is the traditional PC/AT IRQ number associated with the PS/2 
keyboard device, so this is the expected value . (A USB keyboard would have a different inter-
rupt .)

On ACPI systems, you can obtain this information in a slightly easier way by reading the 
extended output of the !acpiirqarb command introduced earlier . As part of its output, it displays 
the IRQ to IDT mapping table:

Interrupt Controller (Inputs: 0x0-0x17  Dev: 0000000000000000): 
     (00)Cur:IDT-a1 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (01)Cur:IDT-81 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (02)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (03)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (04)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (05)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (06)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (07)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (08)Cur:IDT-71 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (09)Cur:IDT-b1 Ref-1 lev hi   Pos:IDT-00 Ref-0 edg hi  
    (0a)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (0b)Cur:IDT-00 Ref-0 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (0c)Cur:IDT-91 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (0d)Cur:IDT-61 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (0e)Cur:IDT-82 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (0f)Cur:IDT-72 Ref-1 edg hi   Pos:IDT-00 Ref-0 edg hi  
    (10)Cur:IDT-51 Ref-3 lev low  Pos:IDT-00 Ref-0 edg hi  
    (11)Cur:IDT-b2 Ref-1 lev low  Pos:IDT-00 Ref-0 edg hi  
    (12)Cur:IDT-a2 Ref-5 lev low  Pos:IDT-00 Ref-0 edg hi  
    (13)Cur:IDT-92 Ref-1 lev low  Pos:IDT-00 Ref-0 edg hi  
    (14)Cur:IDT-62 Ref-2 lev low  Pos:IDT-00 Ref-0 edg hi  
    (15)Cur:IDT-a3 Ref-2 lev low  Pos:IDT-00 Ref-0 edg hi  
     (16)Cur:IDT-b3 Ref-1 lev low  Pos:IDT-00 Ref-0 edg hi  
     (17)Cur:IDT-52 Ref-1 lev low  Pos:IDT-00 Ref-0 edg hi 

As expected, IRQ 1 is associated with IDT entry 0x81 . For more information on device 
 objects, resources, and other related concepts, see Chapter 8, “I/O System,” in Part 2 .

The ISR’s address for the interrupt object is stored in the ServiceRoutine field (which is what 
!idt displays in its output), and the interrupt code that actually executes when an interrupt 
 occurs is stored in the DispatchCode array at the end of the interrupt object . The interrupt code 
stored there is programmed to build the trap frame on the stack and then call the function 
stored in the DispatchAddress field (KiInterruptDispatch in the example), passing it a pointer to 
the interrupt object .
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Windows and Real-Time Processing
Deadline requirements, either hard or soft, characterize real-time environments . Hard real-time 
systems (for example, a nuclear power plant control system) have deadlines the system must 
meet to avoid catastrophic failures, such as loss of equipment or life . Soft real-time systems (for 
example, a car’s fuel-economy optimization system) have deadlines the system can miss, but 
timeliness is still a desirable trait . In real-time systems, computers have sensor input devices and 
control output devices . The designer of a real-time computer system must know worst-case 
delays between the time an input device generates an interrupt and the time the device’s driver 
can control the output device to respond . This worst-case analysis must take into account the 
delays the operating system introduces as well as the delays the application and device drivers 
impose .

Because Windows doesn’t enable controlled prioritization of device IRQs and user-level 
 applications execute only when a processor’s IRQL is at passive level, Windows isn’t typi-
cally suitable as a real-time operating system . The system’s devices and device drivers—not 
 Windows—ultimately determine the worst-case delay . This factor becomes a problem when the 
real-time system’s designer uses off-the-shelf hardware. The designer can have difficulty deter-
mining how long every off-the-shelf device’s ISR or DPC might take in the worst case . Even after 
testing, the designer can’t guarantee that a special case in a live system won’t cause the system 
to miss an important deadline . Furthermore, the sum of all the delays a system’s DPCs and ISRs 
can introduce usually far exceeds the tolerance of a time-sensitive system .

Although many types of embedded systems (for example, printers and automotive 
 computers) have real-time requirements, Windows Embedded Standard 7 doesn’t have real-
time characteristics . It is simply a version of Windows 7 that makes it possible to produce small-
footprint versions of Windows 7 suitable for running on devices with limited resources . For 
example, a device that has no networking capability would omit all the Windows 7 components 
related to networking, including network management tools and adapter and protocol stack 
device drivers .

Still, there are third-party vendors that supply real-time kernels for Windows . The approach 
these vendors take is to embed their real-time kernel in a custom HAL and to have Windows 
run as a task in the real-time operating system . The task running Windows serves as the user 
interface to the system and has a lower priority than the tasks responsible for managing the 
device . 

Associating an ISR with a particular level of interrupt is called connecting an interrupt object, and 
dissociating an ISR from an IDT entry is called disconnecting an interrupt object . These operations, 
 accomplished by calling the kernel functions IoConnectInterruptEx and IoDisconnectInterruptEx, allow 
a device driver to “turn on” an ISR when the driver is loaded into the system and to “turn off” the ISR 
if the driver is unloaded .
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Using the interrupt object to register an ISR prevents device drivers from fiddling directly with 
 interrupt hardware (which differs among processor architectures) and from needing to know any 
details about the IDT . This kernel feature aids in creating portable device drivers because it eliminates 
the need to code in assembly language or to reflect processor differences in device drivers.

Interrupt objects provide other benefits as well. By using the interrupt object, the kernel can 
synchronize the execution of the ISR with other parts of a device driver that might share data with the 
ISR . (See Chapter 8 in Part 2 for more information about how device drivers respond to interrupts .)

Furthermore, interrupt objects allow the kernel to easily call more than one ISR for any interrupt 
level . If multiple device drivers create interrupt objects and connect them to the same IDT entry, the 
interrupt dispatcher calls each routine when an interrupt occurs at the specified interrupt line. This 
capability allows the kernel to easily support daisy-chain configurations, in which several devices share 
the same interrupt line . The chain breaks when one of the ISRs claims ownership for the interrupt by 
returning a status to the interrupt dispatcher .

If multiple devices sharing the same interrupt require service at the same time, devices not 
 acknowledged by their ISRs will interrupt the system again once the interrupt dispatcher has  lowered 
the IRQL . Chaining is permitted only if all the device drivers wanting to use the same interrupt 
 indicate to the kernel that they can share the interrupt; if they can’t, the Plug and Play manager 
 reorganizes their interrupt assignments to ensure that it honors the sharing requirements of each . If 
the interrupt vector is shared, the interrupt object invokes KiChainedDispatch, which will invoke the 
ISRs of each registered interrupt object in turn until one of them claims the interrupt or all have been 
executed . In the earlier sample !idt output (in the “EXPERIMENT: Viewing the IDT” section), vector 
0xa2 is connected to several chained interrupt objects . On the system it was run on, it happens to 
correspond to an integrated 7-in-1 media card reader, which is a combination of Secure Digital (SD), 
Compact Flash (CF), MultiMedia Card (MMC) and other types of readers, each having their individual 
interrupt . Because it’s packaged as one device by the same vendor, it makes sense that its interrupts 
share the same vector . 

Line-Based vs. Message Signaled-Based Interrupts
Shared interrupts are often the cause of high interrupt latency and can also cause stability 
 issues . They are typically undesirable and a side effect of the limited number of physical inter-
rupt lines on a computer . For example, in the previous example of the 7-in-1 media card reader, 
a much better solution is for each device to have its own interrupt and for one driver to manage 
the different interrupts knowing which device they came from . However, consuming four IRQ 
lines for a single device quickly leads to IRQ line exhaustion . Additionally, PCI devices are each 
connected to only one IRQ line anyway, so the media card reader cannot use more than one 
IRQ in the first place. 

Other problems with generating interrupts through an IRQ line is that incorrect 
 management of the IRQ signal can lead to interrupt storms or other kinds of deadlocks 
on the machine,  because the signal is driven “high” or “low” until the ISR acknowledges it . 
( Furthermore, the  interrupt controller must typically receive an EOI signal as well .) If either 
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of these does not  happen due to a bug, the system can end up in an interrupt state forever, 
further interrupts could be masked away, or both . Finally, line-based interrupts provide poor 
scalability in multiprocessor environments. In many cases, the hardware has the final decision 
as to which processor will be interrupted out of the possible set that the Plug and Play manager 
selected for this interrupt, and there is little device drivers can do .

A solution to all these problems is a new interrupt mechanism first introduced in the PCI 
2 .2 standard called message-signaled interrupts (MSI) . Although it remains an optional compo-
nent of the standard that is seldom found in client machines, an increasing number of servers 
and workstations implement MSI support, which is fully supported by the all recent versions 
of Windows . In the MSI model, a device delivers a message to its driver by writing to a spe-
cific memory address. This action causes an interrupt, and Windows then calls the ISR with 
the message content (value) and the address where the message was delivered . A device can 
also deliver multiple messages (up to 32) to the memory address, delivering different payloads 
based on the event .

Because communication is based across a memory value, and because the content is de-
livered with the interrupt, the need for IRQ lines is removed (making the total system limit of 
MSIs equal to the number of interrupt vectors, not IRQ lines), as is the need for a driver ISR to 
query the device for data related to the interrupt, decreasing latency . Due to the large number 
of device interrupts available through this model, this effectively nullifies any benefit of sharing 
interrupts, decreasing latency further by directly delivering the interrupt data to the concerned 
ISR .

Finally, MSI-X, an extension to the MSI model, which is introduced in PCI 3 .0, adds support 
for 32-bit messages (instead of 16-bit), a maximum of 2048 different messages (instead of just 
32), and more importantly, the ability to use a different address (which can be dynamically de-
termined) for each of the MSI payloads . Using a different address allows the MSI payload to be 
written to a different physical address range that belongs to a different processor, or a different 
set of target processors, effectively enabling nonuniform memory access (NUMA)-aware inter-
rupt delivery by sending the interrupt to the processor that initiated the related device request . 
This improves latency and scalability by monitoring both load and closest NUMA node during 
interrupt completion .

Interrupt Affinity and Priority
On systems that both support ACPI and contain an APIC, Windows enables driver developers 
and administrators to somewhat control the processor affinity (selecting the processor or group 
of processors that receives the interrupt) and affinity policy (selecting how processors will be 
chosen and which processors in a group will be chosen) . Furthermore, it enables a  primitive 
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mechanism of interrupt prioritization based on IRQL selection. Affinity policy is defined 
 according to Table 3-1, and it’s configurable through a registry value called InterruptPolicyValue 
in the Interrupt Management\Affinity Policy key under the device’s instance key in the  registry. 
 Because of this, it does not require any code to configure—an administrator can add this 
value to a given driver’s key to influence its behavior. Microsoft provides such a tool, called the 
 Interrupt Affinity policy Tool, which can be downloaded from http://www.microsoft.com/whdc 
/system/sysperf/intpolicy.mspx .

TABLE 3-1 IRQ Affinity Policies

Policy Meaning

IrqPolicyMachineDefault The device does not require a particular affinity policy. 
Windows uses the default machine policy, which (for machines 
with less than eight logical processors) is to select any avail-
able processor on the machine .

IrqPolicyAllCloseProcessors On a NUMA machjne, the Plug and Play manager assigns the 
interrupt to all the processors that are close to the device (on 
the same node) . On non-NUMA machines, this is the same as 
IrqPolicyAllProcessorsInMachine .

IrqPolicyOneCloseProcessor On a NUMA machjne, the Plug and Play manager assigns the 
 interrupt to one processor that is close to the device (on the 
same node) . On non-NUMA machines, the chosen processor 
will be any available on the system .

IrqPolicyAllProcessorsInMachine The interrupt is processed by any available processor on the 
 machine .

IrqPolicySpecifiedProcessors The interrupt is processed only by one of the pro-
cessors  specified in the affinity mask under the 
AssignmentSetOverride registry value .

IrqPolicySpreadMessagesAcrossAllProcessors Different message-signaled interrupts are distributed across 
an optimal set of eligible processors, keeping track of NUMA 
topology issues, if possible . This requires MSI-X support on 
the device and platform .

Other than setting this affinity policy, another registry value can also be used to set the 
interrupt’s priority, based on the values in Table 3-2 .

TABLE 3-2 IRQ Priorities

Priority Meaning

IrqPriorityUndefined No particular priority is required by the device . It receives the default priority 
(IrqPriorityNormal) .

IrqPriorityLow The device can tolerate high latency and should receive a lower IRQL than usual .

IrqPriorityNormal The device expects average latency . It receives the default IRQL associated with 
its interrupt vector .

IrqPriorityHigh The device requires as little latency as possible . It receives an elevated IRQL 
 beyond its normal assignment .
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As discussed earlier, it is important to note that Windows is not a real-time operating 
 system, and as such, these IRQ priorities are hints given to the system that control only the 
IRQL  associated with the interrupt and provide no extra priority other than the Windows 
IRQL  priority-scheme mechanism . Because the IRQ priority is also stored in the registry, 
 administrators are free to set these values for drivers should there be a requirement of lower 
latency for a driver not taking advantage of this feature .

Software Interrupts
Although hardware generates most interrupts, the Windows kernel also generates software interrupts 
for a variety of tasks, including these:

 ■ Initiating thread dispatching

 ■ Non-time-critical interrupt processing

 ■ Handling timer expiration

 ■ Asynchronously executing a procedure in the context of a particular thread

 ■ Supporting asynchronous I/O operations

These tasks are described in the following subsections .

Dispatch or Deferred Procedure Call (DPC) Interrupts When a thread can no longer continue 
executing, perhaps because it has terminated or because it voluntarily enters a wait state, the kernel 
calls the dispatcher directly to effect an immediate context switch . Sometimes, however, the kernel 
detects that rescheduling should occur when it is deep within many layers of code . In this situation, 
the kernel requests dispatching but defers its occurrence until it completes its current activity . Using a 
DPC software interrupt is a convenient way to achieve this delay .

The kernel always raises the processor’s IRQL to DPC/dispatch level or above when it needs to 
synchronize access to shared kernel structures . This disables additional software interrupts and thread 
dispatching . When the kernel detects that dispatching should occur, it requests a DPC/dispatch-level 
interrupt; but because the IRQL is at or above that level, the processor holds the interrupt in check . 
When the kernel completes its current activity, it sees that it’s going to lower the IRQL below  
DPC/dispatch level and checks to see whether any dispatch interrupts are pending . If there are, the 
IRQL drops to DPC/dispatch level and the dispatch interrupts are processed . Activating the thread dis-
patcher by using a software interrupt is a way to defer dispatching until conditions are right . However, 
Windows uses software interrupts to defer other types of processing as well .
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In addition to thread dispatching, the kernel also processes deferred procedure calls (DPCs) at this 
IRQL . A DPC is a function that performs a system task—a task that is less time-critical than the current 
one . The functions are called deferred because they might not execute immediately .

DPCs provide the operating system with the capability to generate an interrupt and execute a 
system function in kernel mode . The kernel uses DPCs to process timer expiration (and release threads 
waiting for the timers) and to reschedule the processor after a thread’s quantum expires . Device 
 drivers use DPCs to process interrupts . To provide timely service for hardware interrupts, Windows—
with the cooperation of device drivers—attempts to keep the IRQL below device IRQL levels . One way 
that this goal is achieved is for device driver ISRs to perform the minimal work necessary to acknowl-
edge their device, save volatile interrupt state, and defer data transfer or other less time-critical 
interrupt processing activity for execution in a DPC at DPC/dispatch IRQL . (See Chapter 8 in Part 2 for 
more information on DPCs and the I/O system .)

A DPC is represented by a DPC object, a kernel control object that is not visible to user-mode 
 programs but is visible to device drivers and other system code . The most important piece of infor-
mation the DPC object contains is the address of the system function that the kernel will call when it 
processes the DPC interrupt . DPC routines that are waiting to execute are stored in kernel-managed 
queues, one per processor, called DPC queues . To request a DPC, system code calls the kernel to 
initialize a DPC object and then places it in a DPC queue .

By default, the kernel places DPC objects at the end of the DPC queue of the processor on which 
the DPC was requested (typically the processor on which the ISR executed) . A device driver can over-
ride this behavior, however, by specifying a DPC priority (low, medium, medium-high, or high, where 
medium is the default) and by targeting the DPC at a particular processor. A DPC aimed at a specific 
CPU is known as a targeted DPC . If the DPC has a high priority, the kernel inserts the DPC object at 
the front of the queue; otherwise, it is placed at the end of the queue for all other priorities .

When the processor’s IRQL is about to drop from an IRQL of DPC/dispatch level or higher to a 
lower IRQL (APC or passive level), the kernel processes DPCs . Windows ensures that the IRQL remains 
at DPC/dispatch level and pulls DPC objects off the current processor’s queue until the queue is 
empty (that is, the kernel “drains” the queue), calling each DPC function in turn . Only when the queue 
is empty will the kernel let the IRQL drop below DPC/dispatch level and let regular thread execution 
continue . DPC processing is depicted in Figure 3-7 .

DPC priorities can affect system behavior another way . The kernel usually initiates DPC queue 
draining with a DPC/dispatch-level interrupt . The kernel generates such an interrupt only if the DPC 
is directed at the current processor (the one on which the ISR executes) and the DPC has a priority 
higher than low . If the DPC has a low priority, the kernel requests the interrupt only if the number 
of outstanding DPC requests for the processor rises above a threshold or if the number of DPCs 
 requested on the processor within a time window is low .
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The dispatcher executes each DPC routine
in the DPC queue, emptying the queue as
it proceeds. If required, the dispatcher also
reschedules the processor.
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FIGURE 3-7 Delivering a DPC

If a DPC is targeted at a CPU different from the one on which the ISR is running and the DPC’s 
priority is either high or medium-high, the kernel immediately signals the target CPU (by sending it 
a dispatch IPI) to drain its DPC queue, but only as long as the target processor is idle . If the priority is 
medium or low, the number of DPCs queued on the target processor must exceed a threshold for the 
kernel to trigger a DPC/dispatch interrupt . The system idle thread also drains the DPC queue for the 
processor it runs on. Although DPC targeting and priority levels are flexible, device drivers rarely need 
to change the default behavior of their DPC objects . Table 3-3 summarizes the situations that initiate 
DPC queue draining . Medium-high and high appear and are, in fact, equal priorities when looking at 
the generation rules . The difference comes from their insertion in the list, with high interrupts being 
at the head and medium-high interrupts at the tail .

TABLE 3-3 DPC Interrupt Generation Rules

DPC Priority DPC Targeted at ISR’s Processor DPC Targeted at Another Processor

Low DPC queue length exceeds maximum DPC 
queue length, or DPC request rate is less 
than minimum DPC request rate

DPC queue length exceeds maximum DPC 
queue length, or system is idle

Medium Always DPC queue length exceeds maximum DPC 
queue length, or system is idle

Medium-High Always Target processor is idle

High Always Target processor is idle



 CHAPTER 3 System Mechanisms 107

Because user-mode threads execute at low IRQL, the chances are good that a DPC will interrupt 
the execution of an ordinary user’s thread . DPC routines execute without regard to what thread 
is running, meaning that when a DPC routine runs, it can’t assume what process address space is 
 currently mapped . DPC routines can call kernel functions, but they can’t call system services, generate 
page faults, or create or wait for dispatcher objects (explained later in this chapter) . They can, how-
ever, access nonpaged system memory addresses, because system address space is always mapped 
regardless of what the current process is .

DPCs are provided primarily for device drivers, but the kernel uses them too . The kernel most 
frequently uses a DPC to handle quantum expiration . At every tick of the system clock, an interrupt 
occurs at clock IRQL . The clock interrupt handler (running at clock IRQL) updates the system time 
and then decrements a counter that tracks how long the current thread has run . When the coun-
ter  reaches 0, the thread’s time quantum has expired and the kernel might need to reschedule the 
processor, a lower-priority task that should be done at DPC/dispatch IRQL . The clock interrupt handler 
queues a DPC to initiate thread dispatching and then finishes its work and lowers the processor’s 
IRQL . Because the DPC interrupt has a lower priority than do device interrupts, any pending device 
interrupts that surface before the clock interrupt completes are handled before the DPC interrupt 
occurs .

Because DPCs execute regardless of whichever thread is currently running on the system (much 
like interrupts), they are a primary cause for perceived system unresponsiveness of client systems 
or workstation workloads because even the highest-priority thread will be interrupted by a pend-
ing DPC . Some DPCs run long enough that users might perceive video or sound lagging, and 
even  abnormal mouse or keyboard latencies, so for the benefit of drivers with long-running DPCs, 
 Windows supports threaded DPCs .

Threaded DPCs, as their name implies, function by executing the DPC routine at passive level on 
a real-time priority (priority 31) thread . This allows the DPC to preempt most user-mode threads 
( because most application threads don’t run at real-time priority ranges), but it allows other 
 interrupts, nonthreaded DPCs, APCs, and higher-priority threads to preempt the routine . 

The threaded DPC mechanism is enabled by default, but you can disable it by adding a DWORD 
value HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Session Manager\kernel 
\ ThreadDpcEnable and setting it to 0. Because threaded DPCs can be disabled, driver  developers 
who make use of threaded DPCs must write their routines following the same rules as for 
 nonthreaded DPC routines and cannot access paged memory, perform dispatcher waits, or make 
 assumptions about the IRQL level at which they are executing . In addition, they must not use the 
KeAcquire/ReleaseSpinLockAtDpcLevel APIs because the functions assume the CPU is at dispatch level . 
Instead, threaded DPCs must use KeAcquire/ReleaseSpinLockForDpc, which performs the appropriate 
action after checking the current IRQL .
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EXPERIMENT: Monitoring Interrupt and DPC Activity
You can use Process Explorer to monitor interrupt and DPC activity by opening the System 
 Information dialog and switching to the CPU tab, where it lists the number of interrupts and 
DPCs executed each time Process Explorer refreshes the display (1 second by default):

You can also trace the execution of specific interrupt service routines and deferred 
 procedure calls with the built-in event tracing support (described later in this chapter):

1. Start capturing events by opening an elevated command prompt, navigating to the 
Microsoft Windows Performance Toolkit directory (typically in c:\Program Files) and 
typing the following command (make sure no other program is capturing events, such 
as Process Explorer or Process Monitor, or this will fail with an error):

xperf –on PROC_THREAD+LOADER+DPC+INTERRUPT

2. Stop capturing events by typing the following:

xperf –d dpcisr.etl
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3. Generate reports for the event capture by typing this:

xperf dpcisr.etl 
tracerpt \kernel.etl –report dpcisr.html –f html

This will generate a web page called dpcisr .html . 

4. Open report .html, and expand the DPC/ISR subsection . Expand the DPC/ISR 
 Breakdown area, and you will see summaries of the time spent in ISRs and DPCs by 
each driver . For example:

Running an ln command in the kernel debugger on the address of each event record shows 
the name of the function that executed the DPC or ISR:

lkd> ln 0x806321C7 
(806321c7)   ndis!ndisInterruptDpc

lkd> ln 0x820AED3F 
(820aed3f)   nt!IopTimerDispatch

lkd> ln 0x82051312 
(82051312)   nt!PpmPerfIdleDpc

The first is a DPC queued by a network card NDIS miniport driver. The second is a DPC for a 
generic I/O timer expiration . The third address is the address of a DPC for an idle performance 
operation . 
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Other than using it to get an HTML report, you can use the Xperf Viewer to show a detailed 
overview of all DPC and ISR events by right-clicking on the DPC and/or ISR CPU Usage graphs in 
the main Xperf window and choosing Summary Table . You will be able to see a per-driver view 
of each DPC and ISR in detail, along with its duration and count, just as shown in the following 
graphic:

Asynchronous Procedure Call Interrupts Asynchronous procedure calls (APCs) provide a way for 
user programs and system code to execute in the context of a particular user thread (and hence a 
particular process address space) . Because APCs are queued to execute in the context of a particular 
thread and run at an IRQL less than DPC/dispatch level, they don’t operate under the same restric-
tions as a DPC . An APC routine can acquire resources (objects), wait for object handles, incur page 
faults, and call system services .

APCs are described by a kernel control object, called an APC object . APCs waiting to execute 
reside in a kernel-managed APC queue . Unlike the DPC queue, which is systemwide, the APC queue 
is thread-specific—each thread has its own APC queue. When asked to queue an APC, the kernel 
inserts it into the queue belonging to the thread that will execute the APC routine . The kernel, in turn, 
requests a software interrupt at APC level, and when the thread eventually begins running, it executes 
the APC .

There are two kinds of APCs: kernel mode and user mode . Kernel-mode APCs don’t require 
 permission from a target thread to run in that thread’s context, while user-mode APCs do . Kernel-
mode APCs interrupt a thread and execute a procedure without the thread’s intervention or consent . 
There are also two types of kernel-mode APCs: normal and special . Special APCs execute at APC level 
and allow the APC routine to modify some of the APC parameters . Normal APCs execute at passive 
level and receive the modified parameters from the special APC routine (or the original parameters if 
they weren’t modified).
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Both normal and special APCs can be disabled by raising the IRQL to APC level or by calling 
 KeEnterGuardedRegion . KeEnterGuardedRegion disables APC delivery by setting the  SpecialApcDisable 
field in the calling thread’s KTHREAD structure (described further in Chapter 5). A thread can  disable 
normal APCs only by calling KeEnterCriticalRegion, which sets the KernelApcDisable field in the 
thread’s KTHREAD structure . Table 3-4 summarizes the APC insertion and delivery behavior for each 
type of APC .

The executive uses kernel-mode APCs to perform operating system work that must be completed 
within the address space (in the context) of a particular thread . It can use special kernel-mode APCs 
to direct a thread to stop executing an interruptible system service, for example, or to record the 
results of an asynchronous I/O operation in a thread’s address space . Environment subsystems use 
special kernel-mode APCs to make a thread suspend or terminate itself or to get or set its user-mode 
 execution context . The Subsystem for UNIX Applications uses kernel-mode APCs to emulate the 
 delivery of UNIX signals to Subsystem for UNIX Application processes .

Another important use of kernel-mode APCs is related to thread suspension and termination . 
 Because these operations can be initiated from arbitrary threads and directed to other arbitrary 
threads, the kernel uses an APC to query the thread context as well as to terminate the thread .  Device 
drivers often block APCs or enter a critical or guarded region to prevent these operations from 
 occurring while they are holding a lock; otherwise, the lock might never be released, and the system 
would hang .

TABLE 3-4 APC Insertion and Delivery

APC Type Insertion Behavior Delivery Behavior

Special (kernel) Inserted at the tail of the 
 kernel-mode APC list

Delivered at APC level as soon as IRQL drops and the 
thread is not in a guarded region . It is given pointers to 
arguments specified when inserting the APC.

Normal (kernel) Inserted right after the last 
 special APC (at the head of all 
other normal APCs)

Delivered at PASSIVE_LEVEL after the associated special 
APC was executed . It is given arguments returned by 
the associated special APC (which can be the original 
arguments used during insertion or new ones) .

Normal (user) Inserted at the tail of the 
 user-mode APC list

Delivered at PASSIVE_LEVEL as soon as IRQL drops, the 
thread is not in a critical (or guarded) region, and the 
thread is in an alerted state . It is given arguments re-
turned by the associated special APC (which can be the 
original arguments used during insertion or new ones) .

Normal (user) 
Thread Exit 
(PsExitSpecialApc) 

Inserted at the head of the 
 user-mode APC list

Delivered at PASSIVE_LEVEL on return to user mode, 
if the thread is doing an alerted user-mode wait . It is 
given arguments returned by the thread-termination 
special APC .

Device drivers also use kernel-mode APCs . For example, if an I/O operation is initiated and a 
thread goes into a wait state, another thread in another process can be scheduled to run . When the 
device finishes transferring data, the I/O system must somehow get back into the context of the 
thread that initiated the I/O so that it can copy the results of the I/O operation to the buffer in the ad-
dress space of the process containing that thread . The I/O system uses a special kernel-mode APC to 
perform this action, unless the application used the SetFileIoOverlappedRange API or I/O  completion 
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ports—in which case, the buffer will either be global in memory or copied only after the thread pulls 
a completion item from the port . (The use of APCs in the I/O system is discussed in more detail in 
Chapter 8 in Part 2 .)

Several Windows APIs—such as ReadFileEx, WriteFileEx, and QueueUserAPC—use user-mode APCs . 
For example, the ReadFileEx and WriteFileEx functions allow the caller to specify a completion routine 
to be called when the I/O operation finishes. The I/O completion is implemented by queuing an APC 
to the thread that issued the I/O . However, the callback to the completion routine doesn’t necessar-
ily take place when the APC is queued because user-mode APCs are delivered to a thread only when 
it’s in an alertable wait state . A thread can enter a wait state either by waiting for an object handle 
and specifying that its wait is alertable (with the Windows WaitForMultipleObjectsEx function) or by 
testing directly whether it has a pending APC (using SleepEx) . In both cases, if a user-mode APC is 
pending, the kernel interrupts (alerts) the thread, transfers control to the APC routine, and resumes 
the thread’s execution when the APC routine completes . Unlike kernel-mode APCs, which can execute 
at APC level, user-mode APCs execute at passive level .

APC delivery can reorder the wait queues—the lists of which threads are waiting for what, and in 
what order they are waiting . (Wait resolution is described in the section “Low-IRQL Synchronization,” 
later in this chapter .) If the thread is in a wait state when an APC is delivered, after the APC routine 
completes, the wait is reissued or re-executed . If the wait still isn’t resolved, the thread returns to the 
wait state, but now it will be at the end of the list of objects it’s waiting for . For example, because 
APCs are used to suspend a thread from execution, if the thread is waiting for any objects, its wait is 
removed until the thread is resumed, after which that thread will be at the end of the list of threads 
waiting to access the objects it was waiting for . A thread performing an alertable kernel-mode wait 
will also be woken up during thread termination, allowing such a thread to check whether it woke up 
as a result of termination or for a different reason .

Timer Processing
The system’s clock interval timer is probably the most important device on a Windows machine, 
as evidenced by its high IRQL value (CLOCK_LEVEL) and due to the critical nature of the work it is 
responsible for . Without this interrupt, Windows would lose track of time, causing erroneous results in 
calculations of uptime and clock time—and worse, causing timers not to expire anymore and threads 
never to lose their quantum anymore . Windows would also not be a preemptive operating system, 
and unless the current running thread yielded the CPU, critical background tasks and scheduling 
could never occur on a given processor .

Windows programs the system clock to fire at the most appropriate interval for the machine, and 
subsequently allows drivers, applications, and administrators to modify the clock interval for their 
needs . Typically, the system clock is maintained either by the PIT (Programmable Interrupt Timer) 
chip that is present on all computers since the PC/AT, or the RTC (Real Time Clock) . The PIT works on 
a crystal that is tuned at one-third the NTSC color carrier frequency (because it was originally used 
for TV-Out on the first CGA video cards), and the HAL uses various achievable multiples to reach 
millisecond-unit intervals, starting at 1 ms all the way up to 15 ms . The RTC, on the other hand, runs 
at 32.768 KHz, which, by being a power of two, is easily configured to run at various intervals that 
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are also  powers of two. On today’s machines, the APIC Multiprocessor HAL configures the RTC to fire 
every 15 .6 milliseconds, which corresponds to about 64 times a second .

Some types of Windows applications require very fast response times, such as multimedia 
 applications . In fact, some multimedia tasks require rates as low as 1 ms . For this reason, Windows 
implements APIs and mechanisms that enable lowering the interval of the system’s clock interrupt, 
which results in more clock interrupts (at least on processor 0) . Note that this increases the resolution 
of all timers in the system, potentially causing other timers to expire more frequently . 

Windows tries its best to restore the clock timer back to its original value whenever it can . Each 
time a process requests a clock interval change, Windows increases an internal reference count and 
associates it with the process . Similarly, drivers (which can also change the clock rate) get added to the 
global reference count . When all drivers have restored the clock and all processes that modified the 
clock either have exited or restored it, Windows restores the clock to its default value (or, barring that, 
to the next highest value that’s been required by a process or driver) . 

EXPERIMENT: Identifying High-Frequency Timers
Due to the problems that high-frequency timers can cause, Windows uses Event Tracing for 
Windows (ETW) to trace all processes and drivers that request a change in the system’s clock 
interval, displaying the time of the occurrence and the requested interval . The current interval 
is also shown . This data is of great use to both developers and system administrators in identi-
fying the causes of poor battery performance on otherwise healthy systems, and to decrease 
overall power consumption on large systems as well . To obtain it, simply run powercfg /energy 
and you should obtain an HTML file called energy-report.html similar to the one shown here:
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Scroll down to the section on Platform Timer Resolution, and you will be shown all the 
 applications that have modified the timer resolution and are still active, along with the call 
stacks that caused this call . Timer resolutions are shown in hundreds of nanoseconds, so 
a  period of 20,000 corresponds to 2 ms . In the sample shown, two applications—namely, 
 Microsoft PowerPoint and the UltraVNC remote desktop server—each requested a higher 
resolution . 

You can also use the debugger to obtain this information . For each process, the EPROCESS 
structure contains a number of fields, shown next, that help identify changes in timer resolution:

   +0x4a8 TimerResolutionLink : _LIST_ENTRY [ 0xfffffa80'05218fd8 - 0xfffffa80'059cd508 ] 
   +0x4b8 RequestedTimerResolution : 0 
   +0x4bc ActiveThreadsHighWatermark : 0x1d 
   +0x4c0 SmallestTimerResolution : 0x2710 
   +0x4c8 TimerResolutionStackRecord : 0xfffff8a0'0476ecd0 _PO_DIAG_STACK_RECORD

Note that the debugger shows you an additional piece of information: the smallest timer 
 resolution that was ever requested by a given process . In this example, the process shown cor-
responds to PowerPoint 2010, which typically requests a lower timer resolution during slide-
shows, but not during slide editing mode. The EPROCESS fields of PowerPoint, shown in the 
preceding code, prove this, and the stack could be parsed by dumping the PO_DIAG_STACK_
RECORD structure .

Finally, the TimerResolutionLink field connects all processes that have made changes to timer 
resolution, through the ExpTimerResolutionListHead doubly linked list . Parsing this list with 
the !list debugger command can reveal all processes on the system that have, or had, made 
changes to the timer resolution, when the powercfg command is unavailable or information on 
past processes is required:

lkd> !list "-e -x \"dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, 
TimerResolutionLink))  
ImageFileName SmallestTimerResolution RequestedTimerResolution\" 
nt!ExpTimerResolutionListHead" 
 
dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink)) 
ImageFileName  
SmallestTimerResolution RequestedTimerResolution  
   +0x2e0 ImageFileName            : [15]  "audiodg.exe" 
   +0x4b8 RequestedTimerResolution : 0 
   +0x4c0 SmallestTimerResolution  : 0x2710 
 
dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink)) 
ImageFileName  
SmallestTimerResolution RequestedTimerResolution  
   +0x2e0 ImageFileName            : [15]  "chrome.exe" 
   +0x4b8 RequestedTimerResolution : 0 
   +0x4c0 SmallestTimerResolution  : 0x2710 
 
dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink)) 
ImageFileName  
SmallestTimerResolution RequestedTimerResolution  
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   +0x2e0 ImageFileName            : [15]  "calc.exe" 
   +0x4b8 RequestedTimerResolution : 0 
   +0x4c0 SmallestTimerResolution  : 0x2710 
 
dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink)) 
ImageFileName  
SmallestTimerResolution RequestedTimerResolution  
   +0x2e0 ImageFileName            : [15]  "devenv.exe" 
   +0x4b8 RequestedTimerResolution : 0 
   +0x4c0 SmallestTimerResolution  : 0x2710 
 
dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink)) 
ImageFileName  
SmallestTimerResolution RequestedTimerResolution  
   +0x2e0 ImageFileName            : [15]  "POWERPNT.EXE" 
   +0x4b8 RequestedTimerResolution : 0 
   +0x4c0 SmallestTimerResolution  : 0x2710 
 
dt nt!_EPROCESS @$extret-@@(#FIELD_OFFSET(nt!_EPROCESS, TimerResolutionLink)) 
ImageFileName  
SmallestTimerResolution RequestedTimerResolution  
   +0x2e0 ImageFileName            : [15]  "winvnc.exe" 
   +0x4b8 RequestedTimerResolution : 0x2710 
   +0x4c0 SmallestTimerResolution  : 0x2710

Timer Expiration
As we said, one of the main tasks of the ISR associated with the interrupt that the RTC or PIT will 
generate is to keep track of system time, which is mainly done by the KeUpdateSystemTime routine . Its 
second job is to keep track of logical run time, such as process/thread execution times and the system 
tick time, which is the underlying number used by APIs such as GetTickCount that developers use to 
time operations in their applications . This part of the work is performed by KeUpdateRunTime . Before 
doing any of that work, however, KeUpdateRunTime checks whether any timers have expired . 

Windows timers can be either absolute timers, which implies a distinct expiration time in the 
future, or relative timers, which contain a negative expiration value used as a positive offset from the 
current time during timer insertion . Internally, all timers are converted to an absolute expiration time, 
although the system keeps track of whether or not this is the “true” absolute time or a converted 
relative time . This difference is important in certain scenarios, such as Daylight Savings Time (or even 
manual clock changes). An absolute timer would still fire at ”8PM” if the user moved the clock from 
1PM to 7PM, but a relative timer—say, one set to expire “in two hours”—would not feel the effect of 
the clock change because two hours haven’t really elapsed . During system time-change events such 
as these, the kernel reprograms the absolute time associated with relative timers to match the new 
settings .

Because the clock fires at known interval multiples, the bottom bits of the current system time 
will be at one of 64 known positions (on an APIC HAL) . Windows uses that fact to organize all driver 
and application timers into linked lists based on an array where each entry corresponds to a possible 
multiple of the system time . This table, called the timer table, is located in the PRCB, which enables 
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each processor to perform its own independent timer expiration without needing to acquire a global 
lock, as shown in Figure 3-8 . Later, you will see what determines which logical processor’s timer table 
a timer is inserted on . Because each processor has its own timer table, each processor also does its 
own timer expiration work. As each processor gets initialized, the table is filled with absolute timers 
with an infinite expiration time, to avoid any incoherent state. Each multiple of the system time that a 
timer can be associated with is called the hand, and it’s stored in the timer object’s dispatcher header . 
Therefore, to determine if a clock has expired, it is only necessary to check if there are any timers on 
the linked list associated with the current hand . 

 

Driver

Timer 1 Timer 2

Timer Hand

CPU 0
Timer Table

255

0

31 0

Process

Timer 3 Timer 4

Timer Hand

31

CPU 1
Timer Table

255

0

0

FIGURE 3-8 Example of per-processor timer lists

Although updating counters and checking a linked list are fast operations, going through every 
timer and expiring it is a potentially costly operation—keep in mind that all this work is currently 
 being performed at CLOCK_LEVEL, an exceptionally elevated IRQL . Similarly to how a driver ISR 
queues a DPC to defer work, the clock ISR requests a DPC software interrupt, setting a flag in the 
PRCB so that the DPC draining mechanism knows timers need expiration . Likewise, when updating 
process/thread runtime, if the clock ISR determines that a thread has expired its quantum, it also 
queues a DPC software interrupt and sets a different PRCB flag. These flags are per-PRCB because 
each processor normally does its own processing of run-time updates, because each processor is 
 running a different thread and has different tasks associated with it . Table 3-5 displays the various 
fields used in timer expiration and processing.

Once the IRQL eventually drops down back to DISPATCH_LEVEL, as part of DPC processing, these 
two flags will be picked up.
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TABLE 3-5 Timer Processing KPRCB Fields

KPRCB Field Type Description

ReadySummary Bitmask (32 bits) Bitmask of priority levels that have one or 
more ready threads

DeferredReadyListHead Singly linked list Single list head for the deferred ready 
queue

DispatcherReadyListHead Array of 32 list entries List heads for the 32 ready queues

Chapter 5 covers the actions related to thread scheduling and quantum expiration . Here we will 
take a look at the timer expiration work . Because the timers are linked together by hand, the expira-
tion code (executed by the DPC associated with the PRCB in the TimerExpiryDpc field) parses this list 
from head to tail. (At insertion time, the timers nearest to the clock interval multiple will be first, fol-
lowed by timers closer and closer to the next interval, but still within this hand .) There are two primary 
tasks to expiring a timer:

 ■ The timer is treated as a dispatcher synchronization object (threads are waiting on the timer as 
part of a timeout or directly as part of a wait) . The wait-testing and wait-satisfaction algo-
rithms will be run on the timer . This work is described in a later section on synchronization in 
this chapter . This is how user-mode applications, and some drivers, make use of timers .

 ■ The timer is treated as a control object associated with a DPC callback routine that executes 
when the timer expires . This method is reserved only for drivers and enables very low latency 
response to timer expiration . (The wait/dispatcher method requires all the extra logic of wait 
signaling .) Additionally, because timer expiration itself executes at DISPATCH_LEVEL, where 
DPCs also run, it is perfectly suited as a timer callback .

As each processor wakes up to handle the clock interval timer to perform system-time and 
 run-time processing, it therefore also processes timer expirations after a slightly latency/delay in 
which the IRQL drops from CLOCK_LEVEL to DISPATCH_LEVEL . Figure 3-9 shows this behavior on two 
processors—the solid arrows indicate the clock interrupt firing, while the dotted arrows indicate any 
timer expiration processing that might occur if the processor had associated timers .
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Processor Selection
A critical determination that must be made when a timer is inserted is to pick the appropriate table 
to use—in other words, the most optimal processor choice . If the timer has no DPC associated with 
it, the kernel scans all processors in the current processor’s group that have not been parked . (For 
more information on Core Parking, see Chapter 5 .) If the current processor is parked, it picks the next 
processor in the group; otherwise, the current processor is used . On the other hand, if the timer does 
have an associated DPC, the insertion code simply looks at the target processor associated with the 
DPC and selects that processor’s timer table .

In the case where the driver developer did not specify a target processor for the DPC, the kernel 
must make the choice . Because driver developers typically expect the DPC to execute on the same 
processor as the one the driver code was running on at insertion time, the kernel typically chooses 
CPU 0, since CPU 0 is the timekeeping processor that will always be active to pick up clock interrupts 
(more on this later) . However, on server systems, the kernel picks a processor, just as it normally does 
when there is no DPC, by using the same checks just described .

This behavior is intended to improve performance and scalablity on server systems that make use 
of Hyper-V, although it can improve performance on any heavily loaded system . As system timers pile 
up—because most drivers do not affinitize their DPCs—CPU 0 becomes more and more congested 
with the execution of timer expiration code, which increases latency and can even cause heavy delays 
or missed DPCs . Additionally, the timer expiration can start competing with the DPC timer typi-
cally associated with driver interrupt processing, such as network packet code, causing systemwide 
slowdowns . This process is exacerbated in a Hyper-V scenario, where CPU 0 must process the timers 
and DPCs associated with potentially numerous virtual machines, each with their own timers and 
 associated devices .

By spreading the timers across processors, as shown in Figure 3-10, each processor’s timer- 
expiration load is fully distributed among unparked logical processors . The timer object stores its 
associated processor number in the dispatcher header on 32-bit systems and in the object itself on 
64-bit systems .

Note This behavior is controlled by the kernel variable KiDistributeTimers, which is 
 initialized based on a registry key whose value is different between a server and client 
installation . By modifying, or creating, the value DistributeTimers under HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\kernel, this behavior can be configured 
 differently from its SKU-based default .
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FIGURE 3-10 Timer queuing behaviors

EXPERIMENT: Listing System Timers
You can use the kernel debugger to dump all the current registered timers on the system, as 
well as information on the DPC associated with each timer (if any) . See the following output for 
a sample:

[lkd> !timer 
Dump system timers 
 
Interrupt time: 61876995 000003df [ 4/ 5/2010 18:58:09.189] 
 
List Timer    Interrupt Low/High     Fire Time              DPC/thread 
PROCESSOR 0 (nt!_KTIMER_TABLE fffff80001bfd080) 
  5 fffffa8003099810   627684ac 000003df [ 4/ 5/2010 18:58:10.756]  
NDIS!ndisMTimerObjectDpc (DPC @ fffffa8003099850)  
13 fffffa8003027278   272dde78 000004cf [ 4/ 6/2010 23:34:30.510]  NDIS!ndisMWakeUpDpcX 
(DPC @ fffffa80030272b8)  
    fffffa8003029278   272e0588 000004cf [ 4/ 6/2010 23:34:30.511]  NDIS!ndisMWakeUpDpcX 
(DPC @ fffffa80030292b8)  
    fffffa8003025278   272e0588 000004cf [ 4/ 6/2010 23:34:30.511]  NDIS!ndisMWakeUpDpcX 
(DPC @ fffffa80030252b8)  
    fffffa8003023278   272e2c99 000004cf [ 4/ 6/2010 23:34:30.512]  NDIS!ndisMWakeUpDpcX 
(DPC @ fffffa80030232b8)  
 16 fffffa8006096c20   6c1613a6 000003df [ 4/ 5/2010 18:58:26.901]  thread 
fffffa8006096b60  
 19 fffff80001c85c40   64f9aeb5 000003df [ 4/ 5/2010 18:58:14.971]  
nt!CmpLazyFlushDpcRoutine (DPC @ fffff80001c85c00)  
31 fffffa8002c43660 P dc527b9b 000003e8 [ 4/ 5/2010 20:06:00.673]  
intelppm!LongCapTraceDpc (DPC @ fffffa8002c436a0)  
 40 fffff80001c86f60   62ca1080 000003df [ 4/ 5/2010 18:58:11.304]  nt!CcScanDpc (DPC @ 
fffff80001c86f20)  
    fffff88004039710   62ca1080 000003df [ 4/ 5/2010 18:58:11.304]  
luafv!ScavengerTimerRoutine (DPC @ fffff88004039750)  
... 
252 fffffa800458ed50   62619a91 000003df [ 4/ 5/2010 18:58:10.619]  netbt!TimerExpiry (DPC 
@ fffffa800458ed10)  
    fffffa8004599b60   fe2fc6ce 000003e0 [ 4/ 5/2010 19:09:41.514]  netbt!TimerExpiry (DPC 
@ fffffa8004599b20)  
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PROCESSOR 1 (nt!_KTIMER_TABLE fffff880009ba380) 
  0 fffffa8004ec9700   626be121 000003df [ 4/ 5/2010 18:58:10.686]  thread 
fffffa80027f3060  
    fffff80001c84dd0 P 70b3f446 000003df [ 4/ 5/2010 18:58:34.647]  
nt!IopIrpStackProfilerTimer (DPC @ fffff80001c84e10)  
11 fffffa8005c26cd0   62859842 000003df [ 4/ 5/2010 18:58:10.855]  afd!AfdTimeoutPoll (DPC 
@ fffffa8005c26c90)  
    fffffa8002ce8160   6e6c45f4 000003df [ 4/ 5/2010 18:58:30.822]  thread 
fffffa80053c2b60  
    fffffa8004fdb3d0   77f0c2cb 000003df [ 4/ 5/2010 18:58:46.789]  thread 
fffffa8004f4bb60  
 13 fffffa8005051c20   60713a93 800003df [         NEVER         ]  thread 
fffffa8005051b60  
 15 fffffa8005ede120   77f9fb8c 000003df [ 4/ 5/2010 18:58:46.850]  thread 
fffffa8005ede060  
 20 fffffa8004f40ef0   629a3748 000003df [ 4/ 5/2010 18:58:10.990]  thread 
fffffa8004f4bb60  
 22 fffffa8005195120   6500ec7a 000003df [ 4/ 5/2010 18:58:15.019]  thread 
fffffa8005195060  
 28 fffffa8004760e20   62ad4e07 000003df [ 4/ 5/2010 18:58:11.115]  btaudio (DPC @ 
fffffa8004760e60)+12d10  
 31 fffffa8002c40660 P dc527b9b 000003e8 [ 4/ 5/2010 20:06:00.673]  
intelppm!LongCapTraceDpc (DPC @ fffffa8002c406a0)  
 ... 
232 fffff80001c85040 P 62317a00 000003df [ 4/ 5/2010 18:58:10.304]  nt!IopTimerDispatch 
(DPC @ fffff80001c85080)  
    fffff80001c26fc0 P 6493d400 000003df [ 4/ 5/2010 18:58:14.304]  
nt!EtwpAdjustBuffersDpcRoutine (DPC @ fffff80001c26f80)  
235 fffffa80047471a8   6238ba5c 000003df [ 4/ 5/2010 18:58:10.351]  stwrt64 (DPC @ 
fffffa80047471e8)+67d4  
242 fffff880023ae480   11228580 000003e1 [ 4/ 5/2010 19:10:13.304]  dfsc!DfscTimerDispatch 
(DPC @ fffff880023ae4c0)  
245 fffff800020156b8 P 72fb2569 000003df [ 4/ 5/2010 18:58:38.469]  
hal!HalpCmcDeferredRoutine (DPC @ fffff800020156f8)  
248 fffffa80029ee460 P 62578455 000003df [ 4/ 5/2010 18:58:10.553]  
ataport!IdePortTickHandler (DPC @ fffffa80029ee4a0)  
    fffffa8002776460 P 62578455 000003df [ 4/ 5/2010 18:58:10.553]  
ataport!IdePortTickHandler (DPC @ fffffa80027764a0)  
    fffff88001678500   fe2f836f 000003e0 [ 4/ 5/2010 19:09:41.512]  cng!seedFileDpcRoutine 
(DPC @ fffff880016784c0)   
    fffff80001c25b80   885e52b3 0064a048 [12/31/2099 23:00:00.008]  
nt!ExpCenturyDpcRoutine (DPC @ fffff80001c25bc0)  
 
 
Total Timers: 254, Maximum List: 8

In this example, there are multiple driver-associated timers, due to expire shortly, associated 
with the Ndis .sys and Afd .sys drivers (both related to networking), as well as audio, Bluetooth, 
and ATA/IDE drivers . There are also background housekeeping timers due to expire, such as 
those related to power management, ETW, registry flushing, and Users Account Control (UAC) 
virtualization . Additionally, there are a dozen or so timers that don’t have any DPC associ-
ated with them—this likely indicates user-mode or kernel-mode timers that are used for wait 
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dispatching . You can use !thread on the thread pointers to verify this . Finally, three  interesting 
timers that are always present on a Windows system are the timer that checks for Daylight 
 Savings Time time-zone changes, the timer that checks for the arrival of the upcoming year, and 
the timer that checks for entry into the next century . One can easily locate them based on their 
typically distant expiration time, unless this experiment is performed on the eve of one of these 
events .

Intelligent Timer Tick Distribution
Figure 3-11, which shows processors handling the clock ISR and expiring timers, reveals that 
 processor 1 wakes up a number of times (the solid arrows) even when there are no associated  expiring 
timers (the dotted arrows) . Although that behavior is required as long as processor 1 is running (to 
update the thread/process run times and scheduling state), what if processor 1 is idle (and has no 
expiring timers) . Does it still need to handle the clock interrupt? Because the only other work required 
that was referenced earlier is to update the overall system time/clock ticks, it’s sufficient to designate 
merely one processor as the time-keeping processor (in this case, processor 0) and allow other pro-
cessors to remain in their sleep state; if they wake, any time-related adjustments can be performed by 
resynchronizing with processor 0 .

Windows does, in fact, make this realization (internally called intelligent timer tick distribution), 
and Figure 3-11 shows the processor states under the scenario where processor 1 is sleeping (unlike 
earlier, when we assumed it was running code) . As you can see, processor 1 wakes up only 5 times to 
handle its expiring timers, creating a much larger gap (sleeping period) . The kernel uses a variable 
KiPendingTimer, which contains an array of affinity mask structures that indicate which logical proces-
sors need to receive a clock interval for the given timer hand (clock-tick interval) . It can then appro-
priately program the interrupt controller, as well as determine to which processors it will send an IPI 
to initiate timer processing .
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FIGURE 3-11 Intelligent timer tick distribution applied to processor 1
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Leaving as large a gap as possible is important due to the way power management works in 
processors: as the processor detects that the work load is going lower and lower, it decreases its 
power consumption (P states), until it finally reaches an idle state. The processor then has the ability 
to selectively turn off parts of itself and enter deeper and deeper idle/sleep states, such as turn-
ing off caches . However, if the processor has to wake again, it will consume energy and take time to 
power up; for this reason, processor designers will risk entering these lower idle/sleep states (C states) 
only if the time spent in a given state outweighs the time and energy it takes to enter and exit the 
state . Obviously, it makes no sense to spend 10 ms to enter a sleep state that will last only 1 ms . By 
 preventing clock interrupts from waking sleeping processors unless needed (due to timers), they can 
enter deeper C-states and stay there longer .

Timer Coalescing
Although minimizing clock interrupts to sleeping processors during periods of no timer expiration 
gives a big boost to longer C-state intervals, with a timer granularity of 15 ms, many timers likely will 
be queued at any given hand and expiring often, even if just on processor 0 . Reducing the amount 
of software timer-expiration work would both help to decrease latency (by requiring less work at 
DISPATCH_LEVEL) as well as allow other processors to stay in their sleep states even longer (because 
we’ve established that the processors wake up only to handle expiring timers, fewer timer expirations 
result in longer sleep times) . In truth, it is not just the amount of expiring timers that really affects 
sleep state (it does affect latency), but the periodicity of these timer expirations—six timers all expir-
ing at the same hand is a better option than six timers expiring at six different hands . Therefore, to 
fully optimize idle-time duration, the kernel needs to employ a coalescing mechanism to combine 
separate timer hands into an individual hand with multiple expirations .

Timer coalescing works on the assumption that most drivers and user-mode applications do 
not particularly care about the exact firing period of their timers (except in the case of multimedia 
 applications, for example) . This “don’t care” region actually grows as the original timer period grows—
an application waking up every 30 seconds probably doesn’t mind waking up every 31 or 29 seconds 
instead, while a driver polling every second could probably poll every second plus or minus 50 ms 
without too many problems . The important guarantee most periodic timers depend on is that their 
firing period remains constant within a certain range—for example, when a timer has been changed 
to fire every second plus 50 ms, it continues to fire within that range forever, not sometimes at every 
two seconds and other times at half a second . Even so, not all timers are ready to be coalesced into 
coarser granularities, so Windows enables this mechanism only for timers that have marked them-
selves as coalescable, either through the KeSetCoalescableTimer kernel API or through its user-mode 
counterpart, SetWaitableTimerEx .

With these APIs, driver and application developers are free to provide the kernel with the 
 maximum tolerance (or tolerably delay) that their timer will endure, which is defined as the maxi-
mum amount of time past the requested period at which the timer will still function correctly . (In 
the  previous example, the 1-second timer had a tolerance of 50 milliseconds .) The recommended 
minimum tolerance is 32 ms, which corresponds to about twice the 15 .6-ms clock tick—any smaller 
value wouldn’t really result in any coalescing, because the expiring timer could not be moved even 
from one clock tick to the next. Regardless of the tolerance that is specified, Windows aligns the timer 
to one of four preferred coalescing intervals: 1 second, 250 ms, 100 ms, or 50 ms .
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When a tolerable delay is set for a periodic timer, Windows uses a process called shifting, which 
causes the timer to drift between periods until it gets aligned to the most optimal multiple of the 
 period interval within the preferred coalescing interval associated with the specified tolerance 
(which is then encoded in the dispatcher header) . For absolute timers, the list of preferred  coalescing 
 intervals is scanned, and a preferred expiration time is generated based on the closest acceptable 
coalescing interval to the maximum tolerance the caller specified. This behavior means that absolute 
timers are always pushed out as far as possible past their real expiration point, which spreads out 
 timers as far as possible and creates longer sleep times on the processors .

Now with timer coalescing, refer back to Figure 3-11 and assume all the timers specified tolerances 
and are thus coalescable . In one scenario, Windows could decide to coalesce the timers as shown in 
Figure 3-12. Notice that now, processor 1 receives a total of only three clock interrupts, significantly 
increasing the periods of idle sleep, thus achieving a lower C-state . Furthermore, there is less work to 
do for some of the clock interrupts on processor 0, possibly removing the latency of requiring a drop 
to DISPATCH_LEVEL at each clock interrupt .
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FIGURE 3-12 Timer coalescing 

Exception Dispatching
In contrast to interrupts, which can occur at any time, exceptions are conditions that result directly 
from the execution of the program that is running . Windows uses a facility known as structured 
 exception handling, which allows applications to gain control when exceptions occur . The application 
can then fix the condition and return to the place the exception occurred, unwind the stack (thus 
terminating execution of the subroutine that raised the exception), or declare back to the system that 
the exception isn’t recognized and the system should continue searching for an exception han-
dler that might process the exception . This section assumes you’re familiar with the basic concepts 
behind Windows structured exception handling—if you’re not, you should read the overview in the 
Windows API reference documentation in the Windows SDK or Chapters 23 through 25 in Jeffrey 
Richter and Christophe Nasarre’s book Windows via C/C++ (Microsoft Press, 2007) before proceed-
ing . Keep in mind that although exception handling is made accessible through language extensions 
(for  example, the __try construct in Microsoft Visual C++), it is a system mechanism and hence isn’t 
language  specific. 
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On the x86 and x64 processors, all exceptions have predefined interrupt numbers that directly 
correspond to the entry in the IDT that points to the trap handler for a particular exception . Table 3-6 
shows x86-defined exceptions and their assigned interrupt numbers. Because the first entries of the 
IDT are used for exceptions, hardware interrupts are assigned entries later in the table, as mentioned 
earlier .

All exceptions, except those simple enough to be resolved by the trap handler, are serviced by 
a kernel module called the exception dispatcher. The exception dispatcher’s job is to find an excep-
tion handler that can dispose of the exception . Examples of architecture-independent exceptions 
that the kernel defines include memory-access violations, integer divide-by-zero, integer overflow, 
floating-point exceptions, and debugger breakpoints . For a complete list of architecture-independent 
 exceptions, consult the Windows SDK reference documentation .

TABLE 3-6 x86 Exceptions and Their Interrupt Numbers

Interrupt Number Exception

0 Divide Error

1 Debug (Single Step)

2 Non-Maskable Interrupt (NMI)

3 Breakpoint

4 Overflow

5 Bounds Check

6 Invalid Opcode

7 NPX Not Available

8 Double Fault

9 NPX Segment Overrun

10 Invalid Task State Segment (TSS)

11 Segment Not Present

12 Stack Fault

13 General Protection

14 Page Fault

15 Intel Reserved

16 Floating Point

17 Alignment Check

18 Machine Check

19 SIMD Floating Point

The kernel traps and handles some of these exceptions transparently to user programs . For 
 example, encountering a breakpoint while executing a program being debugged generates an 
 exception, which the kernel handles by calling the debugger . The kernel handles certain other 
 exceptions by returning an unsuccessful status code to the caller .
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A few exceptions are allowed to filter back, untouched, to user mode. For example, certain types of 
memory-access violations or an arithmetic overflow generate an exception that the operating system 
doesn’t handle . 32-bit applications can establish frame-based exception handlers to deal with these 
exceptions . The term frame-based refers to an exception handler’s association with a particular proce-
dure activation . When a procedure is invoked, a stack frame representing that activation of the pro-
cedure is pushed onto the stack . A stack frame can have one or more exception handlers associated 
with it, each of which protects a particular block of code in the source program . When an exception 
occurs, the kernel searches for an exception handler associated with the current stack frame . If none 
exists, the kernel searches for an exception handler associated with the previous stack frame, and so 
on, until it finds a frame-based exception handler. If no exception handler is found, the kernel calls its 
own default exception handlers .

For 64-bit applications, structured exception handling does not use frame-based handlers . Instead, 
a table of handlers for each function is built into the image during compilation . The kernel looks for 
handlers associated with each function and generally follows the same algorithm we described for 
32-bit code .

Structured exception handling is heavily used within the kernel itself so that it can safely verify 
whether pointers from user mode can be safely accessed for read or write access . Drivers can make 
use of this same technique when dealing with pointers sent during I/O control codes (IOCTLs) .

Another mechanism of exception handling is called vectored exception handling . This method can 
be used only by user-mode applications. You can find more information about it in the Windows SDK 
or the MSDN Library .

When an exception occurs, whether it is explicitly raised by software or implicitly raised by 
 hardware, a chain of events begins in the kernel . The CPU hardware transfers control to the kernel 
trap handler, which creates a trap frame (as it does when an interrupt occurs) . The trap frame allows 
the system to resume where it left off if the exception is resolved . The trap handler also creates an 
exception record that contains the reason for the exception and other pertinent information .

If the exception occurred in kernel mode, the exception dispatcher simply calls a routine to locate 
a frame-based exception handler that will handle the exception . Because unhandled kernel-mode 
exceptions are considered fatal operating system errors, you can assume that the dispatcher always 
finds an exception handler. Some traps, however, do not lead into an exception handler because the 
kernel always assumes such errors to be fatal—these are errors that could have been caused only by 
severe bugs in the internal kernel code or by major inconsistencies in driver code (that could have 
 occurred only through deliberate, low-level system modifications that drivers should not be responsi-
ble for) . Such fatal errors will result in a bug check with the UNEXPECTED_KERNEL_MODE_TRAP code .

If the exception occurred in user mode, the exception dispatcher does something more elaborate . 
As you’ll see in Chapter 5, the Windows subsystem has a debugger port (this is actually a  debugger 
object, which will be discussed later) and an exception port to receive notification of user-mode 
exceptions in Windows processes . (In this case, by “port” we mean an LPC port object, which will 
be discussed later in this chapter .) The kernel uses these ports in its default exception handling, as 
 illustrated in Figure 3-13 .
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Debugger breakpoints are common sources of exceptions. Therefore, the first action the exception 
dispatcher takes is to see whether the process that incurred the exception has an associated debug-
ger process . If it does, the exception dispatcher sends a debugger object message to the debug object 
associated with the process (which internally the system refers to as a “port” for compatibility with 
programs that might rely on behavior in Windows 2000, which used an LPC port instead of a debug 
object) .
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FIGURE 3-13 Dispatching an exception 

If the process has no debugger process attached or if the debugger doesn’t handle the exception, 
the exception dispatcher switches into user mode, copies the trap frame to the user stack formatted 
as a CONTEXT data structure (documented in the Windows SDK), and calls a routine to find a struc-
tured or vectored exception handler . If none is found or if none handles the exception, the exception 
dispatcher switches back into kernel mode and calls the debugger again to allow the user to do more 
debugging . (This is called the second-chance notification .)

If the debugger isn’t running and no user-mode exception handlers are found, the kernel sends 
a message to the exception port associated with the thread’s process . This exception port, if one ex-
ists, was registered by the environment subsystem that controls this thread . The exception port gives 
the environment subsystem, which presumably is listening at the port, the opportunity to translate 
the exception into an environment-specific signal or exception. For example, when Subsystem for 
UNIX Applications gets a message from the kernel that one of its threads generated an exception, 
 Subsystem for UNIX Applications sends a UNIX-style signal to the thread that caused the exception . 
However, if the kernel progresses this far in processing the exception and the subsystem doesn’t 
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handle the exception, the kernel sends a message to a systemwide error port that Csrss (Client/Server 
Run-Time Subsystem) uses for Windows Error Reporting (WER)—which will be discussed shortly—and 
executes a default exception handler that simply terminates the process whose thread caused the 
exception .

Unhandled Exceptions
All Windows threads have an exception handler that processes unhandled exceptions . This exception 
handler is declared in the internal Windows start-of-thread function . The start-of-thread function runs 
when a user creates a process or any additional threads . It calls the environment-supplied thread start 
routine specified in the initial thread context structure, which in turn calls the user-supplied thread 
start routine specified in the CreateThread call .

EXPERIMENT: Viewing the Real User Start Address for Windows Threads
The fact that each Windows thread begins execution in a system-supplied function (and not 
the user-supplied function) explains why the start address for thread 0 is the same for every 
Windows process in the system (and why the start addresses for secondary threads are also the 
same) . To see the user-supplied function address, use Process Explorer or the kernel debugger .

Because most threads in Windows processes start at one of the system-supplied wrapper 
functions, Process Explorer, when displaying the start address of threads in a process, skips the 
initial call frame that represents the wrapper function and instead shows the second frame on 
the stack . For example, notice the thread start address of a process running Notepad .exe:
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Process Explorer does display the complete call hierarchy when it displays the call stack . 
Notice the following results when the Stack button is clicked:

Line 18 in the preceding screen shot is the first frame on the stack—the start of the internal 
thread wrapper . The second frame (line 17) is the environment subsystem’s thread wrapper—in 
this case, kernel32, because you are dealing with a Windows subsystem application . The third 
frame (line 16) is the main entry point into Notepad .exe .

The generic code for the internal thread start functions is shown here:

VOID RtlUserThreadStart(VOID) 
{ 
    LPVOID lpStartAddr = (R/E)AX; // Located in the initial thread context structure 
    LPVOID lpvThreadParam = (R/E)BX; // Located in the initial thread context structure 
    LPVOID lpWin32StartAddr;

    lpWin32StartAddr = Kernel32ThreadInitThunkFunction ? Kernel32ThreadInitThunkFunction : 
lpStartAddr; 
    __try 
    {  
        DWORD dwThreadExitCode = lpWin32StartAddr(lpvThreadParam);  
        RtlExitUserThread(dwThreadExitCode);  
    } 
    __except(RtlpGetExceptionFilter(GetExceptionInformation())) 
    {   
        NtTerminateProcess(NtCurrentProcess(), GetExceptionCode());  
    }  
} 



 CHAPTER 3 System Mechanisms 129

VOID Win32StartOfProcess(  
    LPTHREAD_START_ROUTINE lpStartAddr,  
    LPVOID lpvThreadParam) 
{   
    lpStartAddr(lpvThreadParam);  
}

Notice that the Windows unhandled exception filter is called if the thread has an exception that it 
doesn’t handle. The purpose of this function is to provide the system-defined behavior for what to do 
when an exception is not handled, which is to launch the WerFault .exe process . However, in a default 
configuration the Windows Error Reporting service, described next, will handle the exception and this 
unhandled exception filter never executes. 

WerFault.exe checks the contents of the HKLM\SOFTWARE\Microsoft\Windows NT 
\ CurrentVersion\AeDebug registry key and makes sure that the process isn’t on the exclusion list. 
There are two important values in the key: Auto and Debugger . Auto tells the unhandled exception 
filter whether to automatically run the debugger or ask the user what to do. Installing development 
tools, such as Microsoft Visual Studio, changes this value to 0 if it is already set . (If the value was not 
set, 0 is the default option .) The Debugger value is a string that points to the path of the debug-
ger executable to run in the case of an unhandled exception, and WerFault passes the process ID of 
the crashing process and an event name to signal when the debugger has started as command-line 
 arguments when it starts the debugger .

Windows Error Reporting
Windows Error Reporting (WER) is a sophisticated mechanism that automates the submission of both 
user-mode process crashes as well as kernel-mode system crashes . (For a description of how this 
 applies to system crashes, see Chapter 14 in Part 2 .)

Windows Error Reporting can be configured by going to Control Panel, choosing Action Center, 
Change Action Center settings, and then Problem Reporting Settings .

When an unhandled exception is caught by the unhandled exception filter (described in the 
previous section), it builds context information (such as the current value of the registers and stack) 
and opens an ALPC port connection to the WER service . This service begins to analyze the crashed 
program’s state and performs the appropriate actions to notify the user . As described previously, in 
most cases this means launching the WerFault .exe program, which executes with the current user’s 
credentials and, unless the system is configured not to, displays a message box informing the user 
of the crash . On systems where a debugger is installed, an additional option to debug the process is 
shown, as you can see in Figure 3-14 . When you click the Debug button, the debugger (registered in 
the Debugger string value described earlier in the AeDebug key) will be launched so that it can attach 
to the crashing process . 
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FIGURE 3-14 Windows Error Reporting dialog box

On default configured systems, an error report (a minidump and an XML file with various details, 
such as the DLL version numbers loaded in the process) is sent to Microsoft’s online crash analysis 
server. Eventually, as the service is notified of a solution for a problem, it will display a tooltip to the 
user informing her of steps that should be taken to solve the problem . An entry will also be displayed 
in the Action Center . Furthermore, the Reliability Monitor will also show all instances of application 
and system crashes . 

Note WER will actively (visually) inform the user of a crashed application only if the 
 application has at least one visible/interactive window; otherwise, the crash will be logged, 
but the user will have to manually visit the Action Center to view it . This behavior attempts 
to avoid user confusion by not displaying a WER dialog box about an invisible crashed 
 process the user might not be aware of, such as a background service .

In environments where systems are not connected to the Internet or where the administrator 
wants to control which error reports are submitted to Microsoft, the destination for the error report 
can be configured to be an internal file server. Microsoft System Center Desktop Error Monitoring un-
derstands the directory structure created by Windows Error Reporting and provides the administrator 
with the option to take selective error reports and submit them to Microsoft .

If all the operations we’ve described had to occur within the crashing thread’s context—that is, as 
part of the unhandled exception filter that was initially set up—these complex steps would sometimes 
become impossible for a badly damaged thread to perform, and the unhandled exception filter itself 
would crash . This “silent process death” would be impossible to log, making it hard to debug and also 
resulting in invisible crashes in cases where no user was present on the machine . To avoid such issues, 
Windows’ WER mechanism performs this work externally from the crashed thread if the unhandled 
exception filter itself crashes, which allows any kind of process or thread crash to be logged and for 
the user to be notified.

WER contains many customizable settings that can be configured by the user through the 
Group Policy editor or by manually making changes to the registry . Table 3-7 lists the WER registry 
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­configuration­options,­their­use,­and­possible­values.­These­values­are­located­under­the­ 
HKLM\SOFTWARE\Microsoft\Windows\Windows­Error­Reporting­subkey­for­computer­configuration­
and­in­the­equivalent­path­under­HKEY_CURRENT_USER­for­per-user­configuration.

TABLE 3-7­ WER­Registry­Settings

Setting Meaning Values

ConfigureArchive Contents­of­archived­data 1­for­parameters,­2­for­all­data

Consent\DefaultConsent What­kind­of­data­should­require­
consent

1­for­any­data,­2­for­parameters­only,­3­
for­parameters­and­safe­data,­4­for­all­
data.

Consent\DefaultOverrideBehavior Whether­the­DefaultConsent­over-
rides­WER­plug-in­consent­values

1­to­enable­override

Consent\PluginName Consent­value­for­a­specific­WER­
plug-in

Same as DefaultConsent

CorporateWERDirectory Directory­for­a­corporate­WER­store String­containing­the­path

CorporateWERPortNumber Port­to­use­for­a­corporate­WER­store Port­number

CorporateWERServer Name­to­use­for­a­corporate­WER­
store

String­containing­the­name

CorporateWERUseAuthentication Use­Windows­Integrated­
Authentication­for­corporate­WER­
store

1­to­enable­built-in­authentication

CorporateWERUseSSL Use­Secure­Sockets­Layer­(SSL)­for­
corporate­WER­store

1­to­enable­SSL

DebugApplications List­of­applications­that­require­the­
user­to­choose­between­Debug­and­
Continue

1­to­require­the­user­to­choose

DisableArchive Whether­the­archive­is­enabled 1­to­disable­archive

Disabled Whether­WER­is­disabled 1­to­disable­WER

DisableQueue Determines­whether­reports­are­to­
be­queued

1­to­disable­queue

DontShowUI Disables­or­enables­the­WER­UI 1­to­disable­UI

DontSendAdditionalData Prevents­additional­crash­data­from­
being­sent

1­not­to­send

ExcludedApplications\AppName List­of­applications­excluded­from­
WER

String­containing­the­application­list

ForceQueue Whether­reports­should­be­sent­to­
the­user­queue

1­to­send­reports­to­the­queue

LocalDumps\DumpFolder Path­at­which­to­store­the­dump­files String­containing­the­path

LocalDumps\DumpCount Maximum­number­of­dump­files­in­
the­path

Count

LocalDumps\DumpType Type­of­dump­to­generate­during­a­
crash

0­for­a­custom­dump,­1­for­a­minidump,­
2­for­a­full­dump

LocalDumps\CustomDumpFlags For­custom­dumps,­specifies­custom­
options

Values­defined­in­MINIDUMP_TYPE­(see­
Chapter­13,­“Startup­and­Shutdown,”­in­
Part­2­for­more­information)
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Setting Meaning Values

LoggingDisabled Enables or disables logging 1 to disable logging

MaxArchiveCount Maximum size of the archive (in files) Value between 1–5000

MaxQueueCount Maximum size of the queue Value between 1–500

QueuePesterInterval Days between requests to have the 
user check for solutions

Number of days

Note The values listed under LocalDumps can also be configured per application by 
 adding the application name in the subkey path between LocalDumps and the relevant 
value. However, they cannot be configured per user; they exist only in the HKLM path.

As discussed, the WER service uses an ALPC port for communicating with crashed  processes . 
This mechanism uses a systemwide error port that the WER service registers through 
 NtSetInformationProcess (which uses DbgkRegisterErrorPort) . As a result, all Windows processes now 
have an error port that is actually an ALPC port object registered by the WER service . The kernel, 
which is first notified of an exception, uses this port to send a message to the WER service, which then 
analyzes the crashing process . This means that even in severe cases of thread state damage, WER 
will still be able to receive notifications and launch WerFault.exe to display a user interface instead 
of  having to do this work within the crashing thread itself . Additionally, WER will be able to gener-
ate a crash dump for the process, and a message will be written to the Event Log . This solves all the 
problems of silent process death: users are notified, debugging can occur, and service administrators 
can see the crash event . 

System Service Dispatching
As Figure 3-1 illustrated, the kernel’s trap handlers dispatch interrupts, exceptions, and system service 
calls . In the preceding sections, you saw how interrupt and exception handling work; in this section, 
you’ll learn about system services . A system service dispatch is triggered as a result of executing an 
 instruction assigned to system service dispatching . The instruction that Windows uses for system 
service dispatching depends on the processor on which it’s executing .

System Service Dispatching
On x86 processors prior to the Pentium II, Windows uses the int 0x2e instruction (46 decimal), which 
results in a trap. Windows fills in entry 46 in the IDT to point to the system service dispatcher. (Refer to 
Table 3-3 .) The trap causes the executing thread to transition into kernel mode and enter the system 
service dispatcher . A numeric argument passed in the EAX processor register indicates the system 
service number being requested . The EDX register points to the list of parameters the caller passes 
to the system service . To return to user mode, the system service dispatcher uses the iret (interrupt 
return instruction) .
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On x86 Pentium II processors and higher, Windows uses the sysenter instruction, which Intel 
defined specifically for fast system service dispatches. To support the instruction, Windows stores at 
boot time the address of the kernel’s system service dispatcher routine in a machine-specific register 
(MSR) associated with the instruction . The execution of the instruction causes the change to kernel 
mode and execution of the system service dispatcher . The system service number is passed in the EAX 
processor register, and the EDX register points to the list of caller arguments . To return to user mode, 
the system service dispatcher usually executes the sysexit instruction . (In some cases, like when the 
single-step flag is enabled on the processor, the system service dispatcher uses the iret instead be-
cause sysexit does not allow returning to user-mode with a different EFLAGS register, which is needed 
if sysenter was executed while the trap flag was set as a result of a user-mode debugger tracing or 
stepping over a system call .)

Note Because certain older applications might have been hardcoded to use the int 0x2e 
instruction to manually perform a system call (an unsupported operation), 32-bit Windows 
keeps this mechanism usable even on systems that support the sysenter instruction by still 
having the handler registered .

On the x64 architecture, Windows uses the syscall instruction, passing the system call number in 
the EAX register, the first four parameters in registers, and any parameters beyond those four on the 
stack .

On the IA64 architecture, Windows uses the epc (Enter Privileged Mode) instruction. The first eight 
system call arguments are passed in registers, and the rest are passed on the stack .

EXPERIMENT: Locating the System Service Dispatcher 
As mentioned, 32-bit system calls occur through an interrupt, which means that the handler 
needs to be registered in the IDT or through a special sysenter instruction that uses an MSR 
to store the handler address at boot time . On certain 32-bit AMD systems, Windows uses the 
syscall instruction instead, which is similar to the 64-bit syscall instruction . Here’s how you can 
locate the appropriate routine for either method:

1. To see the handler on 32-bit systems for the interrupt 2E version of the system call 
dispatcher, type !idt 2e in the kernel debugger . 

lkd> !idt 2e 
 
Dumping IDT: 
 
2e:    8208c8ee nt!KiSystemService

2. To see the handler for the sysenter version, use the rdmsr debugger command to read 
from the MSR register 0x176, which stores the handler:

lkd> rdmsr 176 
msr[176] = 00000000'8208c9c0 
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lkd> ln 00000000'8208c9c0 
(8208c9c0)   nt!KiFastCallEntry

If you have a 64-bit machine, you can look at the 64-bit service call dispatcher by 
 repeating this step, but using the 0xC0000082 MSR instead, which is used by the 
 syscall version for 64-bit code . You will see it corresponds to nt!KiSystemCall64:

lkd> rdmsr c0000082 
msr[c0000082] = fffff800'01a71ec0 
lkd> ln fffff800'01a71ec0 
(fffff800'01a71ec0)   nt!KiSystemCall64

3. You can disassemble the KiSystemService or KiSystemCall64 routine with the u 
 command . On a 32-bit system, you’ll eventually notice the following instructions:

nt!KiSystemService+0x7b: 
8208c969 897d04          mov     dword ptr [ebp+4],edi 
8208c96c fb              sti 
8208c96d e9dd000000      jmp     nt!KiFastCallEntry+0x8f (8208ca4f)

Because the actual system call dispatching operations are common regardless of the 
 mechanism used to reach the handler, the older interrupt-based handler simply calls into the 
middle of the newer sysenter-based handler to perform the same generic tasks . The only parts 
of the handlers that are different are related to the generation of the trap frame and the setup 
of certain registers .

At boot time, 32-bit Windows detects the type of processor on which it’s executing and sets up the 
appropriate system call code to use by storing a pointer to the correct code in the SharedUserData 
structure . The system service code for NtReadFile in user mode looks like this:

0:000> u ntdll!NtReadFile 
ntdll!ZwReadFile: 
77020074 b802010000      mov     eax,102h 
77020079 ba0003fe7f      mov     edx,offset SharedUserData!SystemCallStub (7ffe0300) 
7702007e ff12            call    dword ptr [edx] 
77020080 c22400          ret     24h 
77020083 90              nop

The system service number is 0x102 (258 in decimal), and the call instruction executes the system 
service dispatch code set up by the kernel, whose pointer is at address 0x7ffe0300 . (This corresponds 
to the SystemCallStub member of the KUSER_SHARED_DATA structure, which starts at 0x7FFE0000 .) 
Because the following output was taken from an Intel Core 2 Duo, it contains a pointer to sysenter:

0:000> dd SharedUserData!SystemCallStub l 1 
7ffe0300  77020f30 
0:000> u 77020f30 
ntdll!KiFastSystemCall: 
77020f30 8bd4            mov     edx,esp 
77020f32 0f34            sysenter
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Because 64-bit systems have only one mechanism for performing system calls, the system service 
entry points in Ntdll .dll use the syscall instruction directly, as shown here:

ntdll!NtReadFile:  
00000000'77f9fc60 4c8bd1           mov     r10,rcx  
00000000'77f9fc63 b810200000       mov     eax,0x102  
00000000'77f9fc68 0f05             syscall  
00000000'77f9fc6a c3               ret

Kernel-Mode System Service Dispatching

As Figure 3-15 illustrates, the kernel uses the system call number to locate the system service 
 information in the system service dispatch table . On 32-bit systems, this table is similar to the interrupt 
dispatch table described earlier in the chapter except that each entry contains a pointer to a system 
service rather than to an interrupt-handling routine . On 64-bit systems, the table is implemented 
slightly differently—instead of containing pointers to the system service, it contains offsets relative to 
the table itself . This addressing mechanism is more suited to the x64 application binary interface (ABI) 
and instruction-encoding format .

Note System service numbers can change between service packs—Microsoft  occasionally 
adds or removes system services, and the system service numbers are generated 
 automatically as part of a kernel compile .
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FIGURE 3-15 System service exceptions

The system service dispatcher, KiSystemService, copies the caller’s arguments from the thread’s 
user-mode stack to its kernel-mode stack (so that the user can’t change the arguments as the kernel 
is accessing them) and then executes the system service . The kernel knows how many stack bytes 
require copying by using a second table, called the argument table, which is a byte array (instead of 
a pointer array like the dispatch table), each entry describing the number of bytes to copy . On 64-bit 
systems, Windows actually encodes this information within the service table itself through a process 
called system call table compaction . If the arguments passed to a system service point to buffers in 
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user space, these buffers must be probed for accessibility before kernel-mode code can copy data to 
or from them . This probing is performed only if the previous mode of the thread is set to user mode . 
The previous mode is a value (kernel or user) that the kernel saves in the thread whenever it executes 
a trap handler and identifies the privilege level of the incoming exception, trap, or system call. As an 
optimization, if a system call comes from a driver or the kernel itself, the probing and capturing of 
parameters is skipped, and all parameters are assumed to be pointing to valid kernel-mode buffers 
(also, access to kernel-mode data is allowed) .

Because kernel-mode code can also make system calls, let’s look at the way these are done . 
Because the code for each system call is in kernel mode and the caller is already in kernel mode, you 
can see that there shouldn’t be a need for an interrupt or sysenter operation: the CPU is already at the 
right privilege level, and drivers, as well as the kernel, should only be able to directly call the func-
tion required . In the executive’s case, this is actually what happens: the kernel has access to all its own 
routines and can simply call them just like standard routines . Externally, however, drivers can access 
these system calls only if they have been exported just like other standard kernel-mode APIs . In fact, 
quite a few of the system calls are exported . Drivers, however, are not supposed to access system calls 
this way . Instead, drivers must use the Zw versions of these calls—that is, instead of NtCreateFile, they 
must use ZwCreateFile . These Zw versions must also be manually exported by the kernel, and only a 
handful are, but they are fully documented and supported .

The Zw versions are officially available only for drivers because of the previous mode concept 
discussed earlier . Because this value is updated only each time the kernel builds a trap frame, its value 
won’t actually change across a simple API call—no trap frame is being generated . By calling a func-
tion such as NtCreateFile directly, the kernel preserves the previous mode value that indicates that it 
is user mode, detects that the address passed is a kernel-mode address, and fails the call, correctly 
asserting that user-mode applications should not pass kernel-mode pointers . However, this is not 
actually what happens, so how can the kernel be aware of the correct previous mode? The answer lies 
in the Zw calls .

These exported APIs are not actually simple aliases or wrappers around the Nt versions . Instead, 
they are “trampolines” to the appropriate Nt system call, which use the same system call-dispatching 
mechanism . Instead of generating an interrupt or a sysenter, which would be slow and/or unsupport-
ed, they build a fake interrupt stack (the stack that the CPU would generate after an interrupt) and call 
the KiSystemService routine directly, essentially emulating the CPU interrupt . The handler executes the 
same operations as if this call came from user mode, except it detects the actual privilege level this 
call came from and set the previous mode to kernel . Now NtCreateFile sees that the call came from 
the kernel and does not fail anymore . Here’s what the kernel-mode trampolines look like on both 
 32-bit and 64-bit systems . The system call number is highlighted in bold .

lkd> u nt!ZwReadFile 
nt!ZwReadFile: 
8207f118 b802010000      mov     eax,102h 
8207f11d 8d542404        lea     edx,[esp+4] 
8207f121 9c              pushfd 
8207f122 6a08            push    8 
8207f124 e8c5d70000      call    nt!KiSystemService (8208c8ee) 
8207f129 c22400          ret     24h 
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lkd> uf nt!ZwReadFile 
nt!ZwReadFile: 
fffff800'01a7a520 488bc4          mov     rax,rsp 
fffff800'01a7a523 fa              cli 
fffff800'01a7a524 4883ec10        sub     rsp,10h 
fffff800'01a7a528 50              push    rax 
fffff800'01a7a529 9c              pushfq 
fffff800'01a7a52a 6a10            push    10h 
fffff800'01a7a52c 488d05bd310000  lea     rax,[nt!KiServiceLinkage (fffff800'01a7d6f0)] 
fffff800'01a7a533 50              push    rax 
fffff800'01a7a534 b803000000      mov     eax,3 
fffff800'01a7a539 e902690000      jmp     nt!KiServiceInternal (fffff800'01a80e40)

As you’ll see in Chapter 5, Windows has two system service tables, and third-party drivers cannot 
extend the tables or insert new ones to add their own service calls . On 32-bit and IA64 versions of 
Windows, the system service dispatcher locates the tables via a pointer in the thread kernel structure, 
and on x64 versions it finds them via their global addresses. The system service dispatcher determines 
which table contains the requested service by interpreting a 2-bit field in the 32-bit system service 
number as a table index . The low 12 bits of the system service number serve as the index into the 
table specified by the table index. The fields are shown in Figure 3-16.

Table Index

Index into table System service number

31 13 11 0

0

1

0

1

Native API

Unused

Native API

Win32k.sys API

KeServiceDescriptorTable KeServiceDescriptorTableShadow

FIGURE 3-16 System service number to system service translation 

Service Descriptor Tables
A primary default array table, KeServiceDescriptorTable, defines the core executive system services 
implemented in Ntosrknl .exe . The other table array, KeServiceDescriptorTableShadow, includes the 
Windows USER and GDI services implemented in the kernel-mode part of the Windows subsystem, 
Win32k.sys. On 32-bit and IA64 versions of Windows, the first time a Windows thread calls a  Windows 
USER or GDI service, the address of the thread’s system service table is changed to point to a table 
that includes the Windows USER and GDI services . The KeAddSystemServiceTable function allows 
Win32k .sys to add a system service table . 
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The system service dispatch instructions for Windows executive services exist in the system library 
Ntdll .dll . Subsystem DLLs call functions in Ntdll to implement their documented functions . The 
exception is Windows USER and GDI functions, for which the system service dispatch instructions 
are implemented in User32 .dll and Gdi32 .dll—Ntdll .dll is not involved . These two cases are shown in 
Figure 3-17 .

As shown in Figure 3-17, the Windows WriteFile function in Kernel32 .dll imports and calls the 
WriteFile function in API-MS-Win-Core-File-L1-1-0 .dll, one of the MinWin redirection DLLs (see 
the next section for more information on API redirection), which in turn calls the WriteFile function 
in  KernelBase.dll, where the actual implementation lies. After some subsystem-specific parameter 
checks, it then calls the NtWriteFile function in Ntdll .dll, which in turn executes the appropriate in-
struction to cause a system service trap, passing the system service number representing NtWriteFile . 
The system service dispatcher (function KiSystemService in Ntoskrnl .exe) then calls the real NtWriteFile 
to process the I/O request . For Windows USER and GDI functions, the system service dispatch calls 
functions in the loadable kernel-mode part of the Windows subsystem, Win32k .sys .
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FIGURE 3-17 System service dispatching  
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EXPERIMENT: Mapping System Call Numbers to Functions and 
Arguments
You can duplicate the same lookup performed by the kernel when dealing with a system call ID 
to figure out which function is responsible for handling it and how many arguments it takes 

1. The KeServiceDescriptorTable and KeServiceDescriptorTableShadow tables both point 
to the same array of pointers (or offsets, on 64-bit) for kernel system calls, called 
 KiServiceTable, and the same array of stack bytes, called KiArgumentTable . On a 32-bit 
system, you can use the kernel debugger command dds to dump the data along with 
symbolic information . The debugger attempts to match each pointer with a symbol . 
Here’s a partial output:

lkd> dds KiServiceTable 
820807d0  821be2e5 nt!NtAcceptConnectPort 
820807d4  820659a6 nt!NtAccessCheck 
820807d8  8224a953 nt!NtAccessCheckAndAuditAlarm 
820807dc  820659dd nt!NtAccessCheckByType 
820807e0  8224a992 nt!NtAccessCheckByTypeAndAuditAlarm 
820807e4  82065a18 nt!NtAccessCheckByTypeResultList 
820807e8  8224a9db nt!NtAccessCheckByTypeResultListAndAuditAlarm 
820807ec  8224aa24 nt!NtAccessCheckByTypeResultListAndAuditAlarmByHandle 
820807f0  822892af nt!NtAddAtom

2. As described earlier, 64-bit Windows organizes the system call table differently and 
uses relative pointers (an offset) to system calls instead of the absolute addresses used 
by 32-bit Windows . The base of the pointer is the KiServiceTable itself, so you’ll have to 
dump the data in its raw format with the dq command . Here’s an example of output 
from a 64-bit system:

lkd> dq nt!KiServiceTable 
fffff800'01a73b00  02f6f000'04106900 031a0105'fff72d00

3. Instead of dumping the entire table, you can also look up a specific number. On 
32-bit Windows, because each system call number is an index into the table and 
because each element is 4 bytes, you can use the following calculation: Handler 
=  KiServiceTable + Number * 4 . Let’s use the number 0x102, obtained during our 
 description of the NtReadFile stub code in Ntdll .dll .

lkd> ln poi(KiServiceTable + 102 * 4) 
(82193023)   nt!NtReadFile

On 64-bit Windows, each offset can be mapped to each function with the ln com-
mand, by shifting right by 4 bits (used as described earlier) and adding the remaining 
value to the base of KiServiceTable itself, as shown here: 

lkd> ln @@c++(((int*)@@(nt!KiServiceTable))[3] >> 4) + nt!KiServiceTable 
(fffff800'01d9cb10)   nt!NtReadFile   |  (fffff800'01d9d24c)   nt!NtOpenFile 
Exact matches: 
    nt!NtReadFile = <no type information>



140 Windows Internals, Sixth Edition, Part 1

4. Because drivers, including kernel-mode rootkits, are able to patch this table on 32-bit 
versions of Windows, which is something the operating system does not support, you 
can use dds to dump the entire table and look for any values outside the range of valid 
kernel addresses (dds will also make this clear by not being able to look up a symbol 
for the function) . On 64-bit Windows, Kernel Patch Protection monitors the system 
service tables and crashes the system when it detects modifications. 

EXPERIMENT: Viewing System Service Activity
You can monitor system service activity by watching the System Calls/Sec performance  counter 
in the System object . Run the Performance Monitor, click on Performance Monitor under 
 Monitoring Tools, and click the Add button to add a counter to the chart . Select the System 
object, select the System Calls/Sec counter, and then click the Add button to add the counter to 
the chart .

Object Manager

As mentioned in Chapter 2, “System Architecture,” Windows implements an object model to  provide 
consistent and secure access to the various internal services implemented in the executive . This 
 section describes the Windows object manager, the executive component responsible for creating, 
deleting, protecting, and tracking objects . The object manager centralizes resource control operations 
that otherwise would be scattered throughout the operating system . It was designed to meet the 
goals listed on the next page .

EXPERIMENT: Exploring the Object Manager
Throughout this section, you’ll find experiments that show you how to peer into the object 
manager database . These experiments use the following tools, which you should become 
 familiar with if you aren’t already:

 ■ WinObj (available from Sysinternals) displays the internal object manager’s namespace 
and information about objects (such as the reference count, the number of open handles, 
security descriptors, and so forth) .

 ■ Process Explorer and Handle from Sysinternals, as well as Resource Monitor (introduced in 
Chapter 1) display the open handles for a process .

 ■ The Openfiles /query command displays the open file handles for a process, but it requires 
a global flag to be set in order to operate.

 ■ The kernel debugger !handle command displays the open handles for a process .
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WinObj provides a way to traverse the namespace that the object manager maintains . (As 
we’ll explain later, not all objects have names .) Run WinObj, and examine the layout, shown next .

As noted previously, the Windows Openfiles /query command requires that a Windows 
global flag called maintain objects list be enabled . (See the “Windows Global Flags” section later 
in this chapter for more details about global flags.) If you type Openfiles /Local, it will tell you 
whether the flag is enabled. You can enable it with the Openfiles /Local ON command . In either 
case, you must reboot the system for the setting to take effect . Process Explorer, Handle, and 
Resource Monitor do not require object tracking to be turned on because they query all system 
handles and create a per-process object list .

The object manager was designed to meet the following goals:

 ■ Provide a common, uniform mechanism for using system resources

 ■ Isolate object protection to one location in the operating system to ensure uniform and 
 consistent object access policy 

 ■ Provide a mechanism to charge processes for their use of objects so that limits can be placed 
on the usage of system resources

 ■ Establish an object-naming scheme that can readily incorporate existing objects, such as the 
devices, files, and directories of a file system, or other independent collections of objects

 ■ Support the requirements of various operating system environments, such as the ability of a 
process to inherit resources from a parent process (needed by Windows and Subsystem for 
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UNIX Applications) and the ability to create case-sensitive file names (needed by Subsystem 
for UNIX Applications)

 ■ Establish uniform rules for object retention (that is, for keeping an object available until all 
processes have finished using it)

 ■ Provide the ability to isolate objects for a specific session to allow for both local and global 
objects in the namespace

Internally, Windows has three kinds of objects: executive objects, kernel objects, and GDI/User 
 objects . Executive objects are objects implemented by various components of the executive (such as 
the process manager, memory manager, I/O subsystem, and so on) . Kernel objects are a more primi-
tive set of objects implemented by the Windows kernel . These objects are not visible to user-mode 
code but are created and used only within the executive . Kernel objects provide fundamental capa-
bilities, such as synchronization, on which executive objects are built . Thus, many executive objects 
contain (encapsulate) one or more kernel objects, as shown in Figure 3-18 . 

Kernel object

Name
HandleCount
ReferenceCount
Type

Executive objectOwned by the
executive

Owned by the
kernel

Owned by the
object manager

FIGURE 3-18 Executive objects that contain kernel objects

Note GDI/User objects, on the other hand, belong to the Windows subsystem  
(Win32k .sys) and do not interact with the kernel . For this reason, they are outside the  
scope of this book, but you can get more information on them from the Windows SDK .

Details about the structure of kernel objects and how they are used to implement  synchronization 
are given later in this chapter . The remainder of this section focuses on how the object manager 
works and on the structure of executive objects, handles, and handle tables and just briefly describes 
how objects are involved in implementing Windows security access checking; Chapter 6 thoroughly 
covers that topic .
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Executive Objects
Each Windows environment subsystem projects to its applications a different image of the operating 
system . The executive objects and object services are primitives that the environment subsystems use 
to construct their own versions of objects and other resources .

Executive objects are typically created either by an environment subsystem on behalf of a user 
application or by various components of the operating system as part of their normal operation . For 
example, to create a file, a Windows application calls the Windows CreateFileW function, implement-
ed in the Windows subsystem DLL Kernelbase .dll . After some validation and initialization, CreateFileW 
in turn calls the native Windows service NtCreateFile to create an executive file object.

The set of objects an environment subsystem supplies to its applications might be larger or smaller 
than the set the executive provides . The Windows subsystem uses executive objects to export its own 
set of objects, many of which correspond directly to executive objects . For example, the Windows 
mutexes and semaphores are directly based on executive objects (which, in turn, are based on cor-
responding kernel objects) . In addition, the Windows subsystem supplies named pipes and mailslots, 
resources that are based on executive file objects. Some subsystems, such as Subsystem for UNIX 
Applications, don’t support objects as objects at all . Subsystem for UNIX Applications uses executive 
objects and services as the basis for presenting UNIX-style processes, pipes, and other resources to its 
applications .

Table 3-8 lists the primary objects the executive provides and briefly describes what they 
 represent. You can find further details on executive objects in the chapters that describe the related 
executive components (or in the case of executive objects directly exported to Windows, in the 
 Windows API reference documentation) . You can see the full list of object types by running Winobj 
with elevated rights and navigating to the ObjectTypes directory . 

Note The executive implements a total of 4242 object types . Many of these objects are for 
use only by the executive component that defines them and are not directly accessible by 
Windows APIs . Examples of these objects include Driver, Device, and EventPair .

TABLE 3-8 Executive Objects Exposed to the Windows API

Object Type Represents

Process The virtual address space and control information necessary for the execution of a 
set of thread objects .

Thread An executable entity within a process .

Job A collection of processes manageable as a single entity through the job .

Section A region of shared memory (known as a file-mapping object in Windows).

File An instance of an opened file or an I/O device.

Token The security profile (security ID, user rights, and so on) of a process or a thread.

Event An object with a persistent state (signaled or not signaled) that can be used for 
synchronization or notification.
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Object Type Represents

Semaphore A counter that provides a resource gate by allowing some maximum number of 
threads to access the resources protected by the semaphore .

Mutex A synchronization mechanism used to serialize access to a resource .

Timer A mechanism to notify a thread when a fixed period of time elapses.

IoCompletion A method for threads to enqueue and dequeue notifications of the completion of 
I/O operations (known as an I/O completion port in the Windows API) .

Key A mechanism to refer to data in the registry . Although keys appear in the object 
manager namespace, they are managed by the configuration manager, in a way 
similar to that in which file objects are managed by file system drivers. Zero or more 
key values are associated with a key object; key values contain data about the key .

Directory A virtual directory in the object manager’s namespace responsible for containing 
other objects or object directories .

TpWorkerFactory A collection of threads assigned to perform a specific set of tasks. The kernel can 
manage the number of work items that will be performed on the queue, how many 
threads should be responsible for the work, and dynamic creation and termination 
of worker threads, respecting certain limits the caller can set . Windows exposes the 
worker factory object through thread pools .

TmRm (Resource Manager), 
TmTx (Transaction), TmTm 
(Transaction Manager), 
TmEn (Enlistment)

Objects used by the Kernel Transaction Manager (KTM) for various transactions 
and/or enlistments as part of a resource manager or transaction manager . Objects 
can be created through the CreateTransactionManager, CreateResourceManager, 
CreateTransaction, and CreateEnlistment APIs .

WindowStation An object that contains a clipboard, a set of global atoms, and a group of Desktop 
objects .

Desktop An object contained within a window station . A desktop has a logical display 
 surface and contains windows, menus, and hooks .

PowerRequest An object associated with a thread that executes, among other things, a call to 
SetThreadExecutionState to request a given power change, such as blocking sleeps 
(due to a movie being played, for example) .

EtwConsumer Represents a connected ETW real-time consumer that has registered with the 
StartTrace API (and can call ProcessTrace to receive the events on the object queue) .

EtwRegistration Represents the registration object associated with a user-mode (or kernel-mode) 
ETW provider that registered with the EventRegister API .

Note Because Windows NT was originally supposed to support the OS/2 operating 
 system, the mutex had to be compatible with the existing design of OS/2 mutual-exclusion 
objects, a design that required that a thread be able to abandon the object, leaving it 
 inaccessible . Because this behavior was considered unusual for such an object, another 
kernel object—the mutant—was created. Eventually, OS/2 support was dropped, and the 
object became used by the Windows 32 subsystem under the name mutex (but it is still 
called mutant internally) .
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Object Structure
As shown in Figure 3-19, each object has an object header and an object body . The object manager 
controls the object headers, and the owning executive components control the object bodies of the 
object types they create . Each object header also contains an index to a special object, called the 
type object, that contains information common to each instance of the object. Additionally, up to five 
optional subheaders exist: the name information header, the quota information header, the process 
information header, the handle information header, and the creator information header .

Object name
Object directory
Security descriptor
Quota charges
Open handle count
Open handles list
Object type
Reference count

Object
header

Object
body Object-specific data

Process
1 Process

2 Process
3

Type name
Pool type
Default quota charges
Access types
Generic access rights mapping
Synchronizable? (Y/N)
Methods:

Open, close, delete,
parse, security,
query name

Type object

Object name

Security descriptor

Open handles list

Quota charges

Object directory

034DEF0
2A1DDAF
6D3AED4
0A3C44A1
3DF12AB4

Object Type Table

FIGURE 3-19 Structure of an object 

Object Headers and Bodies
The object manager uses the data stored in an object’s header to manage objects without regard 
to their type. Table 3-9 briefly describes the object header fields, and Table 3-10 describes the fields 
found in the optional object subheaders .



146 Windows Internals, Sixth Edition, Part 1

TABLE 3-9 Object Header Fields

Field Purpose

Handle count Maintains a count of the number of currently opened handles to the object .

Pointer count Maintains a count of the number of references to the object (including one reference for 
each handle) . Kernel-mode components can reference an object by pointer without using 
a handle .

Security descriptor Determines who can use the object and what they can do with it . Note that unnamed 
 objects, by definition, cannot have security.

Object type index Contains the index to a type object that contains attributes common to objects of this type . 
The table that stores all the type objects is ObTypeIndexTable .

Subheader mask Bitmask describing which of the optional subheader structures described in Table 
3-10 are present, except for the creator information subheader, which, if present, 
 always precedes the object . The bitmask is converted to a negative offset by using the 
ObpInfoMaskToOffset table, with each subheader being associated with a 1-byte index that 
places it relative to the other subheaders present .

Flags Characteristics and object attributes for the object . See Table 3-12 for a list of all the object 
flags.

Lock Per-object lock used when modifying fields belonging to this object header or any of its 
subheaders .

In addition to the object header, which contains information that applies to any kind of object, the 
subheaders contain optional information regarding specific aspects of the object. Note that these 
structures are located at a variable offset from the start of the object header, the value of which 
depends on the number of subheaders associated with the main object header (except, as mentioned 
earlier, for creator information) . For each subheader that is present, the InfoMask field is updated to 
reflect its existence. When the object manager checks for a given subheader, it checks if the corre-
sponding bit is set in the InfoMask and then uses the remaining bits to select the correct offset into 
the ObpInfoMaskToOffset table, where it finds the offset of the subheader from the start of the object 
header . 

These offsets exist for all possible combinations of subheader presence, but because the 
 subheaders, if present, are always allocated in a fixed, constant order, a given header will have only 
as many possible locations as the maximum number of subheaders that precede it . For example, 
 because the name information subheader is always allocated first, it has only one possible offset. 
On the other hand, the handle information subheader (which is allocated third) has three possible 
locations, because it might or might not have been allocated after the quota subheader, itself hav-
ing  possibly been allocated after the name information . Table 3-10 describes all the optional object 
subheaders and their location . In the case of creator information, a value in the object header flags 
determines whether the subheader is present. (See Table 3-12 for information about these flags.)

TABLE 3-10 Optional Object Subheaders

Name Purpose Bit Location

Creator 
 information

Links the object into a list for all the objects 
of the same type, and records the process 
that created the object, along with a back 
trace .

0 (0x1) Object header -  
ObpInfoMaskToOffset[0])
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Name Purpose Bit Location

Name 
 information

Contains the object name, responsible for 
making an object visible to other processes 
for sharing, and a pointer to the object direc-
tory, which provides the hierarchical structure 
in which the object names are stored .

1 (0x2) Object header - ObpInfoMaskToOffset - 
ObpInfoMaskToOffset[InfoMask & 0x3]

Handle 
 information

Contains a database of entries (or just a single 
entry) for a process that has an open handle 
to the object (along with a  per-process 
handle count) .

2 (0x4) Object header - 
ObpInfoMaskToOffset[InfoMask & 0x7]

Quota 
 information

Lists the resource charges levied against a 
process when it opens a handle to the object .

3 (0x8) Object header - 
ObpInfoMaskToOffset[InfoMask & 0xF]

Process 
 information

Contains a pointer to the owning process 
if this is an exclusive object . More informa-
tion on exclusive objects follows later in the 
chapter .

4 (0x10) Object header - 
ObpInfoMaskToOffset[InfoMask & 0x1F]

Each of these subheaders is optional and is present only under certain conditions, either during 
system boot up or at object creation time . Table 3-11 describes each of these conditions .

TABLE 3-11 Conditions Required for Presence of Object Subheaders

Name Condition

Name information The object must have been created with a name .

Quota information The object must not have been created by the initial (or idle) system process .

Process information The object must have been created with the exclusive object flag. (See Table 3-12 for 
 information about object flags.)

Handle information The object type must have enabled the maintain handle count flag. File objects, ALPC objects, 
WindowStation objects, and Desktop objects have this flag set in their object type structure.

Creator information The object type must have enabled the maintain type list flag. Driver objects have this flag 
set if the Driver Verifier is enabled. However, enabling the maintain object type list global flag 
(discussed earlier) will enable this for all objects, and Type objects always have the flag set.

Finally, a number of attributes and/or flags determine the behavior of the object during creation 
time or during certain operations. These flags are received by the object manager whenever any new 
object is being created, in a structure called the object attributes. This structure defines the object 
name, the root object directory where it should be inserted, the security descriptor for the object, and 
the object attribute flags. Table 3-12 lists the various flags that can be associated with an object.

Note When an object is being created through an API in the Windows subsystem (such as 
CreateEvent or CreateFile), the caller does not specify any object attributes—the subsys-
tem DLL performs the work behind the scenes . For this reason, all named objects created 
through Win32 go in the BaseNamedObjects directory, either the global or per-session 
instance, because this is the root object directory that Kernelbase.dll specifies as part of the 
object attributes structure . More information on BaseNamedObjects and how it relates to 
the per-session namespace will follow later in this chapter .
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TABLE 3-12 Object Flags

Attributes Flag Header Flag Purpose

OBJ_INHERIT Saved in the handle table entry Determines whether the handle to the 
 object will be inherited by child pro-
cesses, and whether a process can use 
DuplicateHandle to make a copy .

OBJ_PERMANENT OB_FLAG_PERMANENT_OBJECT Defines object retention behavior related to 
reference counts, described later .

OBJ_EXCLUSIVE OB_FLAG_EXCLUSIVE_OBJECT Specifies that the object can be used only 
by the process that created it .

OBJ_CASE_INSENSITIVE Stored in the handle table entry Specifies that lookups for this object in the 
namespace should be case insensitive . It 
can be overridden by the case insensitive 
flag in the object type.

OBJ_OPENIF Not stored, used at run time Specifies that a create operation for this 
object name should result in an open, if the 
object exists, instead of a failure .

OBJ_OPENLINK Not stored, used at run time Specifies that the object manager should 
open a handle to the symbolic link, not the 
target .

OBJ_KERNEL_HANDLE OB_FLAG_KERNEL_OBJECT Specifies that the handle to this object 
should be a kernel handle (more on this 
later) .

OBJ_FORCE_ACCESS_CHECK Not stored, used at run time Specifies that even if the object is being 
opened from kernel mode, full access 
checks should be performed .

OBJ_KERNEL_EXCLUSIVE OB_FLAG_KERNEL_ONLY_ACCESS Disables any user-mode process from 
opening a handle to the object; used 
to protect the /Device/PhysicalMemory 
 section object .

N/A OF_FLAG_DEFAULT_SECURITY_QUOTA Specifies that the object’s security 
 descriptor is using the default 2-KB quota .

N/A OB_FLAG_SINGLE_HANDLE_ENTRY Specifies that the handle information 
 subheader contains only a single entry and 
not a database .

N/A OB_FLAG_NEW_OBJECT Specifies that the object has been  created 
but not yet inserted into the object 
namespace .

N/A OB_FLAG_DELETED_INLINE Specifies that the object is being deleted 
through the deferred deletion worker thread .

In addition to an object header, each object has an object body whose format and contents are 
unique to its object type; all objects of the same type share the same object body format . By creating 
an object type and supplying services for it, an executive component can control the manipulation of 
data in all object bodies of that type . Because the object header has a static and well-known size, the 
object manager can easily look up the object header for an object simply by subtracting the size of 
the header from the pointer of the object . As explained earlier, to access the subheaders, the object 
manager subtracts yet another well-known value from the pointer of the object header .
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Because of the standardized object header and subheader structures, the object manager is able 
to provide a small set of generic services that can operate on the attributes stored in any object 
header and can be used on objects of any type (although some generic services don’t make sense for 
certain objects) . These generic services, some of which the Windows subsystem makes available to 
Windows applications, are listed in Table 3-13 .

Although these generic object services are supported for all object types, each object has its own 
create, open, and query services. For example, the I/O system implements a create file service for its 
file objects, and the process manager implements a create process service for its process objects. 

Although a single create object service could have been implemented, such a routine would have 
been quite complicated, because the set of parameters required to initialize a file object, for example, 
differs markedly from that required to initialize a process object . Also, the object manager would have 
incurred additional processing overhead each time a thread called an object service to determine the 
type of object the handle referred to and to call the appropriate version of the service .

TABLE 3-13 Generic Object Services

Service Purpose

Close Closes a handle to an object

Duplicate Shares an object by duplicating a handle and giving it to another process

Make permanent/temporary Changes the retention of an object (described later)

Query object Gets information about an object’s standard attributes

Query security Gets an object’s security descriptor

Set security Changes the protection on an object

Wait for a single object Synchronizes a thread’s execution with one object

Signal an object and wait for another Signals an object (such as an event), and synchronizes a thread’s execution 
with another

Wait for multiple objects Synchronizes a thread’s execution with multiple objects

Type Objects
Object headers contain data that is common to all objects but that can take on different values for 
each instance of an object . For example, each object has a unique name and can have a unique 
security descriptor . However, objects also contain some data that remains constant for all objects of 
a particular type. For example, you can select from a set of access rights specific to a type of object 
when you open a handle to objects of that type . The executive supplies terminate and suspend access 
(among others) for thread objects and read, write, append, and delete access (among others) for file 
objects. Another example of an object-type-specific attribute is synchronization, which is described 
shortly .

To conserve memory, the object manager stores these static, object-type-specific attributes once 
when creating a new object type . It uses an object of its own, a type object, to record this data . As 
Figure 3-20 illustrates, if the object-tracking debug flag (described in the “Windows Global Flags” 



150 Windows Internals, Sixth Edition, Part 1

 section later in this chapter) is set, a type object also links together all objects of the same type (in this 
case, the process type), allowing the object manager to find and enumerate them, if necessary. This 
functionality takes advantage of the creator information subheader discussed previously .

Process
type

object

Process
Object 1

Process
Object 2

Process
Object 3

Process
Object 4

FIGURE 3-20 Process objects and the process type object

EXPERIMENT: Viewing Object Headers and Type Objects
You can look at the process object type data structure in the kernel debugger by first 
 identifying a process object with the !process command:

lkd> !process 0 0 
**** NT ACTIVE PROCESS DUMP **** 
PROCESS fffffa800279cae0 
    SessionId: none  Cid: 0004    Peb: 00000000  ParentCid: 0000 
    DirBase: 00187000  ObjectTable: fffff8a000001920  HandleCount: 541. 
    Image: System

Then execute the !object command with the process object address as the argument:

lkd> !object fffffa800279cae0 
Object: fffffa800279cae0  Type: (fffffa8002755b60) Process 
    ObjectHeader: fffffa800279cab0 (new version) 
    HandleCount: 3  PointerCount: 172 3172 

Notice that on 32-bit Windows, the object header starts 0x18 (24 decimal) bytes prior to the 
start of the object body, and on 64-bit Windows, it starts 0x30 (48 decimal) bytes prior—the 
size of the object header itself . You can view the object header with this command:

lkd> dt nt!_OBJECT_HEADER fffffa800279cab0  
   +0x000 PointerCount     : 172 
   +0x008 HandleCount      : 33 
   +0x008 NextToFree       : 0x000000000x00000000'00000003  
   +0x010 Lock             : _EX_PUSH_LOCK 
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   +0x018 TypeIndex        : 0x7 '' 
   +0x019 TraceFlags       : 0 '' 
   +0x01a InfoMask         : 0 '' 
   +0x01b Flags            : 0x2 '' 
   +0x020 ObjectCreateInfo : 0xfffff800'01c53a80 _OBJECT_CREATE_INFORMATION 
   +0x020 QuotaBlockCharged : 0xfffff800'01c53a80  
   +0x028 SecurityDescriptor : 0xfffff8a0'00004b29  
   +0x030 Body             : _QUAD

Now look at the object type data structure by obtaining its address from the 
 ObTypeIndexTable table for the entry associated with the TypeIndex field of the object header 
data structure:

lkd> ?? ((nt!_OBJECT_TYPE**)@@(nt!ObTypeIndexTable))[((nt!_OBJECT_
HEADER*)0xfffffa800279cab0)->TypeIndex] 
struct _OBJECT_TYPE * 0xfffffa80'02755b60 
   +0x000 TypeList         : _LIST_ENTRY [ 0xfffffa80'02755b60 - 0xfffffa80'02755b60 ] 
   +0x010 Name             : _UNICODE_STRING "Process" 
   +0x020 DefaultObject    : (null)  
   +0x028 Index            : 0x70x7 '' 
   +0x02c TotalNumberOfObjects : 0x380x38 
   +0x030 TotalNumberOfHandles : 0x1320x132 
   +0x034 HighWaterNumberOfObjects : 0x3d 
   +0x038 HighWaterNumberOfHandles : 0x13c 
   +0x040 TypeInfo         : _OBJECT_TYPE_INITIALIZER 
   +0x0b0 TypeLock         : _EX_PUSH_LOCK 
   +0x0b8 Key              : 0x636f7250 
   +0x0c0 CallbackList     : _LIST_ENTRY [ 0xfffffa80'02755c20 - 0xfffffa80'02755c20 ]

The output shows that the object type structure includes the name of the object type, tracks 
the total number of active objects of that type, and tracks the peak number of handles and 
objects of that type . The CallbackList also keeps track of any object manager filtering callbacks 
that are associated with this object type . The TypeInfo field stores the pointer to the data struc-
ture that stores attributes common to all objects of the object type as well as pointers to the 
object type’s methods:

lkd> ?? ((nt!_OBJECT_TYPE*)0xfffffa8002755b60)->TypeInfo*)0xfffffa8002755b60)->TypeInfo 
   +0x000 Length           : 0x70 
   +0x002 ObjectTypeFlags  : 0x4a 'J' 
   +0x002 CaseInsensitive  : 0y0 
   +0x002 UnnamedObjectsOnly : 0y1 
   +0x002 UseDefaultObject : 0y0 
   +0x002 SecurityRequired : 0y1 
   +0x002 MaintainHandleCount : 0y0 
   +0x002 MaintainTypeList : 0y0 
   +0x002 SupportsObjectCallbacks : 0y1 
   +0x004 ObjectTypeCode   : 0 
   +0x008 InvalidAttributes : 0xb0 
   +0x00c GenericMapping   : _GENERIC_MAPPING 
   +0x01c ValidAccessMask  : 0x1fffff 
   +0x020 RetainAccess     : 0x101000 
   +0x024 PoolType         : 0 ( NonPagedPool ) 
   +0x028 DefaultPagedPoolCharge : 0x1000 
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   +0x02c DefaultNonPagedPoolCharge : 0x528 
   +0x030 DumpProcedure    : (null)  
   +0x038 OpenProcedure    : 0xfffff800'01d98d58     long  nt!PspProcessOpen+0 
   +0x040 CloseProcedure   : 0xfffff800'01d833c4     void  nt!PspProcessClose+0 
   +0x048 DeleteProcedure  : 0xfffff800'01d83090     void  nt!PspProcessDelete+0 
   +0x050 ParseProcedure   : (null)  
   +0x058 SecurityProcedure : 0xfffff800'01d8bb50     long  nt!SeDefaultObjectMethod+0 
   +0x060 QueryNameProcedure : (null)  
   +0x068 OkayToCloseProcedure : (null)

Type objects can’t be manipulated from user mode because the object manager supplies no 
 services for them. However, some of the attributes they define are visible through certain  native 
 services and through Windows API routines . The information stored in the type initializers is  described 
in Table 3-14 .

TABLE 3-14 Type Initializer Fields

Attribute Purpose

Type name The name for objects of this type (“process,” “event,” “port,” and so on) .

Pool type Indicates whether objects of this type should be allocated from paged or 
 nonpaged memory .

Default quota charges Default paged and nonpaged pool values to charge to process quotas .

Valid access mask The types of access a thread can request when opening a handle to an object of 
this type (“read,” “write,” “terminate,” “suspend,” and so on) .

Generic access rights mapping A mapping between the four generic access rights (read, write, execute, and all) 
to the type-specific access rights.

Flags Indicate whether objects must never have names (such as process objects), 
whether their names are case-sensitive, whether they require a security descriptor, 
whether they support object-filtering callbacks, and whether a handle database 
(handle information subheader) and/or a type-list linkage (creator information 
subheader) should be maintained . The use default object flag also defines the 
behavior for the default object field shown later in this table.

Object type code Used to describe the type of object this is (versus comparing with a well-known 
name value) . File objects set this to 1, synchronization objects set this to 2, 
and thread objects set this to 4. This field is also used by ALPC to store handle 
 attribute information associated with a message .

Invalid attributes Specifies object attribute flags (shown earlier in Table 3-12) that are invalid for this 
object type .

Default object Specifies the internal object manager event that should be used during waits for 
this object, if the object type creator requested one . Note that certain objects, 
such as File objects and ALPC port objects already contain their own embedded 
dispatcher object; in this case, this field is an offset into the object body. For ex-
ample, the event inside the FILE_OBJECT structure is embedded in a field called 
Event .

Methods One or more routines that the object manager calls automatically at certain 
points in an object’s lifetime .
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Synchronization, one of the attributes visible to Windows applications, refers to a thread’s ability 
to synchronize its execution by waiting for an object to change from one state to another . A thread 
can synchronize with executive job, process, thread, file, event, semaphore, mutex, and timer objects. 
Other executive objects don’t support synchronization . An object’s ability to support synchronization 
is based on three possibilities:

 ■ The executive object is a wrapper for a dispatcher object and contains a dispatcher header, a 
kernel structure that is covered in the section “Low-IRQL Synchronization” later in this chapter .

 ■ The creator of the object type requested a default object, and the object manager provided 
one .

 ■ The executive object has an embedded dispatcher object, such as an event somewhere inside 
the object body, and the object’s owner supplied its offset to the object manager when 
 registering the object type (described in Table 3-14) .

Object Methods
The last attribute in Table 3-14, methods, comprises a set of internal routines that are similar to C++ 
constructors and destructors—that is, routines that are automatically called when an object is created 
or destroyed . The object manager extends this idea by calling an object method in other situations 
as well, such as when someone opens or closes a handle to an object or when someone attempts to 
change the protection on an object . Some object types specify methods whereas others don’t, de-
pending on how the object type is to be used .

When an executive component creates a new object type, it can register one or more methods 
with the object manager. Thereafter, the object manager calls the methods at well-defined points in 
the lifetime of objects of that type, usually when an object is created, deleted, or modified in some 
way . The methods that the object manager supports are listed in Table 3-15 .

The reason for these object methods is to address the fact that, as you’ve seen, certain object 
operations are generic (close, duplicate, security, and so on) . Fully generalizing these generic routines 
would have required the designers of the object manager to anticipate all object types . However, the 
routines to create an object type are exported by the kernel, enabling external kernel components to 
create their own object types . Although this functionality is not documented for driver developers, 
it is internally used by Win32k.sys to define WindowStation and Desktop objects. Through object- 
method extensibility, Win32k.sys defines its routines for handling operations such as create and query. 

One exception to this rule is the security routine, which does, unless otherwise instructed, default 
to SeDefaultObjectMethod . This routine does not need to know the internal structure of the object 
because it deals only with the security descriptor for the object, and you’ve seen that the pointer to 
the security descriptor is stored in the generic object header, not inside the object body . However, if 
an object does require its own additional security checks, it can define a custom security routine. The 
other reason for having a generic security method is to avoid complexity, because most objects rely 
on the security reference monitor to manage their security .
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TABLE 3-15 Object Methods

Method When Method Is Called

Open When an object handle is opened

Close When an object handle is closed

Delete Before the object manager deletes an object

Query name When a thread requests the name of an object, such as a file, that exists in a secondary object 
namespace

Parse When the object manager is searching for an object name that exists in a secondary object 
namespace

Dump Not used

Okay to close When the object manager is instructed to close a handle

Security When a process reads or changes the protection of an object, such as a file, that exists in a 
 secondary object namespace

The object manager calls the open method whenever it creates a handle to an object, which it 
does when an object is created or opened . The WindowStation and Desktop objects provide an open 
method; for example, the WindowStation object type requires an open method so that Win32k .sys 
can share a piece of memory with the process that serves as a desktop-related memory pool .

An example of the use of a close method occurs in the I/O system . The I/O manager registers 
a close method for the file object type, and the object manager calls the close method each time 
it closes a file object handle. This close method checks whether the process that is closing the file 
handle owns any outstanding locks on the file and, if so, removes them. Checking for file locks isn’t 
something the object manager itself can or should do .

The object manager calls a delete method, if one is registered, before it deletes a temporary 
object from memory . The memory manager, for example, registers a delete method for the section 
object type that frees the physical pages being used by the section. It also verifies that any internal 
data structures the memory manager has allocated for a section are deleted before the section object 
is deleted . Once again, the object manager can’t do this work because it knows nothing about the 
internal workings of the memory manager . Delete methods for other types of objects perform similar 
functions .

The parse method (and similarly, the query name method) allows the object manager to relinquish 
control of finding an object to a secondary object manager if it finds an object that exists outside 
the object manager namespace . When the object manager looks up an object name, it suspends its 
search when it encounters an object in the path that has an associated parse method . The object 
manager calls the parse method, passing to it the remainder of the object name it is looking for . 
There are two namespaces in Windows in addition to the object manager’s: the registry namespace, 
which the configuration manager implements, and the file system namespace, which the I/O manager 
implements with the aid of file system drivers. (See Chapter 4, “Management Mechanisms,” for more 
information on the configuration manager and Chapter 8 in Part 2 for more details about the I/O 
manager and file system drivers.)
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For example, when a process opens a handle to the object named \Device\HarddiskVolume1\docs 
\resume.doc, the object manager traverses its name tree until it reaches the device object named 
HarddiskVolume1 . It sees that a parse method is associated with this object, and it calls the method, 
passing to it the rest of the object name it was searching for—in this case, the string docs\resume.doc . 
The parse method for device objects is an I/O routine because the I/O manager defines the device 
object type and registers a parse method for it . The I/O manager’s parse routine takes the name 
string and passes it to the appropriate file system, which finds the file on the disk and opens it.

The security method, which the I/O system also uses, is similar to the parse method . It is called 
whenever a thread tries to query or change the security information protecting a file. This information 
is different for files than for other objects because security information is stored in the file itself rather 
than in memory. The I/O system, therefore, must be called to find the security information and read 
or change it .

Finally, the okay-to-close method is used as an additional layer of protection around the mali-
cious—or incorrect—closing of handles being used for system purposes . For example, each process 
has a handle to the Desktop object or objects on which its thread or threads have windows visible . 
Under the standard security model, it is possible for those threads to close their handles to their 
desktops because the process has full control of its own objects . In this scenario, the threads end up 
without a desktop associated with them—a violation of the windowing model . Win32k .sys registers 
an okay-to-close routine for the Desktop and WindowStation objects to prevent this behavior .

Object Handles and the Process Handle Table
When a process creates or opens an object by name, it receives a handle that represents its access 
to the object . Referring to an object by its handle is faster than using its name because the object 
manager can skip the name lookup and find the object directly. Processes can also acquire handles to 
objects by inheriting handles at process creation time (if the creator specifies the inherit handle flag 
on the CreateProcess call and the handle was marked as inheritable, either at the time it was cre-
ated or afterward by using the Windows SetHandleInformation function) or by receiving a duplicated 
handle from another process . (See the Windows DuplicateHandle function .)

All user-mode processes must own a handle to an object before their threads can use the object . 
Using handles to manipulate system resources isn’t a new idea . C and Pascal (an older programming 
language similar to Delphi) run-time libraries, for example, return handles to opened files. Handles 
serve as indirect pointers to system resources; this indirection keeps application programs from 
 fiddling directly with system data structures.

Object handles provide additional benefits. First, except for what they refer to, there is no 
 difference between a file handle, an event handle, and a process handle. This similarity provides a 
consistent interface to reference objects, regardless of their type . Second, the object manager has 
the exclusive right to create handles and to locate an object that a handle refers to . This means that 
the object manager can scrutinize every user-mode action that affects an object to see whether the 
security profile of the caller allows the operation requested on the object in question.
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Note Executive components and device drivers can access objects directly because they 
are running in kernel mode and therefore have access to the object structures in system 
memory . However, they must declare their usage of the object by incrementing the refer-
ence count so that the object won’t be de-allocated while it’s still being used . (See the 
section “Object Retention” later in this chapter for more details .) To successfully make use 
of this object, however, device drivers need to know the internal structure definition of the 
object, and this is not provided for most objects . Instead, device drivers are encouraged to 
use the appropriate kernel APIs to modify or read information from the object . For exam-
ple, although device drivers can get a pointer to the Process object (EPROCESS), the struc-
ture is opaque, and Ps* APIs must be used . For other objects, the type itself is opaque (such 
as most executive objects that wrap a dispatcher object—for example, events or mutexes) . 
For these objects, drivers must use the same system calls that user-mode applications end 
up calling (such as ZwCreateEvent) and use handles instead of object pointers .

EXPERIMENT: Viewing Open Handles
Run Process Explorer, and make sure the lower pane is enabled and configured to show open 
handles . (Click on View, Lower Pane View, and then Handles) . Then open a command prompt 
and view the handle table for the new Cmd.exe process. You should see an open file handle to 
the current directory. For example, assuming the current directory is C:\Users\Administrator, 
Process Explorer shows the following:

Now pause Process Explorer by pressing the space bar or clicking on View, Update Speed 
and choosing Pause . Then change the current directory with the cd command and press F5 
to refresh the display . You will see in Process Explorer that the handle to the previous current 
 directory is closed and a new handle is opened to the new current directory . The previous 
handle is highlighted in red and the new handle is highlighted in green . 
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Process Explorer’s differences-highlighting feature makes it easy to see changes in the 
handle table . For example, if a process is leaking handles, viewing the handle table with Process 
Explorer can quickly show what handle or handles are being opened but not closed . (Typically, 
you see a long list of handles to the same object .) This information can help the programmer 
find the handle leak.

Resource Monitor also shows open handles to named handles for the processes you select 
by checking the boxes next to their names . Here are the command prompt’s open handles:

You can also display the open handle table by using the command-line Handle tool from 
Sysinternals. For example, note the following partial output of Handle when examining the file 
object handles located in the handle table for a Cmd .exe process before and after changing 
the directory. By default, Handle filters out nonfile handles unless the –a switch is used, which 
displays all the handles in the process, similar to Process Explorer .

C:\>handle -p cmd.exe 
 
Handle v3.46 
Copyright (C) 1997-2011 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
------------------------------------------------------------------------------ 
cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu 
   3C: File  (R-D)   C:\Windows\System32\en-US\KernelBase.dll.mui 
   44: File  (RW-)   C:\ 
 
C:\>cd windows 
 
C:\Windows>handle -p cmd.exe 
 
Handle v3.46 
Copyright (C) 1997-2011 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
------------------------------------------------------------------------------ 
cmd.exe pid: 5124 Alex-Laptop\Alex Ionescu 
   3C: File  (R-D)   C:\Windows\System32\en-US\KernelBase.dll.mui 
   40: File  (RW-)   C:\Windows
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An object handle is an index into a process-specific handle table, pointed to by the executive 
process (EPROCESS) block (described in Chapter 5). The first handle index is 4, the second 8, and so 
on . A process’ handle table contains pointers to all the objects that the process has opened a handle 
to . Handle tables are implemented as a three-level scheme, similar to the way that the x86 memory 
management unit implements virtual-to-physical address translation, giving a maximum of more than 
16,000,000 handles per process . (See Chapter 10 in Part 2 for details about memory management in 
x86 systems .)

Note With a three-table scheme, the top-level table can contain a page full of pointers to 
mid-level tables, allowing for well over half a billion handles . However, to maintain compat-
ibility with Windows 2000’s handle scheme and inherent limitation of 16,777,216 handles, 
the top-level table only contains up to a maximum of 32 pointers to the mid-level tables, 
capping newer versions of Windows at the same limit .

Only the lowest-level handle table is allocated on process creation—the other levels are created 
as needed. The subhandle table consists of as many entries as will fit in a page minus one entry that 
is used for handle auditing . For example, for x86 systems a page is 4096 bytes, divided by the size 
of a handle table entry (8 bytes), which is 512, minus 1, which is a total of 511 entries in the lowest-
level handle table . The mid-level handle table contains a full page of pointers to subhandle tables, 
so the number of subhandle tables depends on the size of the page and the size of a pointer for the 
 platform . Figure 3-21 describes the handle table layout on Windows .

Process

Handle
table

Top-level
pointers

Middle-level
pointers

Subhandle
table

FIGURE 3-21 Windows process handle table architecture 
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EXPERIMENT: Creating the Maximum Number of Handles
The test program Testlimit from Sysinternals has an option to open handles to an object until it 
cannot open any more handles . You can use this to see how many handles can be created in a 
single process on your system . Because handle tables are allocated from paged pool, you might 
run out of paged pool before you hit the maximum number of handles that can be created in a 
single process . To see how many handles you can create on your system, follow these steps:

1. Download the Testlimit executable file corresponding to the 32/64 bit Windows you 
need from http://live.sysinternals.com/WindowsInternals .

2. Run Process Explorer, click View and then System Information, and then click on the 
Memory tab . Notice the current and maximum size of paged pool . (To display the 
maximum pool size values, Process Explorer must be configured properly to access 
the symbols for the kernel image, Ntoskrnl .exe .) Leave this system information display 
 running so that you can see pool utilization when you run the Testlimit program .

3. Open a command prompt .

4. Run the Testlimit program with the –h switch (do this by typing testlimit –h) . When 
Testlimit fails to open a new handle, it displays the total number of handles it was 
able to create . If the number is less than approximately 16 million, you are probably 
 running out of paged pool before hitting the theoretical per-process handle limit .

5. Close the Command Prompt window; doing this kills the Testlimit process, thus closing 
all the open handles .

As shown in Figure 3-22, on x86 systems, each handle entry consists of a structure with two 32-bit 
members: a pointer to the object (with flags), and the granted access mask. On 64-bit systems, a 
handle table entry is 12 bytes long: a 64-bit pointer to the object header and a 32-bit access mask . 
(Access masks are described in Chapter 6, “Security .”)

Audit on close

Lock
Inheritable

IAPointer to object header

Access mask

32 bits

Protect from close

P

L

FIGURE 3-22 Structure of a handle table entry 
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The first flag is a lock bit, indicating whether the entry is currently in use. The second flag is the 
inheritance designation—that is, it indicates whether processes created by this process will get a 
copy of this handle in their handle tables. As already noted, handle inheritance can be specified on 
handle creation or later with the SetHandleInformation function. The third flag indicates whether 
closing the object should generate an audit message. (This flag isn’t exposed to Windows—the object 
manager uses it internally .) Finally, the protect-from-close bit, stored in an unused portion of the 
access mask, indicates whether the caller is allowed to close this handle. (This flag can be set with the 
 NtSetInformationObject system call .)

System components and device drivers often need to open handles to objects that user-mode 
applications shouldn’t have access to . This is done by creating handles in the kernel handle table 
 (referenced internally with the name ObpKernelHandleTable) . The handles in this table are acces-
sible only from kernel mode and in any process context . This means that a kernel-mode function can 
 reference the handle in any process context with no performance impact . The object manager recog-
nizes references to handles from the kernel handle table when the high bit of the handle is set—that 
is, when references to kernel-handle-table handles have values greater than 0x80000000 . The kernel 
handle table also serves as the handle table for the System process, and all handles created by the 
System process (such as code running in system threads) are automatically marked as kernel handles 
because they live in the kernel handle table by definition.

EXPERIMENT: Viewing the Handle Table with the Kernel Debugger
The !handle command in the kernel debugger takes three arguments:

!handle <handle index> <flags> <processid>

The handle index identifies the handle entry in the handle table. (Zero means “display all 
handles.”) The first handle is index 4, the second 8, and so on. For example, typing !handle 4 
will show the first handle for the current process.

The flags you can specify are a bitmask, where bit 0 means “display only the information in 
the handle entry,” bit 1 means “display free handles (not just used handles),” and bit 2 means 
“display information about the object that the handle refers to .” The following command 
 displays full details about the handle table for process ID 0x62C:

lkd> !handle 0 7 62c 
processor number 0, process 000000000000062c 
Searching for Process with Cid == 62c 
PROCESS fffffa80052a7060 
    SessionId: 1  Cid: 062c    Peb: 7fffffdb000  ParentCid: 0558 
    DirBase: 7e401000  ObjectTable: fffff8a00381fc80  HandleCount: 111. 
    Image: windbg.exe 
 
Handle table at fffff8a0038fa000 with 113 Entries in use 
0000: free handle, Entry address fffff8a0038fa000, Next Entry 00000000fffffffe 
0004: Object: fffff8a005022b70  GrantedAccess: 00000003 Entry: fffff8a0038fa010 
Object: fffff8a005022b70  Type: (fffffa8002778f30) Directory 
    ObjectHeader: fffff8a005022b40fffff8a005022b40 (new version) 
        HandleCount: 25  PointerCount: 63 
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        Directory Object: fffff8a000004980  Name: KnownDlls 
 
0008: Object: fffffa8005226070  GrantedAccess: 00100020 Entry: fffff8a0038fa020 
Object: fffffa8005226070  Type: (fffffa80027b3080) File 
    ObjectHeader: fffffa8005226040fffffa8005226040 (new version) 
        HandleCount: 1  PointerCount: 1 
        Directory Object: 00000000  Name: \Program Files\Debugging Tools for Windows (x64) 
{HarddiskVolume2}

EXPERIMENT: Searching for Open Files with the Kernel Debugger
Although you can use Process Explorer, Handle, and the OpenFiles .exe utility to search for 
open file handles, these tools are not available when looking at a crash dump or analyzing a 
system remotely . You can instead use the !devhandles command to search for handles opened 
to files on a specific volume. (See Chapter 8 in Part 2 for more information on devices, files, and 
volumes .)

1. First you need to pick the drive letter you are interested in and obtain the pointer to 
its Device object. You can use the !object command as shown here:

1: kd> !object \Global??\C:  
Object: fffff8a00016ea40  Type: (fffffa8000c38bb0) SymbolicLink 
    ObjectHeader: fffff8a00016ea10 (new version) 
    HandleCount: 0  PointerCount: 1 
    Directory Object: fffff8a000008060  Name: C: 
    Target String is '\Device\HarddiskVolume1' 
    Drive Letter Index is 3 (C:)

2. Next use the !object command to get the Device object of the target volume name: 

1: kd> !object \Device\HarddiskVolume1 
Object: fffffa8001bd3cd0  Type: (fffffa8000ca0750) Device

3. Now you can use the pointer of the Device object with the !devhandles command . 
Each object shown points to a file:

!devhandles fffffa8001bd3cd0 
Checking handle table for process 0xfffffa8000c819e0 
Kernel handle table at fffff8a000001830 with 434 entries in use 
  
PROCESS fffffa8000c819e0 
    SessionId: none  Cid: 0004    Peb: 00000000  ParentCid: 0000 
    DirBase: 00187000  ObjectTable: fffff8a000001830  HandleCount: 434. 
    Image: System 
 
0048: Object: fffffa8001d4f2a0  GrantedAccess: 0013008b Entry: fffff8a000003120 
Object: fffffa8001d4f2a0  Type: (fffffa8000ca0360) File 
    ObjectHeader: fffffa8001d4f270 (new version) 
        HandleCount: 1  PointerCount: 19 
        Directory Object: 00000000  Name: \Windows\System32\LogFiles\WMI\
RtBackup\EtwRTEventLog-Application.etl {HarddiskVolume1}
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Reserve Objects
Because objects represent anything from events to files to interprocess messages, the ability for 
 applications and kernel code to create objects is essential to the normal and desired runtime behavior 
of any piece of Windows code . If an object allocation fails, this usually causes anywhere from loss of 
functionality (the process cannot open a file) to data loss or crashes (the process cannot allocate a 
synchronization object) . Worse, in certain situations, the reporting of errors that led to object creation 
failure might themselves require new objects to be allocated . Windows implements two special 
 reserve objects to deal with such situations: the User APC reserve object and the I/O Completion 
packet reserve object . Note that the reserve-object mechanism itself is fully extensible, and future 
versions of Windows might add other reserve object types—from a broad view, the reserve object is a 
mechanism enabling any kernel-mode data structure to be wrapped as an object (with an associated 
handle, name, and security) for later use .

As was discussed in the APC section earlier in this chapter, APCs are used for operations such as 
suspension, termination, and I/O completion, as well as communication between user-mode applica-
tions that want to provide asynchronous callbacks . When a user-mode application requests a User 
APC to be targeted to another thread, it uses the QueueUserApc API in Kernelbase .dll, which calls 
the NtQueueUserApcThread system call . In the kernel, this system call attempts to allocate a piece 
of paged pool in which to store the KAPC control object structure associated with an APC . In low- 
memory situations, this operation fails, preventing the delivery of the APC, which, depending on what 
the APC was used for, could cause loss of data or functionality .

To prevent this, the user-mode application, can, on startup, use the NtAllocateReserveObject 
system call to request the kernel to pre-allocate the KAPC structure . Then the application uses a 
 different system call, NtQueueUserApcThreadEx, that contains an extra parameter that is used to store 
the handle to the reserve object . Instead of allocating a new structure, the kernel attempts to acquire 
the reserve object (by setting its InUse bit to true) and use it until the KAPC object is not needed 
anymore, at which point the reserve object is released back to the system . Currently, to prevent mis-
management of system resources by third-party developers, the reserve object API is available only 
internally through system calls for operating system components . For example, the RPC library uses 
reserved APC objects to guarantee asynchronous callbacks will still be able to return in low-memory 
situations .

A similar scenario can occur when applications need failure-free delivery of an I/O  completion 
port message, or packet . Typically, packets are sent with the PostQueuedCompletionStatus API 
in  Kernelbase .dll, which calls the NtSetIoCompletion API . Similarly to the user APC, the kernel 
must allocate an I/O manager structure to contain the completion-packet information, and if this 
 allocation fails, the packet cannot be created . With reserve objects, the application can use the 
 NtAllocateReserveObject API on startup to have the kernel pre-allocate the I/O completion packet, 
and the NtSetIoCompletionEx system call can be used to supply a handle to this reserve object, 
 guaranteeing a success path . Just like User APC reserve objects, this functionality is reserved for 
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system components and is used both by the RPC library and the Windows Peer-To-Peer BranchCache 
service (see Chapter 7, “Networking,” for more information on networking) to guarantee completion 
of asynchronous I/O operations .

Object Security
When you open a file, you must specify whether you intend to read or to write. If you try to write to a 
file that is opened for read access, you get an error. Likewise, in the executive, when a process creates 
an object or opens a handle to an existing object, the process must specify a set of desired  access 
rights—that is, what it wants to do with the object . It can request either a set of standard access rights 
(such as read, write, and execute) that apply to all object types or specific access rights that vary 
 depending on the object type . For example, the process can request delete access or append access 
to a file object. Similarly, it might require the ability to suspend or terminate a thread object.

When a process opens a handle to an object, the object manager calls the security reference 
monitor, the kernel-mode portion of the security system, sending it the process’ set of desired  access 
rights . The security reference monitor checks whether the object’s security descriptor permits the 
type of access the process is requesting . If it does, the reference monitor returns a set of granted 
 access rights that the process is allowed, and the object manager stores them in the object handle it 
creates . How the security system determines who gets access to which objects is explored in Chapter 6 .

Thereafter, whenever the process’ threads use the handle through a service call, the object 
 manager can quickly check whether the set of granted access rights stored in the handle corresponds 
to the usage implied by the object service the threads have called . For example, if the caller asked for 
read access to a section object but then calls a service to write to it, the service fails .

EXPERIMENT: Looking at Object Security
You can look at the various permissions on an object by using either Process Explorer, WinObj, 
or AccessCheck, which are all tools from Sysinternals . Let’s look at different ways you can display 
the access control list (ACL) for an object:

 ■ You can use WinObj to navigate to any object on the system, including object directories, 
right-click on the object, and select Properties . For example, select the BaseNamedObjects 
directory, select Properties, and click on the Security tab . You should see a dialog box 
similar to the one shown next .

By examining the settings in the dialog box, you can see that the Everyone group doesn’t 
have delete access to the directory, for example, but the SYSTEM account does (because 
this is where session 0 services with SYSTEM privileges will store their objects) . 
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 ■ Instead of using WinObj, you can view the handle table of a process using Process 
 Explorer, as shown in the experiment “Viewing Open Handles” earlier in the chapter . Look 
at the handle table for the Explorer .exe process . You should notice a Directory object 
handle to the \Sessions\n\BaseNamedObjects directory. (We’ll describe the per-session 
namespace shortly .) You can double-click on the object handle and then click on the 
 Security tab and see a similar dialog box (with more users and rights granted) . Process 
Explorer cannot decode the specific object directory access rights, so all you’ll see are 
generic rights .

 ■ Finally, you can use AccessCheck to query the security information of any object by using 
the –o switch as shown in the following output . Note that using AccessCheck will also 
show you the integrity level of the object . (See Chapter 6 for more information on integrity 
levels and the security reference monitor .)

C:\Windows>accesschk -o \Sessions\1\BaseNamedObjects 
 
Accesschk v5.02 - Reports effective permissions for securable objects 
Copyright (C) 2006-2011 Mark Russinovich 
Sysinternals - www.sysinternals.com  
 
\sessions\2\BaseNamedObjects 
  Type: Directory 
  RW NT AUTHORITY\SYSTEM 
  RW NTDEV\markruss 
  RW NTDEV\S-1-5-5-0-5491067-markruss 
  RW BUILTIN\Administrators 
  R  Everyone 
     NT AUTHORITY\RESTRICTED
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Windows also supports Ex (Extended) versions of the APIs—CreateEventEx, CreateMutexEx, 
 CreateSemaphoreEx—that add another argument for specifying the access mask . This makes it 
 possible for applications to properly use discretionary access control lists (DACLs) to secure their 
 objects without breaking their ability to use the create object APIs to open a handle to them . You 
might be wondering why a client application would not simply use OpenEvent, which does support 
a desired access argument . Using the open object APIs leads to an inherent race condition when 
dealing with a failure in the open call—that is, when the client application has attempted to open 
the event before it has been created . In most applications of this kind, the open API is followed by a 
create API in the failure case . Unfortunately, there is no guaranteed way to make this create operation 
atomic—in other words, to occur only once . Indeed, it would be possible for multiple threads  
and/or processes to have executed the create API concurrently and all attempt to create the event at 
the same time . This race condition and the extra complexity required to try and handle it makes using 
the open object APIs an inappropriate solution to the problem, which is why the Ex APIs should be 
used instead .

Object Retention
There are two types of objects: temporary and permanent . Most objects are temporary—that is, 
they remain while they are in use and are freed when they are no longer needed . Permanent objects 
remain until they are explicitly freed . Because most objects are temporary, the rest of this section 
describes how the object manager implements object retention—that is, retaining temporary objects 
only as long as they are in use and then deleting them . Because all user-mode processes that ac-
cess an object must first open a handle to it, the object manager can easily track how many of these 
processes, and even which ones, are using an object . Tracking these handles represents one part of 
implementing retention. The object manager implements object retention in two phases. The first 
phase is called name retention, and it is controlled by the number of open handles to an object that 
exist . Every time a process opens a handle to an object, the object manager increments the open 
handle counter in the object’s header. As processes finish using the object and close their handles to 
it, the object manager decrements the open handle counter . When the counter drops to 0, the object 
manager deletes the object’s name from its global namespace . This deletion prevents processes from 
opening a handle to the object .

The second phase of object retention is to stop retaining the objects themselves (that is, to delete 
them) when they are no longer in use . Because operating system code usually accesses objects by 
using pointers instead of handles, the object manager must also record how many object pointers it 
has dispensed to operating system processes . It increments a reference count for an object each time 
it gives out a pointer to the object; when kernel-mode components finish using the pointer, they call 
the object manager to decrement the object’s reference count . The system also increments the refer-
ence count when it increments the handle count, and likewise decrements the reference count when 
the handle count decrements, because a handle is also a reference to the object that must be tracked . 

Figure 3-23 illustrates two event objects that are in use. Process A has the first event open. 
 Process B has both events open. In addition, the first event is being referenced by some kernel-mode 
structure; thus, the reference count is 3. So even if Processes A and B closed their handles to the first 
event object, it would continue to exist because its reference count is 1 . However, when Process B 
closes its handle to the second event object, the object would be deallocated .
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So even after an object’s open handle counter reaches 0, the object’s reference count might 
remain positive, indicating that the operating system is still using the object . Ultimately, when the 
reference count drops to 0, the object manager deletes the object from memory . This deletion has 
to respect certain rules and also requires cooperation from the caller in certain cases . For example, 
because objects can be present both in paged or nonpaged pool memory (depending on the settings 
located in their object type), if a dereference occurs at an IRQL level of dispatch or higher and this 
dereference causes the pointer count to drop to 0, the system would crash if it attempted to imme-
diately free the memory of a paged-pool object . (Recall that such access is illegal because the page 
fault will never be serviced .) In this scenario, the object manager performs a deferred delete opera-
tion, queuing the operation on a worker thread running at passive level (IRQL 0) . We’ll describe more 
about system worker threads later in this chapter . 

Another scenario that requires deferred deletion is when dealing with Kernel Transaction  Manager 
(KTM) objects . In some scenarios, certain drivers might hold a lock related to this object, and 
 attempting to delete the object will result in the system attempting to acquire this lock . However, 
the driver might never get the chance to release its lock, causing a deadlock . When dealing with 
KTM  objects, driver developers must use ObDereferenceObjectDeferDelete to force deferred dele-
tion regardless of IRQL level . Finally, the I/O manager also uses this mechanism as an optimization so 
that certain I/Os can complete more quickly, instead of waiting for the object manager to delete the 
object .
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DuplicateHandle
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FIGURE 3-23 Handles and reference counts
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Because of the way object retention works, an application can ensure that an object and its name 
remain in memory simply by keeping a handle open to the object . Programmers who write appli-
cations that contain two or more cooperating processes need not be concerned that one process 
might delete an object before the other process has finished using it. In addition, closing an applica-
tion’s object handles won’t cause an object to be deleted if the operating system is still using it . For 
example, one process might create a second process to execute a program in the background; it 
then immediately closes its handle to the process . Because the operating system needs the second 
process to run the program, it maintains a reference to its process object . Only when the background 
program finishes executing does the object manager decrement the second process’ reference count 
and then delete it .

Because object leaks can be dangerous to the system by leaking kernel pool memory and 
 eventually causing systemwide memory starvation—and can also break applications in subtle ways—
Windows includes a number of debugging mechanisms that can be enabled to monitor, analyze, and 
debug issues with handles and objects . Additionally, Debugging Tools for Windows come with two 
extensions that tap into these mechanisms and provide easy graphical analysis . Table 3-16 describes 
them .

TABLE 3-16 Debugging Mechanisms for Object Handles

Mechanism Enabled By Kernel Debugger Extension

Handle Tracing 
Database

Kernel Stack Trace systemwide and/or per-process 
with the User Stack Trace option checked with 
Gflags.exe.

!htrace <handle value> <process ID>

Object Reference 
Tracing

Per-process-name(s), or per-object-type-pool-tag(s), 
with Gflags.exe, under Object Reference Tracing.

!obtrace <object pointer>

Object Reference 
Tagging

Drivers must call appropriate API . N/A

Enabling the handle-tracing database is useful when attempting to understand the use of each 
handle within an application or the system context . The !htrace debugger extension can display the 
stack trace captured at the time a specified handle was opened. After you discover a handle leak, the 
stack trace can pinpoint the code that is creating the handle, and it can be analyzed for a missing call 
to a function such as CloseHandle .

The object-reference-tracing !obtrace extension monitors even more by showing the stack trace 
for each new handle created as well as each time a handle is referenced by the kernel (and also each 
time it is opened, duplicated, or inherited) and dereferenced . By analyzing these patterns, misuse 
of an object at the system level can be more easily debugged . Additionally, these reference traces 
provide a way to understand the behavior of the system when dealing with certain objects . Tracing 
processes, for example, display references from all the drivers on the system that have registered call-
back notifications (such as Process Monitor) and help detect rogue or buggy third-party drivers that 
might be referencing handles in kernel mode but never dereferencing them .
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Note When enabling object-reference tracing for a specific object type, you can obtain 
the name of its pool tag by looking at the key member of the OBJECT_TYPE structure 
when using the dt command . Each object type on the system has a global variable that 
 references this structure—for example, PsProcessType . Alternatively, you can use the !object 
command, which displays the pointer to this structure .

Unlike the previous two mechanisms, object-reference tagging is not a debugging feature that 
must be enabled with global flags or the debugger, but rather a set of APIs that should be used by 
device-driver developers to reference and dereference objects, including ObReferenceObjectWith-
Tag and ObDereferenceObjectWithTag. Similar to pool tagging (see Chapter 10 in Part 2 for more 
information on pool tagging), these APIs allow developers to supply a four-character tag identifying 
each  reference/dereference pair . When using the !obtrace extension just described, the tag for each 
reference or dereference operation is also shown, which avoids solely using the call stack as a mecha-
nism to identify where leaks or under-references might occur, especially if a given call is performed 
 thousands of times by the driver .

Resource Accounting
Resource accounting, like object retention, is closely related to the use of object handles . A positive 
open handle count indicates that some process is using that resource . It also indicates that some 
process is being charged for the memory the object occupies . When an object’s handle count and 
reference count drop to 0, the process that was using the object should no longer be charged for it .

Many operating systems use a quota system to limit processes’ access to system resources . 
 However, the types of quotas imposed on processes are sometimes diverse and complicated, and the 
code to track the quotas is spread throughout the operating system . For example, in some operating 
systems, an I/O component might record and limit the number of files a process can open, whereas a 
memory component might impose a limit on the amount of memory a process’ threads can allocate . 
A process component might limit users to some maximum number of new processes they can create 
or a maximum number of threads within a process . Each of these limits is tracked and enforced in 
 different parts of the operating system .

In contrast, the Windows object manager provides a central facility for resource accounting . Each 
object header contains an attribute called quota charges that records how much the object manager 
subtracts from a process’ allotted paged and/or nonpaged pool quota when a thread in the process 
opens a handle to the object .

Each process on Windows points to a quota structure that records the limits and current values 
for nonpaged-pool, paged-pool, and page-file usage. These quotas default to 0 (no limit) but can be 
specified by modifying registry values. (You need to add/edit NonPagedPoolQuota, PagedPoolQuota, 
and PagingFileQuota under HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory 
Management .) Note that all the processes in an interactive session share the same quota block (and 
there’s no documented way to create processes with their own quota blocks) .
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Object Names
An important consideration in creating a multitude of objects is the need to devise a successful 
 system for keeping track of them . The object manager requires the following information to help you 
do so:

 ■ A way to distinguish one object from another

 ■ A method for finding and retrieving a particular object

The first requirement is served by allowing names to be assigned to objects. This is an extension 
of what most operating systems provide—the ability to name selected resources, files, pipes, or a 
block of shared memory, for example . The executive, in contrast, allows any resource represented by 
an object to have a name. The second requirement, finding and retrieving an object, is also satisfied 
by object names. If the object manager stores objects by name, it can find an object by looking up its 
name .

Object names also satisfy a third requirement, which is to allow processes to share objects . The 
 executive’s object namespace is a global one, visible to all processes in the system . One process 
can create an object and place its name in the global namespace, and a second process can open a 
handle to the object by specifying the object’s name . If an object isn’t meant to be shared in this way, 
its creator doesn’t need to give it a name .

To increase efficiency, the object manager doesn’t look up an object’s name each time someone 
uses the object. Instead, it looks up a name under only two circumstances. The first is when a process 
creates a named object: the object manager looks up the name to verify that it doesn’t already exist 
before storing the new name in the global namespace . The second is when a process opens a handle 
to a named object: the object manager looks up the name, finds the object, and then returns an 
object handle to the caller; thereafter, the caller uses the handle to refer to the object . When looking 
up a name, the object manager allows the caller to select either a case-sensitive or case-insensitive 
search, a feature that supports Subsystem for UNIX Applications and other environments that use 
case-sensitive file names.

Object Directories
The object directory object is the object manager’s means for supporting this hierarchical naming 
structure. This object is analogous to a file system directory and contains the names of other objects, 
possibly even other object directories . The object directory object maintains enough information to 
translate these object names into pointers to the objects themselves . The object manager uses the 
pointers to construct the object handles that it returns to user-mode callers . Both kernel-mode code 
(including executive components and device drivers) and user-mode code (such as subsystems) can 
create object directories in which to store objects . For example, the I/O manager creates an object 
directory named \Device, which contains the names of objects representing I/O devices.

Where the names of objects are stored depends on the object type . Table 3-17 lists the 
 standard object directories found on all Windows systems and what types of objects have their 
names stored there. Of the directories listed, only \BaseNamedObjects and \Global?? are visible to 
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 standard  Windows applications . (See the “Session Namespace” section later in this chapter for more 
 information .)

TABLE 3-17 Standard Object Directories

Directory Types of Object Names Stored

\ArcName Symbolic links mapping ARC-style paths to NT-style paths .

\BaseNamedObjects Global mutexes, events, semaphores, waitable timers, jobs, ALPC ports, symbolic 
links, and section objects . 

\Callback Callback objects .

\Device Device objects .

\Driver Driver objects .

\FileSystem File-system driver objects and file-system-recognizer device objects. The Filter 
Manager also creates its own device objects under the Filters subkey .

\GLOBAL?? MS-DOS device names. (The \Sessions\0\DosDevices\<LUID>\Global directories are 
symbolic links to this directory .)

\KernelObjects Contains event objects that signal low resource conditions, memory errors, the 
 completion of certain operating system tasks, as well as objects representing 
Sessions .

\KnownDlls Section names and path for known DLLs (DLLs mapped by the system at startup 
time) .

\KnownDlls32 On a 64-bit Windows installation, \KnownDlls contains the native 64-bit binaries, so 
this directory is used instead to store Wow64 32-bit versions of those DLLs .

\Nls Section names for mapped national language support tables .

\ObjectTypes Names of types of objects .

\PSXSS If Subsystem for UNIX Applications is enabled (through installation of the SUA 
 component), this contains ALPC ports used by Subsystem for UNIX Applications .

\RPC Control ALPC ports used by remote procedure calls (RPCs), and events used by Conhost .exe 
as part of the console isolation mechanism .

\Security ALPC ports and events used by names of objects specific to the security subsystem.

\Sessions Per-session namespace directory . (See the next subsection .)

\UMDFCommunicationPorts ALPC ports used by the User-Mode Driver Framework (UMDF) .

\Windows Windows subsystem ALPC ports, shared section, and window stations .

Because the base kernel objects such as mutexes, events, semaphores, waitable timers, and sec-
tions have their names stored in a single object directory, no two of these objects can have the same 
name, even if they are of a different type . This restriction emphasizes the need to choose names care-
fully so that they don’t collide with other names. For example, you could prefix names with a GUID 
and/or combine the name with the user’s security identifier (SID).

Object names are global to a single computer (or to all processors on a multiprocessor computer), 
but they’re not visible across a network . However, the object manager’s parse method makes it pos-
sible to access named objects that exist on other computers . For example, the I/O manager, which 
supplies file-object services, extends the functions of the object manager to remote files. When asked 
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to open a remote file object, the object manager calls a parse method, which allows the I/O manager 
to intercept the request and deliver it to a network redirector, a driver that accesses files across the 
network . Server code on the remote Windows system calls the object manager and the I/O manager 
on that system to find the file object and return the information back across the network.

One security consideration to keep in mind when dealing with named objects is the possibility of 
object name squatting . Although object names in different sessions are protected from each other, 
there’s no standard protection inside the current session namespace that can be set with the stan-
dard Windows API . This makes it possible for an unprivileged application running in the same session 
as a privileged application to access its objects, as described earlier in the object security subsec-
tion . Unfortunately, even if the object creator used a proper DACL to secure the object, this doesn’t 
help against the squatting attack, in which the unprivileged application creates the object before the 
 privileged application, thus denying access to the legitimate application .

Windows exposes the concept of a private namespace to alleviate this issue . It allows user-mode 
applications to create object directories through the CreatePrivateNamespace API and associate these 
directories with boundary descriptors, which are special data structures protecting the directories . 
These descriptors contain SIDs describing which security principals are allowed access to the object 
directory . In this manner, a privileged application can be sure that unprivileged applications will not 
be able to conduct a denial-of-service attack against its objects . (This doesn’t stop a privileged ap-
plication from doing the same, however, but this point is moot .) Additionally, a boundary descriptor 
can also contain an integrity level, protecting objects possibly belonging to the same user account as 
the application, based on the integrity level of the process . (See Chapter 6 for more information on 
integrity levels .)

EXPERIMENT: Looking at the Base Named Objects
You can see the list of base objects that have names with the WinObj tool from Sysinternals . 
Run Winobj.exe., and click on \BaseNamedObjects, as shown here:
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The named objects are shown on the right . The icons indicate the object type:

 ■ Mutexes are indicated with a lock sign .

 ■ Sections (Windows file-mapping objects) are shown as memory chips.

 ■ Events are shown as exclamation points .

 ■ Semaphores are indicated with an icon that resembles a traffic signal.

 ■ Symbolic links have icons that are curved arrows .

 ■ Folders indicate object directories .

 ■ Gears indicate other objects, such as ALPC ports .

EXPERIMENT: Tampering with Single Instancing
Applications such as Windows Media Player and those in Microsoft Office are common 
 examples of single-instancing enforcement through named objects . Notice that when launching 
the Wmplayer .exe executable, Windows Media Player appears only once—every other launch 
simply results in the window coming back into focus . You can tamper with the handle list by 
 using Process Explorer to turn the computer into a media mixer! Here’s how:

1. Launch Windows Media Player and Process Explorer to view the handle table (by 
 clicking View, Lower Pane View, and then Handles) . You should see a handle whose 
name column contains CheckForOtherInstanceMutex .

2. Right-click on the handle, and select Close Handle. Confirm the action when asked.

3. Now run Windows Media Player again . Notice that this time a second process is 
 created .
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4. Go ahead and play a different song in each instance . You can also use the Sound Mixer 
in the system tray (click on the Volume icon) to select which of the two processes will 
have greater volume, effectively creating a mixing environment .

Instead of closing a handle to a named object, an application could have run on its own 
before Windows Media Player and created an object with the same name . In this scenario, 
 Windows Media Player would never run, fooled into believing it was already running on the 
system .

Symbolic Links In certain file systems (on NTFS and some UNIX systems, for example), a symbolic 
link lets a user create a file name or a directory name that, when used, is translated by the operating 
system into a different file or directory name. Using a symbolic link is a simple method for allowing 
users to indirectly share a file or the contents of a directory, creating a cross-link between different 
directories in the ordinarily hierarchical directory structure .

The object manager implements an object called a symbolic link object, which performs a similar 
function for object names in its object namespace . A symbolic link can occur anywhere within an 
 object name string . When a caller refers to a symbolic link object’s name, the object manager tra-
verses its object namespace until it reaches the symbolic link object . It looks inside the symbolic link 
and finds a string that it substitutes for the symbolic link name. It then restarts its name lookup .

One place in which the executive uses symbolic link objects is in translating MS-DOS-style device 
names into Windows internal device names . In Windows, a user refers to hard disk drives using the 
names C:, D:, and so on and serial ports as COM1, COM2, and so on . The Windows subsystem makes 
these symbolic link objects protected, global data by placing them in the object manager namespace 
under the \Global?? directory.

Session Namespace
Services have access to the global namespace, a namespace that serves as the first instance of the 
namespace . Additional sessions are given a session-private view of the namespace known as a local 
namespace. The parts of the namespace that are localized for each session include \DosDevices,   
\Windows, and \BaseNamedObjects. Making separate copies of the same parts of the namespace is 
known as instancing the namespace. Instancing \DosDevices makes it possible for each user to have 
different network drive letters and Windows objects such as serial ports . On Windows, the global  
\DosDevices directory is named \Global?? and is the directory to which \DosDevices points, and 
 local \DosDevices directories are identified by the logon session ID.

The \Windows directory is where Win32k.sys inserts the interactive window station created by 
Winlogon, \WinSta0. A Terminal Services environment can support multiple interactive users, but 
each user needs an individual version of WinSta0 to preserve the illusion that he is accessing the 
predefined interactive window station in Windows. Finally, applications and the system create shared 
objects in \BaseNamedObjects, including events, mutexes, and memory sections. If two users are run-
ning an application that creates a named object, each user session must have a private version of the 
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object so that the two instances of the application don’t interfere with one another by accessing the 
same object .

The object manager implements a local namespace by creating the private versions of the three 
directories mentioned under a directory associated with the user’s session under \Sessions\n (where n 
is the session identifier). When a Windows application in remote session two creates a named event, 
for example, the object manager transparently redirects the object’s name from \BaseNamedObjects 
to \Sessions\2\BaseNamedObjects.

All object-manager functions related to namespace management are aware of the instanced 
 directories and participate in providing the illusion that all sessions use the same namespace . 
 Windows subsystem DLLs prefix names passed by Windows applications that reference objects in  
\DosDevices with \?? (for example, C:\Windows becomes \??\C:\Windows). When the object manager 
sees the special \?? prefix, the steps it takes depends on the version of Windows, but it always relies 
on a field named DeviceMap in the executive process object (EPROCESS, which is described further in 
Chapter 5) that points to a data structure shared by other processes in the same session . 

The DosDevicesDirectory field of the DeviceMap structure points at the object manager 
 directory that represents the process’ local \DosDevices. When the object manager sees a refer-
ence to \??, it locates the process’ local \DosDevices by using the DosDevicesDirectory field of the 
 DeviceMap. If the object manager doesn’t find the object in that directory, it checks the DeviceMap 
field of the  directory object. If it’s valid, it looks for the object in the directory pointed to by the 
 GlobalDosDevicesDirectory field of the DeviceMap structure, which is always \Global??.

Under certain circumstances, applications that are session–aware need to access objects in the 
global session even if the application is running in another session . The application might want to 
do this to synchronize with instances of itself running in other remote sessions or with the console 
session (that is, session 0). For these cases, the object manager provides the special override “\Global” 
that an application can prefix to any object name to access the global namespace . For example, an 
application in session two opening an object named \Global\ApplicationInitialized is directed to  
\BaseNamedObjects\ApplicationInitialized instead of \Sessions\2\BaseNamedObjects 
\ApplicationInitialized.

An application that wants to access an object in the global \DosDevices directory does not need 
to use the \Global prefix as long as the object doesn’t exist in its local \DosDevices directory. This is 
because the object manager automatically looks in the global directory for the object if it doesn’t find 
it in the local directory . However, an application can force checking the global directory by using  
\GLOBALROOT.

Session directories are isolated from each other, and administrative privileges are required to 
create a global object (except for section objects) . A special privilege named create global object is 
verified before allowing such operations.
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EXPERIMENT: Viewing Namespace Instancing
You can see the separation between the session 0 namespace and other session namespaces 
as soon as you log in. The reason you can is that the first console user is logged in to session 1 
(while services run in session 0). Run Winobj.exe, and click on the \Sessions directory. You’ll see 
a subdirectory with a numeric name for each active session . If you open one of these directo-
ries, you’ll see subdirectories named \DosDevices, \Windows, and \BaseNamedObjects, which 
are the local namespace subdirectories of the session . The following screen shot shows a local 
namespace:

Next run Process Explorer and select a process in your session (such as Explorer .exe), and 
then view the handle table (by clicking View, Lower Pane View, and then Handles) . You should 
see a handle to \Windows\WindowStations\WinSta0 underneath \Sessions\n, where n is the 
session ID . 
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Object Filtering
Windows includes a filtering model in the object manager, similar to the file system minifilter model 
described in Chapter 8 in Part 2. One of the primary benefits of this filtering model is the ability to use 
the altitude concept that these existing filtering technologies use, which means that multiple drivers 
can filter object-manager events at appropriate locations in the filtering stack. Additionally, drivers are 
permitted to intercept calls such as NtOpenThread and NtOpenProcess and even to modify the access 
masks being requested from the process manager . This allows protection against certain operations 
on an open handle—however, an open operation cannot be entirely blocked because doing so would 
too closely resemble a malicious operation (processes that could never be managed) .

Furthermore, drivers are able to take advantage of both pre and post callbacks, allowing them to 
prepare for a certain operation before it occurs, as well as to react or finalize information after the 
operation has occurred. These callbacks can be specified for each operation (currently, only open, 
create, and duplicate are supported) and be specific for each object type (currently, only process and 
thread objects are supported) . For each callback, drivers can specify their own internal context value, 
which can be returned across all calls to the driver or across a pre/post pair . These callbacks can be 
registered with the ObRegisterCallbacks API and unregistered with the ObUnregisterCallbacks API—it 
is the responsibility of the driver to ensure deregistration happens .

Use of the APIs is restricted to images that have certain characteristics:

 ■ The image must be signed, even on 32-bit computers, according to the same rules set forth 
in the Kernel Mode Code Signing (KMCS) policy . (Code integrity will be discussed later in 
this chapter .) The image must be compiled with the /integritycheck linker flag, which sets the 
IMAGE_DLLCHARACTERISTICS_FORCE_INTEGRITY value in the PE header . This instructs the 
memory manager to check the signature of the image regardless of any other defaults that 
might not normally result in a check .

 ■ The image must be signed with a catalog containing cryptographic per-page hashes of the 
 executable code . This allows the system to detect changes to the image after it has been 
loaded in memory .

Before executing a callback, the object manager calls the MmVerifyCallbackFunction on the target 
function pointer, which in turn locates the loader data table entry associated with the module owning 
this address, and verifies whether or not the LDRP_IMAGE_INTEGRITY_FORCED flag is set. (See the 
“Loaded Module Database” section in this chapter for more information .)

Synchronization

The concept of mutual exclusion is a crucial one in operating systems development . It refers to the 
guarantee that one, and only one, thread can access a particular resource at a time . Mutual exclusion 
is necessary when a resource doesn’t lend itself to shared access or when sharing would result in an 
unpredictable outcome. For example, if two threads copy a file to a printer port at the same time, 
their output could be interspersed . Similarly, if one thread reads a memory location while another 
one writes to it, the first thread will receive unpredictable data. In general, writable resources can’t 
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be shared without restrictions, whereas resources that aren’t subject to modification can be shared. 
Figure 3-24 illustrates what happens when two threads running on different processors both write 
data to a circular queue .

Time
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•
•
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•
•
•

•
•
•

•
•
•

•
•
•

Increment tail pointer

Processor A Processor B

Get queue tail

Insert data at current location /*ERROR*/
Increment tail pointer

FIGURE 3-24 Incorrect sharing of memory

Because the second thread obtained the value of the queue tail pointer before the first thread 
 finished updating it, the second thread inserted its data into the same location that the first thread 
used, overwriting data and leaving one queue location empty . Even though Figure 3-24 illustrates 
what could happen on a multiprocessor system, the same error could occur on a single-processor 
 system if the operating system performed a context switch to the second thread before the first 
thread updated the queue tail pointer .

Sections of code that access a nonshareable resource are called critical sections . To ensure correct 
code, only one thread at a time can execute in a critical section. While one thread is writing to a file, 
updating a database, or modifying a shared variable, no other thread can be allowed to access the 
same resource . The pseudocode shown in Figure 3-24 is a critical section that incorrectly accesses a 
shared data structure without mutual exclusion .

The issue of mutual exclusion, although important for all operating systems, is especially  important 
(and intricate) for a tightly coupled, symmetric multiprocessing (SMP) operating system such as 
Windows, in which the same system code runs simultaneously on more than one processor, sharing 
certain data structures stored in global memory . In Windows, it is the kernel’s job to provide mecha-
nisms that system code can use to prevent two threads from modifying the same structure at the 
same time . The kernel provides mutual-exclusion primitives that it and the rest of the executive use to 
synchronize their access to global data structures .

Because the scheduler synchronizes access to its data structures at DPC/dispatch level IRQL, the 
kernel and executive cannot rely on synchronization mechanisms that would result in a page fault or 
reschedule operation to synchronize access to data structures when the IRQL is DPC/dispatch level 
or higher (levels known as an elevated or high IRQL). In the following sections, you’ll find out how the 
kernel and executive use mutual exclusion to protect their global data structures when the IRQL is 
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high and what mutual-exclusion and synchronization mechanisms the kernel and executive use when 
the IRQL is low (below DPC/dispatch level) .

High-IRQL Synchronization
At various stages during its execution, the kernel must guarantee that one, and only one, processor at 
a time is executing within a critical section . Kernel critical sections are the code segments that modify 
a global data structure such as the kernel’s dispatcher database or its DPC queue . The operating sys-
tem can’t function correctly unless the kernel can guarantee that threads access these data structures 
in a mutually exclusive manner .

The biggest area of concern is interrupts . For example, the kernel might be updating a global data 
structure when an interrupt occurs whose interrupt-handling routine also modifies the structure. 
 Simple single-processor operating systems sometimes prevent such a scenario by disabling all inter-
rupts each time they access global data, but the Windows kernel has a more sophisticated solution . 
Before using a global resource, the kernel temporarily masks the interrupts whose interrupt handlers 
also use the resource . It does so by raising the processor’s IRQL to the highest level used by any 
 potential interrupt source that accesses the global data . For example, an interrupt at DPC/dispatch 
level causes the dispatcher, which uses the dispatcher database, to run . Therefore, any other part of 
the kernel that uses the dispatcher database raises the IRQL to DPC/dispatch level, masking  
DPC/dispatch-level interrupts before using the dispatcher database .

This strategy is fine for a single-processor system, but it’s inadequate for a multiprocessor 
 configuration. Raising the IRQL on one processor doesn’t prevent an interrupt from occurring on 
 another processor . The kernel also needs to guarantee mutually exclusive access across several 
 processors .

Interlocked Operations
The simplest form of synchronization mechanisms rely on hardware support for multiprocessor-
safe manipulation of integer values and for performing comparisons . They include functions such as 
InterlockedIncrement, InterlockedDecrement, InterlockedExchange, and InterlockedCompareExchange . 
The InterlockedDecrement function, for example, uses the x86 lock instruction prefix (for example, lock 
xadd) to lock the multiprocessor bus during the subtraction operation so that another processor that’s 
also modifying the memory location being decremented won’t be able to modify it between the 
decrementing processor’s read of the original value and its write of the decremented value . This form 
of basic synchronization is used by the kernel and drivers . In today’s Microsoft compiler suite, these 
functions are called intrinsic because the code for them is generated in an inline assembler, directly 
during the compilation phase, instead of going through a function call . (It’s likely that pushing the 
parameters onto the stack, calling the function, copying the parameters into registers, and then pop-
ping the parameters off the stack and returning to the caller would be a more expensive operation 
than the actual work the function is supposed to do in the first place.)
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Spinlocks
The mechanism the kernel uses to achieve multiprocessor mutual exclusion is called a spinlock . A 
spinlock is a locking primitive associated with a global data structure such as the DPC queue shown in 
Figure 3-25 .

DPC DPC
Begin
 Add DPC from queue
End

Release DPC queue spinlockRelease DPC queue spinlock

Begin
 Remove DPC from queue
End

•
•
•

•
•
•

DPC queue

Critical section

Do 
 Try to acquire
 DPC queue
 spinlock
Until SUCCESS

Do
 Try to acquire
 DPC queue
 spinlock
Until SUCCESS

Processor A Processor B

Spinlock

FIGURE 3-25 Using a spinlock

Before entering either critical section shown in Figure 3-25, the kernel must acquire the spinlock 
associated with the protected DPC queue . If the spinlock isn’t free, the kernel keeps trying to acquire 
the lock until it succeeds . The spinlock gets its name from the fact that the kernel (and thus, the 
 processor) waits, “spinning,” until it gets the lock .

Spinlocks, like the data structures they protect, reside in nonpaged memory mapped into the 
system address space . The code to acquire and release a spinlock is written in assembly language for 
speed and to exploit whatever locking mechanism the underlying processor architecture provides . On 
many architectures, spinlocks are implemented with a hardware-supported test-and-set operation, 
which tests the value of a lock variable and acquires the lock in one atomic instruction . Testing and 
acquiring the lock in one instruction prevents a second thread from grabbing the lock between the 
time the first thread tests the variable and the time it acquires the lock. Additionally, the lock instruc-
tion mentioned earlier can also be used on the test-and-set operation, resulting in the combined lock 
bts assembly operation, which also locks the multiprocessor bus; otherwise, it would be possible for 
more than one processor to atomically perform the operation . (Without the lock, the operation is 
guaranteed to be atomic only on the current processor .)

All kernel-mode spinlocks in Windows have an associated IRQL that is always DPC/dispatch level or 
higher . Thus, when a thread is trying to acquire a spinlock, all other activity at the spinlock’s IRQL or 
lower ceases on that processor . Because thread dispatching happens at DPC/dispatch level, a thread 
that holds a spinlock is never preempted because the IRQL masks the dispatching mechanisms . This 
masking allows code executing in a critical section protected by a spinlock to continue executing so 
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that it will release the lock quickly . The kernel uses spinlocks with great care, minimizing the num-
ber of instructions it executes while it holds a spinlock . Any processor that attempts to acquire the 
 spinlock will essentially be busy, waiting indefinitely, consuming power (a busy wait results in 100% 
CPU usage) and performing no actual work .

On x86 and x64 processors, a special pause assembly instruction can be inserted in busy wait 
loops . This instruction offers a hint to the processor that the loop instructions it is processing are part 
of a spinlock (or a similar construct) acquisition loop. The instruction provides three benefits: 

 ■ It significantly reduces power usage by delaying the core ever so slightly instead of 
 continuously looping .

 ■ On HyperThreaded cores, it allows the CPU to realize that the “work” being done by the 
 spinning logical core is not terribly important and awards more CPU time to the second logical 
core instead .

 ■ Because a busy wait loop results in a storm of read requests coming to the bus from the 
 waiting thread (which might be generated out of order), the CPU attempts to correct for viola-
tions of memory order as soon as it detects a write (that is, when the owning thread releases 
the lock) . Thus, as soon as the spinlock is released, the CPU reorders any pending memory 
read operations to ensure proper ordering . This reordering results in a large penalty in system 
performance and can be avoided with the pause instruction .

The kernel makes spinlocks available to other parts of the executive through a set of kernel 
functions, including KeAcquireSpinLock and KeReleaseSpinLock . Device drivers, for example, require 
spinlocks to guarantee that device registers and other global data structures are accessed by only 
one part of a device driver (and from only one processor) at a time . Spinlocks are not for use by 
user  programs—user programs should use the objects described in the next section . Device drivers 
also need to protect access to their own data structures from interrupts associated with themselves . 
Because the spinlock APIs typically raise the IRQL only to DPC/dispatch level, this isn’t enough to 
protect against interrupts . For this reason, the kernel also exports the KeAcquireInterruptSpinLock 
and KeReleaseInterruptSpinLock APIs that take as a parameter the KINTERRUPT object discussed at 
the beginning of this chapter . The system looks inside the interrupt object for the associated DIRQL 
with the interrupt and raises the IRQL to the appropriate level to ensure correct access to structures 
shared with the ISR . Devices can use the KeSynchronizeExecution API to synchronize an entire function 
with an ISR, instead of just a critical section . In all cases, the code protected by an interrupt spinlock 
must execute extremely quickly—any delay causes higher-than-normal interrupt latency and will have 
significant negative performance effects.

Kernel spinlocks carry with them restrictions for code that uses them . Because spinlocks always 
have an IRQL of DPC/dispatch level or higher, as explained earlier, code holding a spinlock will crash 
the system if it attempts to make the scheduler perform a dispatch operation or if it causes a page 
fault .
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Queued Spinlocks
To increase the scalability of spinlocks, a special type of spinlock, called a queued spinlock, is used 
in most circumstances instead of a standard spinlock . A queued spinlock works like this: When a 
processor wants to acquire a queued spinlock that is currently held, it places its identifier in a queue 
associated with the spinlock . When the processor that’s holding the spinlock releases it, it hands the 
lock over to the first processor identified in the queue. In the meantime, a processor waiting for a 
busy spinlock checks the status not of the spinlock itself but of a per-processor flag that the processor 
ahead of it in the queue sets to indicate that the waiting processor’s turn has arrived .

The fact that queued spinlocks result in spinning on per-processor flags rather than global 
 spinlocks has two effects. The first is that the multiprocessor’s bus isn’t as heavily trafficked by 
 interprocessor synchronization . The second is that instead of a random processor in a waiting group 
acquiring a spinlock, the queued spinlock enforces first-in, first-out (FIFO) ordering to the lock. FIFO 
ordering means more consistent performance across processors accessing the same locks .

Windows defines a number of global queued spinlocks by storing pointers to them in an array 
contained in each processor’s processor region control block (PRCB) . A global spinlock can be acquired 
by calling KeAcquireQueuedSpinLock with the index into the PRCB array at which the pointer to the 
spinlock is stored . The number of global spinlocks has grown in each release of the operating system, 
and the table of index definitions for them is published in the WDK header file Wdm.h. Note, how-
ever, that acquiring one of these queued spinlocks from a device driver is an unsupported and heavily 
frowned-upon operation . These locks are reserved for the kernel’s own internal use .

EXPERIMENT: Viewing Global Queued Spinlocks
You can view the state of the global queued spinlocks (the ones pointed to by the queued 
 spinlock array in each processor’s PCR) by using the !qlocks kernel debugger command . In 
the following example, the page frame number (PFN) database queued spinlock is held by 
 processor 1, and the other queued spinlocks are not acquired . (The PFN database is described 
in Chapter 10 in Part 2 .)

lkd> !qlocks 
Key: O = Owner, 1-n = Wait order, blank = not owned/waiting, C = Corrupt 
 
                       Processor Number 
    Lock Name         0  1 
 
KE   - Unused Spare          
MM   - Expansion           
MM   - Unused Spare 
MM   - System Space        
CC   - Vacb                
CC   - Master      
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Instack Queued Spinlocks
Device drivers can use dynamically allocated queued spinlocks with the 
 KeAcquireInStackQueuedSpinLock and KeReleaseInStackQueuedSpinLock functions . Several 
 components—including the cache manager, executive pool manager, and NTFS—take advantage 
of these types of locks instead of using global queued spinlocks . 

KeAcquireInStackQueuedSpinLock takes a pointer to a spinlock data structure and a spinlock queue 
handle . The spinlock handle is actually a data structure in which the kernel stores information about 
the lock’s status, including the lock’s ownership and the queue of processors that might be waiting for 
the lock to become available . For this reason, the handle shouldn’t be a global variable . It is usually a 
stack variable, guaranteeing locality to the caller thread and is responsible for the InStack part of the 
spinlock and API name .

Executive Interlocked Operations
The kernel supplies a number of simple synchronization functions constructed on spinlocks for 
more advanced operations, such as adding and removing entries from singly and doubly linked lists . 
 Examples include ExInterlockedPopEntryList and ExInterlockedPushEntryList for singly linked lists, 
and ExInterlockedInsertHeadList and ExInterlockedRemoveHeadList for doubly linked lists . All these 
functions require a standard spinlock as a parameter and are used throughout the kernel and device 
drivers . 

Instead of relying on the standard APIs to acquire and release the spinlock parameter, these 
 functions place the code required inline and also use a different ordering scheme . Whereas the Ke 
spinlock APIs first test and set the bit to see whether the lock is released and then atomically do a 
locked test-and-set operation to actually make the acquisition, these routines disable interrupts on 
the processor and immediately attempt an atomic test-and-set . If the initial attempt fails, interrupts 
are enabled again, and the standard busy waiting algorithm continues until the test-and-set operation 
returns 0—in which case, the whole function is restarted again . Because of these subtle differences, a 
spinlock used for the executive interlocked functions must not be used with the standard kernel APIs 
discussed previously . Naturally, noninterlocked list operations must not be mixed with interlocked 
operations .

Note Certain executive interlocked operations silently ignore the spinlock when possible . 
For example, the ExInterlockedIncrementLong or ExInterlockedCompareExchange APIs actu-
ally use the same lock prefix used by the standard interlocked functions and the intrinsic 
functions . These functions were useful on older systems (or non-x86 systems) where the 
lock operation was not suitable or available . For this reason, these calls are now deprecated 
in favor of the intrinsic functions .
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Low-IRQL Synchronization
Executive software outside the kernel also needs to synchronize access to global data structures in a 
multiprocessor environment . For example, the memory manager has only one page frame database, 
which it accesses as a global data structure, and device drivers need to ensure that they can gain ex-
clusive access to their devices . By calling kernel functions, the executive can create a spinlock, acquire 
it, and release it .

Spinlocks only partially fill the executive’s needs for synchronization mechanisms, however. 
 Because waiting for a spinlock literally stalls a processor, spinlocks can be used only under the 
 following strictly limited circumstances:

 ■ The protected resource must be accessed quickly and without complicated interactions with 
other code .

 ■ The critical section code can’t be paged out of memory, can’t make references to pageable 
data, can’t call external procedures (including system services), and can’t generate interrupts 
or exceptions .

These restrictions are confining and can’t be met under all circumstances. Furthermore, the 
 executive needs to perform other types of synchronization in addition to mutual exclusion, and it 
must also provide synchronization mechanisms to user mode .

There are several additional synchronization mechanisms for use when spinlocks are not suitable:

 ■ Kernel dispatcher objects

 ■ Fast mutexes and guarded mutexes

 ■ Pushlocks

 ■ Executive resources

Additionally, user-mode code, which also executes at low IRQL, must be able to have its own 
 locking primitives. Windows supports various user-mode-specific primitives:

 ■ Condition variables (CondVars)

 ■ Slim Reader-Writer Locks (SRW Locks)

 ■ Run-once initialization (InitOnce)

 ■ Critical sections

We’ll take a look at the user-mode primitives and their underlying kernel-mode support later; for 
now, we’ll focus on kernel-mode objects . Table 3-18 serves as a reference that compares and contrasts 
the capabilities of these mechanisms and their interaction with kernel-mode APC delivery .
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TABLE 3-18 Kernel Synchronization Mechanisms

Exposed for 
Use by Device 
Drivers

Disables 
Normal 
Kernel-Mode 
APCs

Disables 
Special 
Kernel-Mode 
APCs

Supports 
Recursive 
Acquisition

Supports 
Shared and 
Exclusive 
Acquisition

Kernel dispatcher 
mutexes 

Yes Yes No Yes No

Kernel dispatcher 
semaphores or events

Yes No No No No

Fast mutexes Yes Yes Yes No No

Guarded mutexes Yes Yes Yes No No

Pushlocks No No No No Yes

Executive resources Yes No No Yes Yes

Kernel Dispatcher Objects
The kernel furnishes additional synchronization mechanisms to the executive in the form of  kernel 
objects, known collectively as dispatcher objects . The Windows API-visible synchronization  objects 
acquire their synchronization capabilities from these kernel dispatcher objects . Each  Windows 
API-visible object that supports synchronization encapsulates at least one kernel dispatcher  object . 
The executive’s synchronization semantics are visible to Windows programmers through the 
 WaitForSingleObject and WaitForMultipleObjects functions, which the Windows subsystem imple-
ments by calling analogous system services that the object manager supplies . A thread in a Windows 
application can synchronize with a variety of objects, including a Windows process, thread, event, 
semaphore, mutex, waitable timer, I/O completion port, ALPC port, registry key, or file object. In 
fact, almost all objects exposed by the kernel can be waited on . Some of these are proper dispatcher 
 objects, while others are larger objects that have a dispatcher object within them (such as ports, keys, 
or files). Table 3-19 shows the proper dispatcher objects, so any other object that the Windows API 
 allows waiting on probably internally contains one of those primitives .

One other type of executive synchronization object worth noting is called an executive resource . 
Executive resources provide exclusive access (like a mutex) as well as shared read access (multiple 
readers sharing read-only access to a structure) . However, they’re available only to kernel-mode 
code and thus are not accessible from the Windows API . The remaining subsections describe the 
 implementation details of waiting for dispatcher objects .

Waiting for Dispatcher Objects
A thread can synchronize with a dispatcher object by waiting for the object’s handle . Doing so causes 
the kernel to put the thread in a wait state .

At any given moment, a synchronization object is in one of two states: signaled state or 
 nonsignaled state. A thread can’t resume its execution until its wait is satisfied, a condition that occurs 
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when the dispatcher object whose handle the thread is waiting for also undergoes a state change, 
from the nonsignaled state to the signaled state (when another thread sets an event object, for 
example) . To synchronize with an object, a thread calls one of the wait system services that the object 
manager supplies, passing a handle to the object it wants to synchronize with . The thread can wait for 
one or several objects and can also specify that its wait should be canceled if it hasn’t ended within a 
certain amount of time . Whenever the kernel sets an object to the signaled state, one of the kernel’s 
signal routines checks to see whether any threads are waiting for the object and not also waiting for 
other objects to become signaled . If there are, the kernel releases one or more of the threads from 
their waiting state so that they can continue executing .

The following example of setting an event illustrates how synchronization interacts with thread 
dispatching:

 ■ A user-mode thread waits for an event object’s handle .

 ■ The kernel changes the thread’s scheduling state to waiting and then adds the thread to a list 
of threads waiting for the event .

 ■ Another thread sets the event .

 ■ The kernel marches down the list of threads waiting for the event . If a thread’s conditions for 
waiting are satisfied (see the following note), the kernel takes the thread out of the waiting 
state . If it is a variable-priority thread, the kernel might also boost its execution priority . (For 
details on thread scheduling, see Chapter 5 .)

Note Some threads might be waiting for more than one object, so they continue  waiting, 
unless they specified a WaitAny wait, which will wake them up as soon as one object 
( instead of all) is signaled .

What Signals an Object?
The signaled state is defined differently for different objects. A thread object is in the nonsignaled 
state during its lifetime and is set to the signaled state by the kernel when the thread terminates . 
Similarly, the kernel sets a process object to the signaled state when the process’ last thread termi-
nates . In contrast, the timer object, like an alarm, is set to “go off” at a certain time . When its time 
expires, the kernel sets the timer object to the signaled state .

When choosing a synchronization mechanism, a program must take into account the rules 
 governing the behavior of different synchronization objects . Whether a thread’s wait ends when 
an object is set to the signaled state varies with the type of object the thread is waiting for, as 
Table 3-19 illustrates .
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TABLE 3-19 Definitions of the Signaled State

Object Type Set to Signaled State When Effect on Waiting Threads

Process Last thread terminates All are released .

Thread Thread terminates All are released .

Event (notification type) Thread sets the event All are released .

Event (synchronization type) Thread sets the event One thread is released and might receive a 
boost; the event object is reset .

Gate (locking type) Thread signals the gate First waiting thread is released and receives a 
boost .

Gate (signaling type) Thread signals the type First waiting thread is released .

Keyed event Thread sets event with a key Thread that’s waiting for the key and which is 
of the same process as the signaler is released .

Semaphore Semaphore count drops by 1 One thread is released .

Timer (notification type) Set time arrives, or time interval 
expires

All are released .

Timer (synchronization type) Set time arrives, or time interval 
expires

One thread is released .

Mutex Thread releases the mutex One thread is released and takes ownership of 
the mutex .

Queue Item is placed on queue One thread is released .

When an object is set to the signaled state, waiting threads are generally released from their wait 
states immediately . Some of the kernel dispatcher objects and the system events that induce their 
state changes are shown in Figure 3-26 .

For example, a notification event object (called a manual reset event in the Windows API) is used 
to announce the occurrence of some event . When the event object is set to the signaled state, all 
threads waiting for the event are released . The exception is any thread that is waiting for more than 
one object at a time; such a thread might be required to continue waiting until additional objects 
reach the signaled state .

In contrast to an event object, a mutex object has ownership associated with it (unless it was 
acquired during a DPC) . It is used to gain mutually exclusive access to a resource, and only one thread 
at a time can hold the mutex . When the mutex object becomes free, the kernel sets it to the signaled 
state and then selects one waiting thread to execute, while also inheriting any priority boost that had 
been applied . (See Chapter 5 for more information on priority boosting .) The thread selected by the 
kernel acquires the mutex object, and all other threads continue waiting .

A mutex object can also be abandoned: this occurs when the thread currently owning it becomes 
terminated . When a thread terminate, the kernel enumerates all mutexes owned by the thread and 
sets them to the abandoned state, which, in terms of signaling logic, is treated as a signaled state in 
that ownership of the mutex is transferred to a waiting thread .
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Dispatcher object
System events and

resulting state change
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FIGURE 3-26 Selected kernel dispatcher objects 
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This brief discussion wasn’t meant to enumerate all the reasons and applications for using the 
various executive objects but rather to list their basic functionality and synchronization behavior . For 
information on how to put these objects to use in Windows programs, see the Windows reference 
documentation on synchronization objects or Jeffrey Richter and Christophe Nasarre’s book Windows 
via C/C++.

Data Structures
Three data structures are key to tracking who is waiting, how they are waiting, what they are waiting 
for, and which state the entire wait operation is at . These three structures are the dispatcher header, 
the wait block, and the wait status register. The former two structures are publicly defined in the WDK 
include file Wdm.h, while the latter is not documented. 

The dispatcher header is a packed structure because it needs to hold lots of information in a fixed-
size structure. (See the upcoming “EXPERIMENT: Looking at Wait Queues” section to see the definition 
of the dispatcher header data structure.) One of the main tricks is to define mutually exclusive flags at 
the same memory location (offset) in the structure . By using the Type field, the kernel knows which of 
these fields actually applies. For example, a mutex can be abandoned, but a timer can be absolute or 
relative . Similarly, a timer can be inserted into the timer list, but the Debug Active field makes sense 
only for processes . On the other hand, the dispatcher header does contain information generic for 
any dispatcher object: the object type, signaled state, and a list of the threads waiting for that object . 

The wait block represents a thread waiting for an object . Each thread that is in a wait state has a list 
of the wait blocks that represent the objects the thread is waiting for . Each dispatcher object has a list 
of the wait blocks that represent which threads are waiting for the object . This list is kept so that when 
a dispatcher object is signaled, the kernel can quickly determine who is waiting for that object . Finally, 
because the balance-set-manager thread running on each CPU (see Chapter 5 for more information 
about the balance set manager) needs to analyze the time that each thread has been waiting for (in 
order to decide whether or not to page out the kernel stack), each PRCB has a list of waiting threads .

The wait block has a pointer to the object being waited for, a pointer to the thread waiting for the 
object, and a pointer to the next wait block (if the thread is waiting for more than one object) . It also 
records the type of wait (any or all) as well as the position of that entry in the array of handles passed 
by the thread on the WaitForMultipleObjects call (position 0 if the thread was waiting for only one 
object) . The wait type is very important during wait satisfaction, because it determines whether or not 
all the wait blocks belonging to the thread waiting on the signaled object should be processed: for a 
wait any, the dispatcher does not care what the state of the other objects is because at least one (the 
current one) of the objects is now signaled . On the other hand, for a wait all, the dispatcher can wake 
the thread only if all the other objects are also in a signaled state, which requires traversing the wait 
blocks and associated objects .

The wait block also contains a volatile wait block state, which defines the current state of this wait 
block in the transactional wait operation it is currently being engaged in . The different states, their 
meaning, and their effects in the wait logic code, are explained in Table 3-20 .
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TABLE 3-20 Wait Block States

State Meaning Effect

WaitBlockActive (2) This wait block is actively linked to 
an object as part of a thread that is 
in a wait state .

During wait satisfaction, this wait block will 
be unlinked from the wait block list .

WaitBlockInactive (3) The thread wait associated with this 
wait block has been satisfied (or the 
timeout has already expired while 
setting it up) .

During wait satisfaction, this wait block will 
not be unlinked from the wait block list be-
cause the wait satisfaction must have aleady 
unlinked during its active state .

WaitBlockBypassStart (0) A signal is being delivered to the 
thread while the wait has not yet 
been committed .

During wait satisfaction (which would be 
immediate, before the thread enters the true 
wait state), the waiting thread must synchro-
nize with the signaler because there is a risk 
that the wait object might be on the stack—
marking the wait block as inactive would 
cause the waiter to unwind the stack while 
the signaler might still be accessing it .

WaitBlockBypassComplete (1) The thread wait associated with this 
wait block has now been properly 
synchronized (the wait satisfaction 
has completed), and the bypass 
 scenario is now completed .

The wait block is now essentially treated the 
same as an inactive wait block (ignored) .

Because the overall state of the thread (or any of the objects it is being required to start waiting 
on) can change while wait operations are still being set up (because there is nothing blocking another 
thread executing on a different logical processor from attempting to signal one of the objects, or 
possibly alerting the thread, or even sending it an APC), the kernel dispatcher needs to keep track 
of two additional pieces of data for each waiting thread: the current fine-grained wait state of the 
thread, as well as any pending state changes that could modify the result of the attempted wait 
 operation .

When a thread is instructed to wait for a given object (such as due to a WaitForSingleObject call), it 
first attempts to enter the in-progress wait state (WaitInProgress) by beginning the wait . This opera-
tion succeeds if there are no pending alerts to the thread at the moment (based on the alertability of 
the wait and the current processor mode of the wait, which determine whether or not the alert can 
preempt the wait) . If there is an alert, the wait is not even entered at all, and the caller receives the 
appropriate status code; otherwise, the thread now enters the WaitInProgress state, at which point the 
main thread state is set to Waiting, and the wait reason and wait time are recorded, with any timeout 
specified also being registered.

Once the wait is in progress, the thread can initialize the wait blocks as needed (and mark them 
as WaitBlockActive in the process) and then proceed to lock all the objects that are part of this wait . 
Because each object has its own lock, it is important that the kernel be able to maintain a consistent 
locking ordering scheme when multiple processors might be analyzing a wait chain consisting of 
many objects (caused by a WaitForMultipleObjects call) . The kernel uses a technique known as  address 
ordering to achieve this: because each object has a distinct and static kernel-mode address, the 
objects can be ordered in monotonically increasing address order, guaranteeing that locks are always 
acquired and released in the same order by all callers . This means that the caller-supplied array of 
objects will be duplicated and sorted accordingly .
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The next step is to check for immediate satisfaction of the wait, such as when a thread is being told 
to wait on a mutex that has already been released or an event that is already signaled . In such cases, 
the wait is immediately satisfied, which involves unlinking the associated wait blocks (however, in 
this case, no wait blocks have yet been inserted) and performing a wait exit (processing any pending 
scheduler operations marked in the wait status register) . If this shortcut fails, the kernel next attempts 
to check whether the timeout specified for the wait (if any) has actually already expired. In this case, 
the wait is not “satisfied” but merely “timed out,” which results in slightly faster processing of the exit 
code, albeit with the same result .

If none of these shortcuts were effective, the wait block is inserted into the thread’s wait list, and 
the thread now attempts to commit its wait . (Meanwhile, the object lock or locks have been released, 
allowing other processors to modify the state of any of the objects that the thread is now supposed 
to attempt waiting on .) Assuming a noncontended scenario, where other processors are not interest-
ed in this thread or its wait objects, the wait switches into the committed state as long as there are no 
pending changes marked by the wait status register . The commit operation links the waiting thread 
in the PRCB list, activates an extra wait queue thread if needed, and inserts the timer associated with 
the wait timeout, if any . Because potentially quite a lot of cycles have elapsed by this point, it is again 
possible that the timeout has already elapsed . In this scenario, inserting the timer will cause immedi-
ate signaling of the thread, and thus a wait satisfaction on the timer, and the overall timeout of the 
wait . Otherwise, in the much more common scenario, the CPU now context switches away to the next 
thread that is ready for execution . (See Chapter 5 for more information on scheduling .)

In highly contended code paths on multiprocessor machines, it is possible and likely that the 
thread attempting to commit its wait has experienced a change while its wait was still in progress . 
One possible scenario is that one of the objects it was waiting on has just been signaled . As touched 
upon earlier, this causes the associated wait block to enter the WaitBlockBypassStart state, and the 
thread’s wait status register now shows the WaitAborted wait state . Another possible scenario is for 
an alert or APC to have been issued to the waiting thread, which does not set the WaitAborted state 
but enables one of the corresponding bits in the wait status register . Because APCs can break waits 
( depending on the type of APC, wait mode, and alertability), the APC is delivered and the wait is 
aborted . Other operations that will modify the wait status register without generating a full abort 
cycle include modifications to the thread’s priority or affinity, which will be processed when exiting 
the wait due to failure to commit, as with the previous cases mentioned .

Figure 3-27 shows the relationship of dispatcher objects to wait blocks to threads to PRCB . In this 
example, CPU 0 has two waiting (committed) threads: thread 1 is waiting for object B, and thread 
2 is waiting for objects A and B . If object A is signaled, the kernel sees that because thread 2 is also 
waiting for another object, thread 2 can’t be readied for execution . On the other hand, if object B is 
signaled, the kernel can ready thread 1 for execution right away because it isn’t waiting for any other 
objects . (Alternatively, if thread 1 was also waiting for other objects but its wait type was a WaitAny, 
the kernel could still wake it up .)
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FIGURE 3-27 Wait data structures 

EXPERIMENT: Looking at Wait Queues
You can see the list of objects a thread is waiting for with the kernel debugger’s !thread com-
mand . For example, the following excerpt from the output of a !process command shows that 
the thread is waiting for an event object:

kd> !process  
§  
        THREAD fffffa8005292060  Cid 062c062c.0660  Teb: 000007fffffde000 Win32Thread:  
fffff900c01c68f0 WAIT: (WrUserRequest) UserMode Non-Alertable 
            fffffa80047b8240  SynchronizationEvent
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You can use the dt command to interpret the dispatcher header of the object like this:

lkd> dt nt!_DISPATCHER_HEADER fffffa80047b8240 
   +0x000 Type             : 0x1 '' 
   +0x001 TimerControlFlags : 0 '' 
   +0x001 Absolute         : 0y0 
   +0x001Coalescable      : 0y0 
   +0x001 KeepShifting     : 0y0 
   +0x001 EncodedTolerableDelay : 0y00000 (0) 
   +0x001 Abandoned        : 0 '' 
   +0x001 Signalling       : 0 '' 
   +0x002 ThreadControlFlags : 0x6 '' 
   +0x002 CpuThrottled     : 0y0 
   +0x002 CycleProfiling   : 0y1 
   +0x002 CounterProfiling : 0y1 
   +0x002 Reserved         : 0y00000 (0) 
   +0x002 Hand             : 0x6 '' 
   +0x002 Size             : 0x6 
   +0x003 TimerMiscFlags   : 0 '' 
   +0x003 Index            : 0y000000 (0) 
   +0x003 Inserted         : 0y0 
   +0x003 Expired          : 0y0 
   +0x003 DebugActive      : 0 '' 
   +0x003 ActiveDR7        : 0y0 
   +0x003 Instrumented     : 0y0 
   +0x003 Reserved2        : 0y0000 
   +0x003 UmsScheduled     : 0y0 
   +0x003 UmsPrimary       : 0y0 
   +0x003 DpcActive        : 0 '' 
   +0x000 Lock             : 393217 
   +0x004 SignalState      : 0 
   +0x008 WaitListHead     : _LIST_ENTRY [ 0xfffffa80'047b8248 - 0xfffffa80'047b8248 ]

You should ignore any values that do not correspond to the given object type, because 
they might be either incorrectly decoded by the debugger (because the wrong type or field is 
being used) or simply contain stale or invalid data from a previous allocation value . There is no 
defined correlation you can see between which fields apply to which object, other than by look-
ing at the Windows kernel source code or the WDK header files’ comments. For convenience, 
Table 3-21 lists the dispatcher header flags and the objects to which they apply.

TABLE 3-21 Usage and Meaning of the Dispatcher Header Flags

Flag Applies To Meaning

Absolute Timers The expiration time is absolute, not relative .

Coalescable Periodic Timers Indicates whether coalescing should be used for this 
timer .

KeepShifting Coalescable Timers Indicates whether or not the kernel dispatcher should 
continue attempting to shift the timer’s expiration time . 
When alignment is reached with the machine’s periodic 
interval, this eventually becomes FALSE .

EncodedTolerableDelay Coalescable Timers The maximum amount of tolerance (shifted as a power 
of two) that the timer can support when running 
 outside of its expected periodicity .
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Flag Applies To Meaning

Abandoned Mutexes The thread holding the mutex was terminated .

Signaling Gates A priority boost should be applied to the woken thread 
when the gate is signaled .

CpuThrottled Threads CPU throttling has been enabled for this thread, 
such as when running under DFSS mode (Distributed 
 Fair-Share Scheduler) . 

CycleProfiling Threads CPU cycle profiling has been enabled for this thread.

CounterProfiling Threads Hardware CPU performance counter monitoring/ 
profiling has been enabled for this thread.

Size All objects Size of the object divided by 4, to fit in a single byte.

Hand Timers Index into the timer handle table .

Index Timers Index into the timer expiration table .

Inserted Timers Set if the timer was inserted into the timer handle 
table .

Expired Timers Set if the timer has already expired .

DebugActive Processes Specifies whether the process is being debugged. 

ActiveDR7 Thread Hardware breakpoints are being used, so DR7 is active 
and should be sanitized during context operations .

Instrumented Thread Specifies whether the thread has a user-mode 
 instrumentation callback (supported only on Windows 
for x64 processors) .

UmsScheduled Thread This thread is a UMS Worker (scheduled) thread .

UmsPrimary Thread This thread is a UMS Scheduler (primary) thread .

DpcActive Mutexes The mutex was acquired during a DPC .

Lock All objects Used for locking an object during wait operations 
which need to modify its state or linkage; actually 
 corresponds to bit 7 (0x80) of the Type field.

Apart from these flags, the Type field contains the identifier for the object. This  identifier 
 corresponds to a number in the KOBJECTS enumeration, which you can dump with the 
 debugger:

lkd> dt nt!_KOBJECTS 
   EventNotificationObject = 0 
   EventSynchronizationObject = 1 
   MutantObject = 2 
   ProcessObject = 3 
   QueueObject = 4 
   SemaphoreObject = 5 
   ThreadObject = 6 
   GateObject = 7 
   TimerNotificationObject = 8 
   TimerSynchronizationObject = 9 
   Spare2Object = 10 
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   Spare3Object = 11 
   Spare4Object = 12 
   Spare5Object = 13 
   Spare6Object = 14 
   Spare7Object = 15 
   Spare8Object = 16 
   Spare9Object = 17 
   ApcObject = 18 
   DpcObject = 19 
   DeviceQueueObject = 20 
   EventPairObject = 21 
   InterruptObject = 22 
   ProfileObject = 23 
   ThreadedDpcObject = 24 
   MaximumKernelObject = 25

When the wait list head pointers are identical, there are either zero threads or one thread 
waiting on this object . Dumping a wait block for an object that is part of a multiple wait from a 
thread, or that multiple threads are waiting on, can yield the following:

dt nt!_KWAIT_BLOCK 0xfffffa80'053cf628 
   +0x000 WaitListEntry    : _LIST_ENTRY [ 0xfffffa80'02efe568 - 0xfffffa80'02803468 ] 
   +0x010 Thread           : 0xfffffa80'053cf520 _KTHREAD 
   +0x018 Object           : 0xfffffa80'02803460  
   +0x020 NextWaitBlock    : 0xfffffa80'053cf628 _KWAIT_BLOCK 
   +0x028 WaitKey          : 0 
   +0x02a WaitType         : 0x1 '' 
   +0x02b BlockState       : 0x2 '' 
   +0x02c SpareLong        : 8

If the wait list has more than one entry, you can execute the same command on the second 
pointer value in the WaitListEntry field of each wait block (by executing !thread on the thread 
pointer in the wait block) to traverse the list and see what other threads are waiting for the ob-
ject . This would indicate more than one thread waiting on this object . On the other hand, when 
dealing with an object that’s part of a collection of objects being waited on by a single thread, 
you have to parse the NextWaitBlock field instead.

Keyed Events
A synchronization object called a keyed event bears special mention because of the role it plays 
in user-mode-exclusive synchronization primitives . Keyed events were originally implemented to 
help processes deal with low-memory situations when using critical sections, which are user-mode 
synchronization objects that we’ll see more about shortly . A keyed event, which is not documented, 
allows a thread to specify a “key” for which it waits, where the thread wakes when another thread of 
the same process signals the event with the same key .

If there is contention, EnterCriticalSection dynamically allocates an event object, and the thread 
wanting to acquire the critical section waits for the thread that owns the critical section to signal 
it in LeaveCriticalSection . Unfortunately, this introduces a new problem . Without keyed events, the 
system could be critically out of memory and critical-section acquisition could fail because the system 
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was unable to allocate the event object required . The low-memory condition itself might have been 
caused by the application trying to acquire the critical section, so the system would deadlock in this 
situation . Low memory isn’t the only scenario that could cause this to fail: a less likely scenario is 
handle exhaustion . If the process reaches its 16-million-handle limit, the new handle for the event 
object could fail .

The failure caused by low-memory conditions typically are an exception from the code  responsible 
for acquiring the critical section . Unfortunately, the result is also a damaged critical section, 
which makes the situation hard to debug and makes the object useless for a reacquisition at-
tempt .  Attempting a LeaveCriticalSection results in another event-object allocation attempt, further 
 generating exceptions and corrupting the structure . 

Allocating a global standard event object would not fix the issue because standard event primitives 
can be used only for a single object . Each critical section in the process still requires its own event 
object, so the same problem would resurface . The implementation of keyed events allows multiple 
critical sections (waiters) to use the same global (per-process) keyed event handle . This allows the 
critical section functions to operate properly even when memory is temporarily low .

When a thread signals a keyed event or performs a wait on it, it uses a unique identifier called a 
key, which identifies the instance of the keyed event (an association of the keyed event to a single 
critical section) . When the owner thread releases the keyed event by signaling it, only a single 
thread waiting on the key is woken up (the same behavior as synchronization events, in contrast to 
 notification events) . Additionally, only the waiters in the current process are awakened, so the key is 
even isolated across processes, meaning that there is actually only a single keyed event object for the 
entire system . When a critical section uses the keyed event, EnterCriticalSection sets the key as the 
 address of the critical section and performs a wait .

When EnterCriticalSection calls NtWaitForKeyedEvent to perform a wait on the keyed event, it 
can now give a NULL handle as parameter for the keyed event, telling the kernel that it was unable 
to create a keyed event . The kernel recognizes this behavior and uses a global keyed event named 
ExpCritSecOutOfMemoryEvent. The primary benefit is that processes don’t need to waste a handle for 
a named keyed event anymore because the kernel keeps track of the object and its references .

However, keyed events are more than just fallback objects for low-memory conditions . When 
 multiple waiters are waiting on the same key and need to be woken up, the key is actually signaled 
multiple times, which requires the object to keep a list of all the waiters so that it can perform a 
“wake” operation on each of them . (Recall that the result of signaling a keyed event is the same 
as that of signaling a synchronization event .) However, a thread can signal a keyed event without 
any threads on the waiter list . In this scenario, the signaling thread instead waits on the event itself . 
 Without this fallback, a signaling thread could signal the keyed event during the time that the user-
mode code saw the keyed event as unsignaled and attempt a wait . The wait might have come after 
the signaling thread signaled the keyed event, resulting in a missed pulse, so the waiting thread would 
deadlock . By forcing the signaling thread to wait in this scenario, it actually signals the keyed event 
only when someone is looking (waiting) .
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Note When the keyed-event wait code itself needs to perform a wait, it uses a 
built-in semaphore located in the kernel-mode thread object (ETHREAD) called 
KeyedWaitSemaphore. (This semaphore actually shares its location with the ALPC wait 
semaphore .) See Chapter 5 for more information on thread objects .

Keyed events, however, do not replace standard event objects in the critical section implemen-
tation . The initial reason, during the Windows XP timeframe, was that keyed events do not offer 
scalable performance in heavy-usage scenarios . Recall that all the algorithms described were meant 
to be used only in critical, low-memory scenarios, when performance and scalability aren’t all that 
important . To replace the standard event object would place strain on keyed events that they weren’t 
implemented to handle . The primary performance bottleneck was that keyed events maintained the 
list of waiters described in a doubly linked list . This kind of list has poor traversal speed, meaning 
the time required to loop through the list . In this case, this time depended on the number of waiter 
threads . Because the object is global, dozens of threads could be on the list, requiring long traversal 
times every single time a key was set or waited on .

Note The head of the list is kept in the keyed event object, while the threads are actually 
linked through the KeyedWaitChain field (which is actually shared with the thread’s exit 
time, stored as a LARGE_INTEGER, the same size as a doubly linked list) in the kernel-mode 
thread object (ETHREAD) . See Chapter 5 for more information on this object .

Windows improves keyed-event performance by using a hash table instead of a linked list to hold 
the waiter threads . This optimization allows Windows to include three new lightweight user-mode 
synchronization primitives (to be discussed shortly) that all depend on the keyed event . Critical 
 sections, however, still continue to use event objects, primarily for application compatibility and 
 debugging, because the event object and internals are well known and documented, while keyed 
events are opaque and not exposed to the Win32 API .

Fast Mutexes and Guarded Mutexes
Fast mutexes, which are also known as executive mutexes, usually offer better performance than 
 mutex objects because, although they are built on dispatcher event objects, they perform a wait 
through the dispatcher only if the fast mutex is contended—unlike a standard mutex, which al-
ways attempts the acquisition through the dispatcher . This gives the fast mutex especially good 
 performance in a multiprocessor environment . Fast mutexes are used widely in device drivers .

However, fast mutexes are suitable only when normal kernel-mode APC (described  earlier 
in this chapter) delivery can be disabled. The executive defines two functions for acquiring 
them:  ExAcquireFastMutex and ExAcquireFastMutexUnsafe . The former function blocks all APC 
 delivery by raising the IRQL of the processor to APC level . The latter expects to be called with 
 normal  kernel-mode APC delivery disabled, which can be done by raising the IRQL to APC level . 
 ExTryToAcquireFastMutex performs similarly to the first, but it does not actually wait if the fast mutex 
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is already held, returning FALSE instead . Another limitation of fast mutexes is that they can’t be 
 acquired recursively, like mutex objects can .

Guarded mutexes are essentially the same as fast mutexes (although they use a different 
 synchronization object, the KGATE, internally) . They are acquired with the KeAcquireGuardedMutex 
and KeAcquireGuardedMutexUnsafe functions, but instead of disabling APCs by raising the IRQL to 
APC level, they disable all kernel-mode APC delivery by calling KeEnterGuardedRegion . Similarly to 
fast mutexes, a KeTryToAcquireGuardedMutex method also exists . Recall that a guarded region, un-
like a critical region, disables both special and normal kernel-mode APCs, which allows the guarded 
mutex to avoid raising the IRQL .

Three differences make guarded mutexes faster than fast mutexes:

 ■ By avoiding raising the IRQL, the kernel can avoid talking to the local APIC of every processor 
on the bus, which is a significant operation on large SMP systems. On uniprocessor systems, 
this isn’t a problem because of lazy IRQL evaluation, but lowering the IRQL might still require 
accessing the PIC .

 ■ The gate primitive is an optimized version of the event . By not having both synchronization 
and notification versions and by being the exclusive object that a thread can wait on, the code 
for acquiring and releasing a gate is heavily optimized . Gates even have their own dispatcher 
lock instead of acquiring the entire dispatcher database .

 ■ In the noncontended case, the acquisition and release of a guarded mutex works on a 
single bit, with an atomic bit test-and-reset operation instead of the more complex integer 
 operations fast mutexes perform .

Note The code for a fast mutex is also optimized to account for almost all these 
 optimizations—it uses the same atomic lock operation, and the event object is actually a 
gate object (although by dumping the type in the kernel debugger, you would still see an 
event object structure; this is actually a compatibility lie) . However, fast mutexes still raise 
the IRQL instead of using guarded regions .

Because the flag responsible for special kernel APC delivery disabling (and the guarded-region 
functionality) was not added until Windows Server 2003, many drivers do not take advantage of 
guarded mutexes . Doing so would raise compatibility issues with earlier versions of Windows, which 
require a recompiled driver making use only of fast mutexes . Internally, however, the Windows kernel 
has replaced almost all uses of fast mutexes with guarded mutexes because the two have identical 
semantics and can be easily interchanged .

Another problem related to the guarded mutex was the kernel function KeAreApcsDisabled . Prior 
to Windows Server 2003, this function indicated whether normal APCs were disabled by checking 
whether the code was running inside a critical section . In Windows Server 2003, this function was 
changed to indicate whether the code was in a critical, or guarded, region, changing the functionality 
to also return TRUE if special kernel APCs are also disabled .
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Because there are certain operations that drivers should not perform when special kernel APCs are 
disabled, it makes sense to call KeGetCurrentIrql to check whether the IRQL is APC level or not, which 
is the only way special kernel APCs could have been disabled . However, because the memory man-
ager makes use of guarded mutexes instead, this check fails because guarded mutexes do not raise 
IRQL . Drivers should instead call KeAreAllApcsDisabled for this purpose . This function checks whether 
special kernel APCs are disabled and/or whether the IRQL is APC level—the sure-fire way to detect 
both guarded mutexes and fast mutexes . 

Executive Resources
Executive resources are a synchronization mechanism that supports shared and exclusive access; 
like fast mutexes, they require that normal kernel-mode APC delivery be disabled before they are 
 acquired . They are also built on dispatcher objects that are used only when there is contention . 
 Executive resources are used throughout the system, especially in file-system drivers, because such 
drivers tend to have long-lasting wait periods in which I/O should still be allowed to some extent 
(such as reads) . 

Threads waiting to acquire an executive resource for shared access wait for a semaphore 
 associated with the resource, and threads waiting to acquire an executive resource for exclusive access 
wait for an event . A semaphore with unlimited count is used for shared waiters because they can all 
be woken and granted access to the resource when an exclusive holder releases the resource simply 
by signaling the semaphore . When a thread waits for exclusive access of a resource that is currently 
owned, it waits on a synchronization event object because only one of the waiters will wake when the 
event is signaled . In the earlier section on synchronization events, it was mentioned that some event 
unwait operations can actually cause a priority boost: this scenario occurs when executive resources 
are used, which is one reason why they also track ownership like mutexes do . (See Chapter 5 for more 
information on the executive resource priority boost .)

Because of the flexibility that shared and exclusive access offer, there are a number of 
 functions for acquiring resources: ExAcquireResourceSharedLite, ExAcquireResourceExclusiveLite, 
 ExAcquireSharedStarveExclusive, ExAcquireShareWaitForExclusive . These functions are documented in 
the WDK .

EXPERIMENT: Listing Acquired Executive Resources
The kernel debugger !locks command searches paged pool for executive resource objects and 
dumps their state . By default, the command lists only executive resources that are currently 
owned, but the –d option lists all executive resources . Here is partial output of the command:

lkd> !locks  
**** DUMP OF ALL RESOURCE OBJECTS ****  
KD: Scanning for held locks.  
  
Resource @ 0x89929320    Exclusively owned 
    Contention Count = 3911396 
     Threads: 8952d030-01<*> 
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KD: Scanning for held locks.......................................  
  
Resource @ 0x89da1a68    Shared 1 owning threads  
     Threads: 8a4cb533-01<*> *** Actual Thread 8a4cb530

Note that the contention count, which is extracted from the resource structure, records the 
number of times threads have tried to acquire the resource and had to wait because it was 
already owned .

You can examine the details of a specific resource object, including the thread that owns the 
resource and any threads that are waiting for the resource, by specifying the –v switch and the 
address of the resource:

lkd> !locks -v 0x89929320     
  
Resource @ 0x89929320    Exclusively owned 
    Contention Count = 3913573 
     Threads: 8952d030-01<*>  
 
     THREAD 8952d030  Cid 0acc.050c  Teb: 7ffdf000 Win32Thread: fe82c4c0 RUNNING on 
processor 0 
     Not impersonating 
     DeviceMap                 9aa0bdb8 
     Owning Process            89e1ead8       Image:         windbg.exe 
     Wait Start TickCount      24620588       Ticks: 12 (0:00:00:00.187) 
     Context Switch Count      772193              
     UserTime                  00:00:02.293 
     KernelTime                00:00:09.828 
     Win32 Start Address windbg (0x006e63b8) 
     Stack Init a7eba000 Current a7eb9c10 Base a7eba000 Limit a7eb7000 Call 0 
     Priority 10 BasePriority 8 PriorityDecrement 0 IoPriority 2 PagePriority 5 
Unable to get context for thread running on processor 1, HRESULT 0x80004001 
1 total locks, 1 locks currently held

Pushlocks
Pushlocks are another optimized synchronization mechanism built on gate objects; like guarded 
mutexes, they wait for a gate object only when there’s contention on the lock . They offer advan-
tages over the guarded mutex in that they can be acquired in shared or exclusive mode . However, 
their main advantage is their size: a resource object is 56 bytes, but a pushlock is pointer-size . 
 Unfortunately, they are not documented in the WDK and are therefore reserved for use by the 
 operating system (although the APIs are exported, so internal drivers do use them) .

There are two types of pushlocks: normal and cache-aware . Normal pushlocks require only the 
size of a pointer in storage (4 bytes on 32-bit systems, and 8 bytes on 64-bit systems) . When a thread 
 acquires a normal pushlock, the pushlock code marks the pushlock as owned if it is not currently 
owned . If the pushlock is owned exclusively or the thread wants to acquire the thread exclusively 
and the pushlock is owned on a shared basis, the thread allocates a wait block on the thread’s stack, 
initializes a gate object in the wait block, and adds the wait block to the wait list associated with 
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the pushlock . When a thread releases a pushlock, the thread wakes a waiter, if any are present, by 
 signaling the event in the waiter’s wait block .

Because a pushlock is only pointer-sized, it actually contains a variety of bits to describe its state . 
The meaning of those bits changes as the pushlock changes from being contended to noncontended . 
In its initial state, the pushlock contains the following structure:

 ■ One lock bit, set to 1 if the lock is acquired

 ■ One waiting bit, set to 1 if the lock is contended and someone is waiting on it

 ■ One waking bit, set to 1 if the lock is being granted to a thread and the waiter’s list needs to 
be optimized

 ■ One multiple shared bit, set to 1 if the pushlock is shared and currently acquired by more than 
one thread

 ■ 28 (on 32-bit Windows) or 60 (on 64-bit Windows) share count bits, containing the number of 
threads that have acquired the pushlock

As discussed previously, when a thread acquires a pushlock exclusively while the pushlock is 
already acquired by either multiple readers or a writer, the kernel allocates a pushlock wait block . 
The structure of the pushlock value itself changes . The share count bits now become the pointer to 
the wait block. Because this wait block is allocated on the stack and the header files contain a special 
alignment directive to force it to be 16-byte aligned, the bottom 4 bits of any pushlock wait-block 
structure will be all zeros . Therefore, those bits are ignored for the purposes of pointer dereferencing; 
instead, the 4 bits shown earlier are combined with the pointer value . Because this alignment removes 
the share count bits, the share count is now stored in the wait block instead .

A cache-aware pushlock adds layers to the normal (basic) pushlock by allocating a pushlock for 
each processor in the system and associating it with the cache-aware pushlock . When a thread wants 
to acquire a cache-aware pushlock for shared access, it simply acquires the pushlock allocated for its 
current processor in shared mode; to acquire a cache-aware pushlock exclusively, the thread acquires 
the pushlock for each processor in exclusive mode .

Other than a much smaller memory footprint, one of the large advantages that pushlocks have 
over executive resources is that in the noncontended case they do not require lengthy accounting 
and integer operations to perform acquisition or release . By being as small as a pointer, the kernel can 
use atomic CPU instructions to perform these tasks . (lock cmpxchg is used, which atomically com-
pares and exchanges the old lock with a new lock .) If the atomic compare and exchange fails, the lock 
contains values the caller did not expect (callers usually expect the lock to be unused or acquired as 
shared), and a call is then made to the more complex contended version . To improve performance 
even further, the kernel exposes the pushlock functionality as inline functions, meaning that no 
function calls are ever generated during noncontended acquisition—the assembly code is directly 
inserted in each function . This increases code size slightly, but it avoids the slowness of a function call . 
Finally, pushlocks use several algorithmic tricks to avoid lock convoys (a situation that can occur when 
multiple threads of the same priority are all waiting on a lock and little actual work gets done), and 
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they are also self-optimizing: the list of threads waiting on a pushlock will be periodically rearranged 
to provide fairer behavior when the pushlock is released .

Areas in which pushlocks are used include the object manager, where they protect global object-
manager data structures and object security descriptors, and the memory manager, where their 
cache-aware counterpart is used to protect Address Windowing Extension (AWE) data structures . 

Deadlock Detection with Driver Verifier
A deadlock is a synchronization issue resulting from two threads or processors holding 
 resources that the other wants and neither yielding what it has . This situation might result 
in system or process hangs. Driver Verifier, described in Chapter 8 in Part 2 and Chapter 9 in 
Part  2, has an option to check for deadlocks involving spinlocks, fast mutexes, and mutexes . For 
information on when to enable Driver Verifier to help resolve system hangs, see Chapter 14 in 
Part 2 .

Critical Sections
Critical sections are one of the main synchronization primitives that Windows provides to user-mode 
applications on top of the kernel-based synchronization primitives . Critical sections and the other 
user-mode primitives you’ll see later have one major advantage over their kernel counterparts, which 
is saving a round-trip to kernel mode in cases in which the lock is noncontended (which is typically 
99 percent of the time or more) . Contended cases still require calling the kernel, however, because 
it is the only piece of the system that is able to perform the complex waking and dispatching logic 
required to make these objects work . 

Critical sections are able to remain in user mode by using a local bit to provide the main exclusive 
locking logic, much like a spinlock . If the bit is 0, the critical section can be acquired, and the owner 
sets the bit to 1 . This operation doesn’t require calling the kernel but uses the interlocked CPU opera-
tions discussed earlier . Releasing the critical section behaves similarly, with bit state changing from 
1 to 0 with an interlocked operation . On the other hand, as you can probably guess, when the bit is 
already 1 and another caller attempts to acquire the critical section, the kernel must be called to put 
the thread in a wait state .Finally, because critical sections are not kernel objects, they have certain 
limitations . The primary one is that you cannot obtain a kernel handle to a critical section; as such, 
no security, naming, or other object manager functionality can be applied to a critical section . Two 
processes cannot use the same critical section to coordinate their operations, nor can duplication or 
inheritance be used .

User-Mode Resources
User-mode resources also provide more fine-grained locking mechanisms than kernel primitives . A 
resource can be acquired for shared mode or for exclusive mode, allowing it to function as a multiple-
reader (shared), single-writer (exclusive) lock for data structures such as databases . When a resource 
is acquired in shared mode and other threads attempt to acquire the same resource, no trip to the 
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 kernel is required because none of the threads will be waiting . Only when a thread attempts to 
acquire the resource for exclusive access, or the resource is already locked by an exclusive owner, will 
this be required .

To make use of the same dispatching and synchronization mechanism you saw in the kernel, 
resources actually make use of existing kernel primitives . A resource data structure (RTL_RESOURCE) 
contains handles to a kernel mutex as well as a kernel semaphore object . When the resource is ac-
quired exclusively by more than one thread, the resource uses the mutex because it permits only one 
owner . When the resource is acquired in shared mode by more than one thread, the resource uses a 
semaphore because it allows multiple owner counts . This level of detail is typically hidden from the 
programmer, and these internal objects should never be used directly .

Resources were originally implemented to support the SAM (or Security Account Manager, which 
is discussed in Chapter 6) and not exposed through the Windows API for standard applications . Slim 
Reader-Writer Locks (SRW Locks), described next, were implemented in Windows Vista to expose a 
similar locking primitive through a documented API, although some system components still use the 
resource mechanism .

Condition Variables
Condition variables provide a Windows native implementation for synchronizing a set of threads 
that are waiting on a specific result to a conditional test. Although this operation was possible with 
other user-mode synchronization methods, there was no atomic mechanism to check the result of the 
 conditional test and to begin waiting on a change in the result . This required that additional synchro-
nization be used around such pieces of code .

A user-mode thread initializes a condition variable by calling InitializeConditionVariable to set up 
the initial state . When it wants to initiate a wait on the variable, it can call SleepConditionVariableCS, 
which uses a critical section (that the thread must have initialized) to wait for changes to the variable . 
The setting thread must use WakeConditionVariable (or WakeAllConditionVariable) after it has modi-
fied the variable. (There is no automatic detection mechanism.) This call releases the critical section of 
either one or all waiting threads, depending on which function was used .

Before condition variables, it was common to use either a notification event or a synchronization 
event (recall that these are referred to as auto-reset or manual-reset in the Windows API) to signal 
the change to a variable, such as the state of a worker queue . Waiting for a change required a critical 
section to be acquired and then released, followed by a wait on an event . After the wait, the critical 
section had to be re-acquired . During this series of acquisitions and releases, the thread might have 
switched contexts, causing problems if one of the threads called PulseEvent (a similar problem to 
the one that keyed events solve by forcing a wait for the signaling thread if there is no waiter) . With 
condition variables, acquisition of the critical section can be maintained by the application while 
SleepConditionVariableCS is called and can be released only after the actual work is done . This makes 
writing work-queue code (and similar implementations) much simpler and predictable . 

Internally, condition variables can be thought of as a port of the existing pushlock algorithms 
 present in kernel mode, with the additional complexity of acquiring and releasing critical sections 
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in the SleepConditionVariableCS API . Condition variables are pointer-size ( just like pushlocks), avoid 
using the dispatcher (which requires a ring transition to kernel mode in this scenario, making the 
advantage even more noticeable), automatically optimize the wait list during wait operations, and 
protect against lock convoys . Additionally, condition variables make full use of keyed events instead of 
the regular event object that developers would have used on their own, which makes even contended 
cases more optimized .

Slim Reader-Writer Locks
Although condition variables are a synchronization mechanism, they are not fully primitive locking 
objects . As you’ve seen, they still depend on the critical section lock, whose acquisition and release 
uses standard dispatcher event objects, so trips through kernel mode can still happen and callers still 
require the initialization of the large critical section object . If condition variables share a lot of similari-
ties with pushlocks, Slim Reader-Writer Locks (SRW Locks) are nearly identical . They are also pointer-
size, use atomic operations for acquisition and release, rearrange their waiter lists, protect against lock 
convoys, and can be acquired both in shared and exclusive mode . Some differences from pushlocks, 
however, include the fact that SRW Locks cannot be “upgraded” or converted from shared to exclu-
sive or vice versa . Additionally, they cannot be recursively acquired . Finally, SRW Locks are exclusive to 
user-mode code, while pushlocks are exclusive to kernel-mode code, and the two cannot be shared 
or exposed from one layer to the other .

Not only can SRW Locks entirely replace critical sections in application code, but they also  offer 
multiple-reader, single-writer functionality. SRW Locks must first be initialized with  InitializeSRWLock, 
after which they can be acquired or released in either exclusive or shared mode with the 
 appropriate APIs: AcquireSRWLockExclusive, ReleaseSRWLockExclusive, AcquireSRWLockShared, and 
 ReleaseSRWLockShared. 

Note Unlike most other Windows APIs, the SRW locking functions do not return with a 
value—instead they generate exceptions if the lock could not be acquired . This makes 
it obvious that an acquisition has failed so that code that assumes success will terminate 
 instead of potentially proceeding to corrupt user data . 

The Windows SRW Locks do not prefer readers or writers, meaning that the performance for either 
case should be the same . This makes them great replacements for critical sections, which are writer-
only or exclusive synchronization mechanisms, and they provide an optimized alternative to resources . 
If SRW Locks were optimized for readers, they would be poor exclusive-only locks, but this isn’t the 
case . As a result, the design of the condition variable mechanism introduced earlier also allows for 
the use of SRW Locks instead of critical sections, through the SleepConditionVariableSRW API . Finally, 
SRW Locks also use keyed events instead of standard event objects, so the combination of condition 
variables and SRW Locks results in scalable, pointer-size synchronization mechanisms with very few 
trips to kernel mode—except in contended cases, which are optimized to take less time and memory 
to wake and set because of the use of keyed events .
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Run Once Initialization
The ability to guarantee the atomic execution of a piece of code responsible for performing some 
sort of initialization task—such as allocating memory, initializing certain variables, or even creating 
objects on demand—is a typical problem in multithreaded programming . In a piece of code that can 
be called simultaneously by multiple threads (a good example is the DllMain routine, which initializes 
a DLL), there are several ways of attempting to ensure the correct, atomic, and unique execution of 
initialization tasks .

In this scenario, Windows implements init once, or one-time initialization (also called run once 
initialization internally) . This mechanism allows for both synchronous (meaning that the other threads 
must wait for initialization to complete) execution of a certain piece of code, as well as asynchronous 
(meaning that the other threads can attempt to do their own initialization and race) execution . We’ll 
look at the logic behind asynchronous execution after explaining the synchronous mechanism .

In the synchronous case, the developer writes the piece of code that would normally execute after 
double-checking the global variable in a dedicated function . Any information that this routine needs 
can be passed through the parameter variable that the init-once routine accepts . Any output infor-
mation is returned through the context variable . (The status of the initialization itself is returned as 
a Boolean .) All the developer has to do to ensure proper execution is call InitOnceExecuteOnce with 
the parameter, context, and run-once function pointer after initializing an INIT_ONCE object with 
 InitOnceInitialize API . The system will take care of the rest .

For applications that want to use the asynchronous model instead, the threads call 
 InitOnceBeginInitialize and receive a BOOLEAN pending status and the context described earlier . If 
the pending status is FALSE, initialization has already taken place, and the thread uses the context 
value for the result . (It’s also possible for the function itself to return FALSE, meaning that initializa-
tion failed .) However, if the pending status comes back as TRUE, the thread should race to be the first 
to create the object . The code that follows performs whatever initialization tasks are required, such 
as creating objects or allocating memory . When this work is done, the thread calls InitOnceComplete 
with the result of the work as the context and receives a BOOLEAN status . If the status is TRUE, the 
thread won the race, and the object that it created or allocated is the one that will be the global 
 object . The thread can now save this object or return it to a caller, depending on the usage .

In the more complex scenario when the status is FALSE, this means that the thread lost the race . 
The thread must undo all the work it did, such as deleting objects or freeing memory, and then call 
InitOnceBeginInitialize again . However, instead of requesting to start a race as it did initially, it uses 
the INIT_ONCE_CHECK_ONLY flag, knowing that it has lost, and requests the winner’s context instead 
(for example, the objects or memory that were created or allocated by the winner) . This returns an-
other status, which can be TRUE, meaning that the context is valid and should be used or returned to 
the caller, or FALSE, meaning that initialization failed and nobody has actually been able to perform 
the work (such as in the case of a low-memory condition, perhaps) .

In both cases, the mechanism for run-once initialization is similar to the mechanism for condition 
variables and SRW Locks . The init once structure is pointer-size, and inline assembly versions of the 
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SRW acquisition/release code are used for the noncontended case, while keyed events are used when 
contention has occurred (which happens when the mechanism is used in synchronous mode) and 
the other threads must wait for initialization . In the asynchronous case, the locks are used in shared 
mode, so multiple threads can perform initialization at the same time .

System Worker Threads

During system initialization, Windows creates several threads in the System process, called system 
worker threads, which exist solely to perform work on behalf of other threads . In many cases, threads 
executing at DPC/dispatch level need to execute functions that can be performed only at a lower 
IRQL . For example, a DPC routine, which executes in an arbitrary thread context (because DPC execu-
tion can usurp any thread in the system) at DPC/dispatch level IRQL, might need to access paged pool 
or wait for a dispatcher object used to synchronize execution with an application thread . Because a 
DPC routine can’t lower the IRQL, it must pass such processing to a thread that executes at an IRQL 
below DPC/dispatch level .

Some device drivers and executive components create their own threads dedicated to processing 
work at passive level; however, most use system worker threads instead, which avoids the unneces-
sary scheduling and memory overhead associated with having additional threads in the system . An 
executive component requests a system worker thread’s services by calling the executive functions 
ExQueueWorkItem or IoQueueWorkItem. Device drivers should use only the latter (because this 
 associates the work item with a Device object, allowing for greater accountability and the handling of 
scenarios in which a driver unloads while its work item is active) . These functions place a work item on 
a queue dispatcher object where the threads look for work . (Queue dispatcher objects are described 
in more detail in the section “I/O Completion Ports” in Chapter 8 in Part 2 .) 

The IoQueueWorkItemEx, IoSizeofWorkItem, IoInitializeWorkItem, and IoUninitializeWorkItem APIs 
act similarly, but they create an association with a driver’s Driver object or one of its Device objects . 

Work items include a pointer to a routine and a parameter that the thread passes to the routine 
when it processes the work item . The device driver or executive component that requires passive-level 
execution implements the routine . For example, a DPC routine that must wait for a dispatcher object 
can initialize a work item that points to the routine in the driver that waits for the dispatcher object, 
and perhaps points to a pointer to the object . At some stage, a system worker thread will remove 
the work item from its queue and execute the driver’s routine. When the driver’s routine finishes, the 
system worker thread checks to see whether there are more work items to process . If there aren’t any 
more, the system worker thread blocks until a work item is placed on the queue . The DPC routine 
might or might not have finished executing when the system worker thread processes its work item. 

There are three types of system worker threads:

 ■ Delayed worker threads execute at priority 12, process work items that aren’t considered 
 time-critical, and can have their stack paged out to a paging file while they wait for work 
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items . The object manager uses a delayed work item to perform deferred object deletion, 
which deletes kernel objects after they have been scheduled for freeing .

 ■ Critical worker threads execute at priority 13, process time-critical work items, and on 
 Windows Server systems have their stacks present in physical memory at all times .

 ■ A single hypercritical worker thread executes at priority 15 and also keeps its stack in memory . 
The process manager uses the hypercritical work item to execute the thread “reaper” function 
that frees terminated threads .

The number of delayed and critical worker threads created by the executive’s 
 ExpWorkerInitialization function, which is called early in the boot process, depends on the  
amount of memory present on the system and whether the system is a server . Table 3-22 
shows the initial number of threads created on default configurations. You can specify that 
 ExpInitializeWorker create up to 16 additional delayed and 16 additional critical worker threads with 
the  AdditionalDelayedWorkerThreads and AdditionalCriticalWorkerThreads values under the registry 
key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Executive.

TABLE 3-22 Initial Number of System Worker Threads

Work Queue Type Default Number of Threads

Delayed 7

Critical 5

Hypercritical 1

The executive tries to match the number of critical worker threads with changing workloads as 
the system executes . Once every second, the executive function ExpWorkerThreadBalanceManager 
determines whether it should create a new critical worker thread . The critical worker threads that are 
created by ExpWorkerThreadBalanceManager are called dynamic worker threads, and all the following 
conditions must be satisfied before such a thread is created:

 ■ Work items exist in the critical work queue .

 ■ The number of inactive critical worker threads (ones that are either blocked waiting for work 
items or that have blocked on dispatcher objects while executing a work routine) must be less 
than the number of processors on the system .

 ■ There are fewer than 16 dynamic worker threads .

Dynamic worker threads exit after 10 minutes of inactivity . Thus, when the workload dictates, the 
executive can create up to 16 dynamic worker threads .
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EXPERIMENT: Listing System Worker Threads
You can use the !exqueue kernel debugger command to see a listing of system worker threads 
classified by their type:

lkd> !exqueue 
Dumping ExWorkerQueue: 820FDE40 
 
**** Critical WorkQueue( current = 0 maximum = 2 ) 
THREAD 861160b8  Cid 0004.001c  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613b020  Cid 0004.0020  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613bd78  Cid 0004.0024  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613bad0  Cid 0004.0028  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613b828  Cid 0004.002c  Teb: 00000000 Win32Thread: 00000000 WAIT 
 
**** Delayed WorkQueue( current = 0 maximum = 2 ) 
THREAD 8613b580  Cid 0004.0030  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613b2d8  Cid 0004.0034  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613c020  Cid 0004.0038  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613cd78  Cid 0004.003c  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613cad0  Cid 0004.0040  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613c828  Cid 0004.0044  Teb: 00000000 Win32Thread: 00000000 WAIT 
THREAD 8613c580  Cid 0004.0048  Teb: 00000000 Win32Thread: 00000000 WAIT 
 
**** HyperCritical WorkQueue( current = 0 maximum = 2 ) 
THREAD 8613c2d8  Cid 0004.004c  Teb: 00000000 Win32Thread: 00000000 WAIT

Windows Global Flags

Windows has a set of flags stored in a systemwide global variable named NtGlobalFlag that enable 
various internal debugging, tracing, and validation support in the operating system . The system vari-
able NtGlobalFlag is initialized from the registry key HKLM\SYSTEM\CurrentControlSet\Control 
\Session Manager in the value GlobalFlag at system boot time . By default, this registry value is 0, so 
it’s likely that on your systems, you’re not using any global flags. In addition, each image has a set of 
global flags that also turn on internal tracing and validation code (although the bit layout of these 
flags is entirely different from the systemwide global flags). 

Fortunately, the debugging tools contains a utility named Gflags.exe you can use to view and 
change the system global flags (either in the registry or in the running system) as well as image global 
flags. Gflags has both a command-line and a GUI interface. To see the command-line flags, type 
gflags /? . If you run the utility without any switches, the dialog box shown in Figure 3-28 is displayed .
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FIGURE 3-28 Setting system debugging options with Gflags

You can configure a variable’s settings in the registry on the System Registry page or the current 
value of a variable in system memory on the Kernel Flags page . 

The Image File page requires you to fill in the file name of an executable image. Use this option 
to change a set of global flags that apply to an individual image (rather than to the whole system). In 
Figure 3-29, notice that the flags are different from the operating system ones shown in Figure 3-28.

FIGURE 3-29 Setting image global flags with Gflags
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EXPERIMENT: Viewing and Setting NtGlobalFlag
You can use the !gflag kernel debugger command to view and set the state of the NtGlobalFlag 
kernel variable . The !gflag command lists all the flags that are enabled. You can use !gflag -? to 
get the entire list of supported global flags.

Advanced Local Procedure Call

All modern operating systems require a mechanism for securely transferring data between one or 
more processes in user mode, as well as between a service in the kernel and clients in user mode . 
Typically, UNIX mechanisms such as mailslots, files, named pipes, and sockets are used for portability, 
while other developers use window messages for graphical applications . Windows implements an in-
ternal IPC mechanism called  Advanced Local Procedure Call, or ALPC, which is a high-speed, scalable, 
and secured facility for message passing arbitrary-size messages . Although it is internal, and thus not 
available for third-party developers, ALPC is widely used in various parts of Windows:

 ■ Windows applications that use remote procedure call (RPC), a documented API, indirectly use 
ALPC when they specify local-RPC over the ncalrpc transport, a form of RPC used to commu-
nicate between processes on the same system . Kernel-mode RPC, used by the network stack, 
also uses ALPC .

 ■ Whenever a Windows process and/or thread starts, as well as during any Windows subsystem 
operation (such as all console I/O), ALPC is used to communicate with the subsystem process 
(CSRSS) . All subsystems communicate with the session manager (SMSS) over ALPC .

 ■ Winlogon uses ALPC to communicate with the local security authentication process, LSASS .

 ■ The security reference monitor (an executive component explained in Chapter 6) uses ALPC to 
communicate with the LSASS process .

 ■ The user-mode power manager and power monitor communicate with the kernel-mode 
power manager over ALPC, such as whenever the LCD brightness is changed .

 ■ Windows Error Reporting uses ALPC to receive context information from crashing processes .

 ■ The User-Mode Driver Framework (UMDF) enables user-mode drivers to communicate using 
ALPC .

Note ALPC is the replacement for an older IPC mechanism initially shipped with the very 
first kernel design of Windows NT, called LPC, which is why certain variables, fields, and 
functions might still refer to “LPC” today . Keep in mind that LPC is now emulated on top 
of ALPC for compatibility and has been removed from the kernel (legacy system calls still 
 exist, which get wrapped into ALPC calls) .
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Connection Model
Typically, ALPCs are used between a server process and one or more client processes of that server . 
An ALPC connection can be established between two or more user-mode processes or between a 
kernel-mode component and one or more user-mode processes . ALPC exports a single executive 
 object called the port object to maintain the state needed for communication . Although this is just 
one object, there are actually several kinds of ALPC ports that it can represent:

 ■ Server connection port A named port that is a server connection request point . Clients can 
connect to the server by connecting to this port .

 ■ Server communication port An unnamed port a server uses to communicate with a 
 particular client . The server has one such port per active client .

 ■ Client communication port An unnamed port a particular client thread uses to 
 communicate with a particular server .

 ■ Unconnected communication port An unnamed port a client can use to communicate 
locally with itself .

ALPC follows a connection and communication model that’s somewhat reminiscent of BSD 
socket programming. A server first creates a server connection port (NtAlpcCreatePort), while a 
 client  attempts to connect to it (NtAlpcConnectPort) . If the server was in a listening state, it re-
ceives a  connection request message and can choose to accept it (NtAlpcAcceptPort) . In doing 
so, both the client and server communication ports are created, and each respective endpoint 
process receives a handle to its communication port . Messages are then sent across this handle 
( NtAlpcSendWaitReceiveMessage), typically in a dedicated thread, so that the server can continue 
listening for connection requests on the original connection port (unless this server expects only one 
client) .

The server also has the ability to deny the connection, either for security reasons or simply due to 
protocol or versioning issues . Because clients can send a custom payload with a connection request, 
this is usually used by various services to ensure that the correct client, or only one client, is talking to 
the server . If any anomalies are found, the server can reject the connection, and, optionally, return a 
payload containing information on why the client was rejected (allowing the client to take corrective 
action, if possible, or for debugging purposes) .

Once a connection is made, a connection information structure (actually, a blob, as will be 
 described shortly) stores the linkage between all the different ports, as shown in Figure 3-30 .
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FIGURE 3-30 Use of ALPC ports

Message Model
Using ALPC, a client and thread using blocking messages each take turns performing a loop around 
the NtAlpcSendWaitReplyPort system call, in which one side sends a request and waits for a reply 
while the other side does the opposite . However, because ALPC supports asynchronous messages, 
it’s possible for either side not to block and choose instead to perform some other runtime task 
and check for messages later (some of these methods will be described shortly) . ALPC supports the 
 following three methods of exchanging payloads sent with a message:

 ■ A message can be sent to another process through the standard double-buffering mechanism, 
in which the kernel maintains a copy of the message (copying it from the source process), 
switches to the target process, and copies the data from the kernel’s buffer . For compatibility, 
if legacy LPC is being used, only messages up to 256 bytes can be sent this way, while ALPC 
has the ability to allocate an extension buffer for messages up to ~64KB .

 ■ A message can be stored in an ALPC section object from which the client and server processes 
map views . (See Chapter 10 in Part 2 for more information on section mappings .)
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 ■ A message can be stored in a message zone, which is an Memory Descriptor List (MDL) that 
backs the physical pages containing the data and that is mapped into the kernel’s address 
space .

An important side effect of the ability to send asynchronuos messages is that a message can be 
canceled—for example, when a request takes too long or the user has indicated that she wants to 
cancel the operation it implements . ALPC supports this with the NtAlpcCancelMessage system call . 

An ALPC message can be on one of four different queues implemented by the ALPC port object:

 ■ Main queue A message has been sent, and the client is processing it .

 ■ Pending queue A message has been sent and the caller is waiting for a reply, but the reply 
has not yet been sent .

 ■ Large message queue A message has been sent, but the caller’s buffer was too small to 
receive it . The caller gets another chance to allocate a larger buffer and request the message 
payload again .

 ■ Canceled queue A message that was sent to the port, but has since been canceled .

Note that a fifth queue, called the wait queue, does not link messages together; instead, it links all 
the threads waiting on a message .

EXPERIMENT: Viewing Subsystem ALPC Port Objects
You can see named ALPC port objects with the WinObj tool from Sysinternals . Run Winobj .exe, 
and select the root directory. A gear icon identifies the port objects, as shown here:
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You should see the ALPC ports used by the power manager, the security manager, and 
other internal Windows services . If you want to see the ALPC port objects used by RPC, you can 
select the \RPC Control directory. One of the primary users of ALPC, outside of Local RPC, is the 
 Windows subsystem, which uses ALPC to communicate with the Windows subsystem DLLs that 
are present in all Windows processes . (Subsystem for UNIX Applications uses a similar mecha-
nism.) Because CSRSS loads once for each session, you will find its ALPC port objects under the 
appropriate \Sessions\X\Windows directory, such as shown here:

Asynchronous Operation
The synchronous model of ALPC is tied to the original LPC architecture in the early NT design, and 
is similar to other blocking IPC mechanisms, such as Mach ports . Although it is simple to design, a 
blocking IPC algorithm includes many possibilities for deadlock, and working around those scenarios 
creates complex code that requires support for a more flexible asynchronous (nonblocking) model. As 
such, ALPC was primarily designed to support asynchronous operation as well, which is a requirement 
for scalable RPC and other uses, such as support for pending I/O in user-mode drivers . A basic feature 
of ALPC, which wasn’t originally present in LPC, is that blocking calls can have a timeout parameter . 
This allows legacy applications to avoid certain deadlock scenarios .

However, ALPC is optimized for asynchronous messages and provides three different models for 
asynchronous notifications. The first doesn’t actually notify the client or server, but simply copies 
the data payload . Under this model, it’s up to the implementor to choose a reliable synchronization 
method. For example, the client and the server can share a notification event object, or the client can 
poll for data arrival . The data structure used by this model is the ALPC completion list (not to be con-
fused with the Windows I/O completion port). The ALPC completion list is an efficient,  nonblocking 
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data structure that enables atomic passing of data between clients, and its internals are described 
further in the “Performance” section .

The next notification model is a waiting model that uses the Windows completion-port  mechanism 
(on top of the ALPC completion list) . This enables a thread to retrieve multiple payloads at once, 
control the maximum number of concurrent requests, and take advantage of native completion-port 
functionality . The user-mode thread pool (described later in this chapter) implementation provides 
internal APIs that processes use to manage ALPC messages within the same infrastructure as worker 
threads, which are implemented using this model . The RPC system in Windows, when using Local 
RPC (over ncalrpc), also makes use of this functionality to provide efficient message delivery by taking 
advantage of this kernel support .

Finally, because drivers can also use asynchronous ALPC, but do not typically support  completion 
ports at such a high-level, ALPC also provides a mechanism for a more basic, kernel-based noti-
fication using executive callback objects . A driver can register its own callback and context with 
 NtSetInformationAlpcPort, after which it will get called whenever a message is received . The 
 user-mode, power-manager interfaces in the kernel employ this mechanism for asynchronous LCD 
backlight operation on laptops, for example .

Views, Regions, and Sections
Instead of sending message buffers between their two respective processes, a server and client can 
choose a more efficient data-passing mechanism that is at the core of Windows’ memory manager: 
the section object . (More information is available in Chapter 10 in Part 2 .) This allows a piece of 
memory to be allocated as shared, and for both client and server to have a consistent, and equal, 
view of this memory. In this scenario, as much data as can fit can be transferred, and data is merely 
copied into one address range and immediately available in the other . Unfortunately, shared-memory 
communication, such as LPC traditionally provided, has its share of drawbacks, especially when con-
sidering security ramifications. For one, because both client and server must have access to the shared 
memory, an unprivileged client can use this to corrupt the server’s shared memory, and even build 
executable payloads for potential exploits . Additionally, because the client knows the location of the 
server’s data, it can use this information to bypass ASLR protections . (See Chapter 8 in Part 2 for more 
information .)

ALPC provides its own security on top of what’s provided by section objects. With ALPC, a specific 
ALPC section object must be created with the appropriate NtAlpcCreatePortSection API, which will 
create the correct references to the port, as well as allow for automatic section garbage collection . (A 
manual API also exists for deletion .) As the owner of the ALPC section object begins using the section, 
the allocated chunks are created as ALPC regions, which represent a range of used addresses within 
the section and add an extra reference to the message . Finally, within a range of shared memory, the 
clients obtain views to this memory, which represents the local mapping within their address space .

Regions also support a couple of security options . First of all, regions can be mapped either using 
a secure mode or an unsecure mode . In the secure mode, only two views (mappings) are allowed 
to the region . This is typically used when a server wants to share data privately with a single  client 
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 process . Additionally, only one region for a given range of shared memory can be opened from 
within the context of a given port . Finally, regions can also be marked with write-access  protection, 
which enables only one process context (the server) to have write access to the view (by using 
 MmSecureVirtualMemoryAgainstWrites) . Other clients, meanwhile, will have read-only access only . 
These settings mitigate many privilege-escalation attacks that could happen due to attacks on shared 
memory, and they make ALPC more resilient than typical IPC mechanisms .

Attributes
ALPC provides more than simple message passing: it also enables specific contextual information to 
be added to each message and have the kernel track the validity, lifetime, and implementation of that 
information . Users of ALPC have the ability to assign their own custom context information as well . 
Whether it’s system-managed or user-managed, ALPC calls this data attributes. There are three of 
these that the kernel manages:

 ■ The security attribute, which holds key information to allow impersonation of clients, as well as 
advanced ALPC security functionality (which is described later)

 ■ The data view attribute, responsible for managing the different views associated with the 
regions of an ALPC section

 ■ The handle attribute, which contains information about which handles to associate with the 
message (which is described in more detail later in the “Security” section) .

Normally, these attributes are initially passed in by the server or client when the message is sent 
and converted into the kernel’s own internal ALPC representation . If the ALPC user requests this data 
back, it is exposed back securely . By implementing this kind of model and combining it with its own 
internal handle table, described next, ALPC can keep critical data opaque between clients and servers, 
while still maintaining the true pointers in kernel mode .

Finally, a fourth attribute is supported, called the context attribute . This attribute supports the 
 traditional, LPC-style, user-specific context pointer that could be associated with a given message, 
and it is still supported for scenarios where custom data needs to be associated with a client/server 
pair .

To define attributes correctly, a variety of APIs are available for internal ALPC consumers, such as 
AlpcInitializeMessageAttribute and AlpcGetMessageAttribute .

Blobs, Handles, and Resources
Although the ALPC library exposes only one Object Manager object type (the port), it internally must 
manage a number of data structures that allow it to perform the tasks required by its mechanisms . 
For example, ALPC needs to allocate and track the messages associated with each port, as well as the 
message attributes, which it must track for the duration of their lifetime . Instead of using the Object 
Manager’s routines for data management, ALPC implements its own lightweight objects called blobs. 
Just like objects, blobs can automatically be allocated and garbage collected, reference tracked, and 
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locked through synchronization . Additionally, blobs can have custom allocation and deallocation 
 callbacks, which let their owners control extra information that might need to be tracked for each 
blob . Finally, ALPC also uses the executive’s handle table implementation (used for objects and  
PIDs/TIDs) to have an ALPC-specific handle table, which allows ALPC to generate private handles for 
blobs, instead of using pointers .

In the ALPC model, messages are blobs, for example, and their constructor generates a message 
ID, which is itself a handle into ALPC’s handle table . Other ALPC blobs include the following:

 ■ The connection blob, which stores the client and server communication ports, as well as the 
server connection port and ALPC handle table .

 ■ The security blob, which stores the security data necessary to allow impersonation of a client . 
It stores the security attribute .

 ■ The section, region, and view blobs, which describe ALPC’s shared-memory model . The view 
blob is ultimately responsible for storing the data view attribute .

 ■ The reserve blob, which implements support for ALPC Reserve Objects . (See the “Reserve 
Objects” section in this chapter .)

 ■ The handle data blob, which contains the information that enables ALPC’s handle attribute 
support .

Because blobs are allocated from pageable memory, they must carefully be tracked to ensure their 
deletion at the appropriate time . For certain kinds of blobs, this is easy: for example, when an ALPC 
message is freed, the blob used to contain it is also deleted . However, certain blobs can represent 
 numerous attributes attached to a single ALPC message, and the kernel must manage their lifetime 
appropriately . For example, because a message can have multiple views associated with it (when 
many clients have access to the same shared memory), the views must be tracked with the mes-
sages that reference them . ALPC implements this functionality by using a concept of resources . Each 
message is associated with a resource list, and whenever a blob associated with a message (that isn’t 
a simple pointer) is allocated, it is also added as a resource of the message . In turn, the ALPC library 
provides functionality for looking up, flushing, and deleting associated resources. Security blobs, 
reserve blobs, and view blobs are all stored as resources .

Security
ALPC implements several security mechanisms, full security boundaries, and mitigations to prevent 
attacks in case of generic IPC parsing bugs . At a base level, ALPC port objects are managed by the 
same object manager interfaces that manage object security, preventing nonprivileged applica-
tions from obtaining handles to  server ports with ACL . On top of that, ALPC provides a SID-based 
trust model, inherited from the original LPC design . This model enables clients to validate the server 
they are connecting to by relying on more than just the port name . With a secured port, the client 
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process submits to the kernel the SID of the server process it expects on the side of the endpoint. At 
 connection time, the kernel validates that the client is indeed connecting to the expected server, miti-
gating namespace squatting attacks where an untrusted server creates a port to spoof a server.

ALPC also allows both clients and servers to atomically and uniquely identify the thread and 
 process responsible for each message. It also supports the full Windows impersonation model 
through the NtAlpcImpersonateClientThread API. Other APIs give an ALPC server the ability to query 
the SIDs associated with all connected clients and to query the LUID (locally unique identifier) of the  
client’s security token (which is further described in Chapter 6).

Performance
ALPC uses several strategies to enhance performance, primarily through its support of completion 
lists, which were briefly described earlier. At the kernel level, a completion list is essentially a user MDL 
that’s been probed and locked and then mapped to an address. (For more information on Memory 
Descriptor Lists, see Chapter 10 in Part 2.) Because it’s associated with an MDL (which tracks physi-
cal pages), when a client sends a message to a server, the payload copy can happen directly at the 
 physical level, instead of requiring the kernel to double-buffer the message, as is common in other 
IPC mechanisms. 

The completion list itself is implemented as a 64-bit queue of completed entries, and both user-
mode and kernel-mode consumers can use an interlocked compare-exchange operation to insert and 
remove entries from the queue. Furthermore, to simplify allocations, once an MDL has been initial-
ized, a bitmap is used to identify available areas of memory that can be used to hold new messages 
that are still being queued. The bitmap algorithm also uses native lock instructions on the proces-
sor to provide atomic allocation and de-allocation of areas of physical memory that can be used by 
completion lists.

Another ALPC performance optimization is the use of message zones. A message zone is simply a 
pre-allocated kernel buffer (also backed by an MDL) in which a message can be stored until a server 
or client retrieves it. A message zone associates a system address with the message, allowing it to be 
made visible in any process address space. More importantly, in the case of asynchronous operation, 
it does not require the complex setup of delayed payloads because no matter when the consumer 
finally retrieves the message data, the message zone will still be valid. Both completion lists and 
 message zones can be set up with NtAlpcSetInformationPort.

A final optimization worth mentioning is that instead of copying data as soon as it is sent, the 
kernel sets up the payload for a delayed copy, capturing only the needed information, but without 
any copying. The message data is copied only when the receiver requests the message. Obviously, if a 
message zone or shared memory is being used, there’s no advantage to this method, but in asyn-
chronous, kernel-buffer message passing, this can be used to optimize cancellations and high-traffic 
scenarios.
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Debugging and Tracing
On checked builds of the kernel, ALPC messages can be logged . All ALPC attributes, blobs, message 
zones, and dispatch transactions can be individually logged, and undocumented !alpc commands in 
WinDbg can dump the logs . On retail systems, IT administrators and troubleshooters can enable the 
ALPC Event Tracing for Windows (ETW) logger to monitor ALPC messages . ETW events do not include 
payload data, but they do contain connection, disconnection, and send/receive and wait/unblock 
information . Finally, even on retail systems, certain !alpc commands obtain information on ALPC ports 
and messages .

EXPERIMENT: Dumping a Connection Port
In this experiment, you’ll use the CSRSS API port for Windows processes running in Session 1, 
which is the typical interactive session for the console user . Whenever a Windows application 
launches, it connects to CSRSS’s API port in the appropriate session .

1. Start by obtaining a pointer to the connection port with the !object command:

0: kd> !object \Sessions\1\Windows\ApiPort 
Object: fffffa8004dc2090  Type: (fffffa80027a2ed0) ALPC Port 
    ObjectHeader: fffffa8004dc2060 (new version) 
    HandleCount: 1  PointerCount: 50 
    Directory Object: fffff8a001a5fb30  Name: ApiPort

2. Now dump information on the port object itself with !alpc /p. This will confirm, for 
example, that CSRSS is the owner:

0: kd> !alpc /p fffffa8004dc2090 
Port @ fffffa8004dc2090 
  Type                      : ALPC_CONNECTION_PORT 
  CommunicationInfo         : fffff8a001a22560 
    ConnectionPort          : fffffa8004dc2090 
    ClientCommunicationPort : 0000000000000000 
    ServerCommunicationPort : 0000000000000000 
  OwnerProcess              : fffffa800502db30 (csrss.exe) 
  SequenceNo                : 0x000003C9 (969) 
  CompletionPort            : 0000000000000000 
  CompletionList            : 0000000000000000 
  MessageZone               : 0000000000000000 
  ConnectionPending         : No 
  ConnectionRefused         : No 
  Disconnected              : No 
  Closed                    : No 
  FlushOnClose              : Yes

  ReturnExtendedInfo        : No 
  Waitable                  : No 
  Security                  : Static 
  Wow64CompletionList       : No 
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  Main queue is empty. 
  Large message queue is empty. 
  Pending queue is empty. 
  Canceled queue is empty.

3. You can see what clients are connected to the port, which will include all Windows 
processes running in the session, with the undocumented !alpc /lpc command . You will 
also see the server and client communication ports associated with each connection 
and any pending messages on any of the queues:

0: kd> !alpc /lpc fffffa8004dc2090 
 
Port @fffffa8004dc2090 has 14 connections 
 
SRV:fffffa8004809c50 (m:0, p:0, l:0) <-> CLI:fffffa8004809e60 (m:0, p:0, l:0), 
 Process=fffffa8004ffcb30 ('winlogon.exe') 
SRV:fffffa80054dfb30 (m:0, p:0, l:0) <-> CLI:fffffa80054dfe60 (m:0, p:0, l:0), 
 Process=fffffa80054de060 ('dwm.exe') 
SRV:fffffa8005394dd0 (m:0, p:0, l:0) <-> CLI:fffffa80054e1440 (m:0, p:0, l:0), 
 Process=fffffa80054e2290 ('winvnc.exe') 
SRV:fffffa80053965d0 (m:0, p:0, l:0) <-> CLI:fffffa8005396900 (m:0, p:0, l:0), 
 Process=fffffa80054ed060 ('explorer.exe') 
SRV:fffffa80045a8070 (m:0, p:0, l:0) <-> CLI:fffffa80045af070 (m:0, p:0, l:0), 
 Process=fffffa80045b1340 ('logonhlp.exe') 
SRV:fffffa8005197940 (m:0, p:0, l:0) <-> CLI:fffffa800519a900 (m:0, p:0, l:0), 
 Process=fffffa80045da060 ('TSVNCache.exe') 
SRV:fffffa800470b070 (m:0, p:0, l:0) <-> CLI:fffffa800470f330 (m:0, p:0, l:0), 
 Process=fffffa8004713060 ('vmware-tray.ex') 
SRV:fffffa80045d7670 (m:0, p:0, l:0) <-> CLI:fffffa80054b16f0 (m:0, p:0, l:0), 
 Process=fffffa80056b8b30 ('WINWORD.EXE') 
SRV:fffffa80050e0e60 (m:0, p:0, l:0) <-> CLI:fffffa80056fee60 (m:0, p:0, l:0), 
 Process=fffffa800478f060 ('Winobj.exe') 
SRV:fffffa800482e670 (m:0, p:0, l:0) <-> CLI:fffffa80047b7680 (m:0, p:0, l:0), 
 Process=fffffa80056aab30 ('cmd.exe') 
SRV:fffffa8005166e60 (m:0, p:0, l:0) <-> CLI:fffffa80051481e0 (m:0, p:0, l:0), 
 Process=fffffa8002823b30 ('conhost.exe') 
SRV:fffffa80054a2070 (m:0, p:0, l:0) <-> CLI:fffffa80056e6210 (m:0, p:0, l:0), 
 Process=fffffa80055669e0 ('livekd.exe') 
SRV:fffffa80056aa390 (m:0, p:0, l:0) <-> CLI:fffffa80055a6c00 (m:0, p:0, l:0), 
 Process=fffffa80051b28b0 ('livekd64.exe') 
SRV:fffffa8005551d90 (m:0, p:0, l:0) <-> CLI:fffffa80055bfc60 (m:0, p:0, l:0), 
 Process=fffffa8002a69b30 ('kd.exe')

4. Note that if you have other sessions, you can repeat this experiment on those  sessions 
also (as well as with session 0, the system session) . You will eventually get a list of 
all the Windows processes on your machine . If you are using Subsystem for UNIX 
 Applications, you can also use this technique on the \PSXSS\ApiPort object.



220 Windows Internals, Sixth Edition, Part 1

Kernel Event Tracing

Various components of the Windows kernel and several core device drivers are instrumented to 
record trace data of their operations for use in system troubleshooting . They rely on a common in-
frastructure in the kernel that provides trace data to the user-mode Event Tracing for Windows (ETW) 
facility . An application that uses ETW falls into one or more of three categories:

 ■ Controller A controller starts and stops logging sessions and manages buffer pools . 
 Example controllers include Reliability and Performance Monitor (see the “EXPERIMENT: 
 Tracing TCP/IP Activity with the Kernel Logger” section, later in this section) and XPerf from 
the Windows Performance Toolkit (see the “EXPERIMENT: Monitoring Interrupt and DPC 
 Activity” section, earlier in this chapter) .

 ■ Provider A provider defines GUIDs (globally unique identifiers) for the event classes it can 
produce traces for and registers them with ETW . The provider accepts commands from a 
 controller for starting and stopping traces of the event classes for which it’s responsible .

 ■ Consumer A consumer selects one or more trace sessions for which it wants to read trace 
data. Consumers can receive the events in buffers in real time or in log files.

Windows includes dozens of user-mode providers, for everything from Active Directory to the 
Service Control Manager to Explorer. ETW also defines a logging session with the name NT Kernel 
Logger (also known as the kernel logger) for use by the kernel and core drivers . The providers for the 
NT Kernel Logger are implemented by ETW code in Ntoskrnl .exe and the core drivers .

When a controller in user mode enables the kernel logger, the ETW library (which is implemented 
in \Windows\System32\Ntdll.dll) calls the NtTraceControl system function, telling the ETW code in 
the kernel which event classes the controller wants to start tracing. If file logging is configured (as 
opposed to in-memory logging to a buffer), the kernel creates a system thread in the system process 
that creates a log file. When the kernel receives trace events from the enabled trace sources, it records 
them to a buffer. If it was started, the file logging thread wakes up once per second to dump the 
contents of the buffers to the log file.

Trace records generated by the kernel logger have a standard ETW trace event header, which 
records time stamp, process, and thread IDs, as well as information on what class of event the record 
corresponds to . Event classes can provide additional data specific to their events. For example, 
disk event class trace records indicate the operation type (read or write), disk number at which the 
 operation is directed, and sector offset and length of the operation .

Some of the trace classes that can be enabled for the kernel logger and the component that 
 generates each class include the following:

 ■ Disk I/O Disk class driver

 ■ File I/O File system drivers
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 ■ File I/O Completion File system drivers

 ■ Hardware Configuration Plug and Play manager (See Chapter 9 in Part 2 for information 
on the Plug and Play manager .)

 ■ Image Load/Unload The system image loader in the kernel

 ■ Page Faults Memory manager (See Chapter 10 in Part 2 for more information on page 
faults .)

 ■ Hard Page Faults Memory manager

 ■ Process Create/Delete Process manager (See Chapter 5 for more information on the 
 process manager .)

 ■ Thread Create/Delete Process manager

 ■ Registry Activity Configuration manager (See “The Registry” section in Chapter 4 for more 
information on the configuration manager.)

 ■ Network TCP/IP TCP/IP driver

 ■ Process Counters Process manager

 ■ Context Switches Kernel dispatcher

 ■ Deferred Procedure Calls Kernel dispatcher

 ■ Interrupts Kernel dispatcher

 ■ System Calls Kernel dispatcher

 ■ Sample Based Profiling Kernel dispatcher and HAL

 ■ Driver Delays I/O manager

 ■ Split I/O I/O manager

 ■ Power Events Power manager

 ■ ALPC Advanced local procedure call

 ■ Scheduler and Synchronization Kernel dispatcher (See Chapter 5 for more information 
about thread scheduling)

You can find more information on ETW and the kernel logger, including sample code for 
 controllers and consumers, in the Windows SDK .
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EXPERIMENT: Tracing TCP/IP Activity with the Kernel Logger
To enable the kernel logger and have it generate a log file of TCP/IP activity, follow these steps:

1. Run the Performance Monitor, and click on Data Collector Sets, User Defined.

2. Right-click on User Defined, choose New, and select Data Collector Set.

3. When prompted, enter a name for the data collector set (for example, experiment), 
and choose Create Manually (Advanced) before clicking Next .

4. In the dialog box that opens, select Create Data Logs, check Event Trace Data, and 
then click Next . In the Providers area, click Add, and locate Windows Kernel Trace . In 
the Properties list, select Keywords(Any), and then click Edit . 

5. From this list, select only Net for Network TCP/IP, and then click OK .
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6. Click Next to select a location where the files are saved. By default, this location is  
C:\Perflogs\<User>\experiment\, if this is how you named the data collector set. Click 
Next, and in the Run As edit box, enter the Administrator account name and set the 
password to match it . Click Finish . You should now see a window similar to the one 
shown here:

7. Right-click on “experiment” (or whatever name you gave your data collector set), and 
then click Start . Now generate some network activity by opening a browser and visit-
ing a web site .

8. Right-click on the data collector set node again, and then click Stop .

9. Open a command prompt, and change to the C:\Perflogs\experiment\00001 directory 
(or the directory into which you specified that the trace log file be stored).

10. Run tracerpt, and pass it the name of the trace log file:

tracerpt DataCollector01.etl –o dumpfile.csv –of CSV

11. Open dumpfile.csv in Microsoft Excel or in a text editor. You should see TCP and/or 
UDP trace records like the following: 

TcpIp  SendIPV4  0xFFFFFFFF 1 .28663E+17 0 0 1992 1388  157 .54 .86 .28  172 .31 .234 .35 80 49414 646659 646661

UdpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 4 50  172 .31 .239 .255  172 .31 .233 .110 137 137 0  0x0

UdpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 4 50  172 .31 .239 .255  172 .31 .234 .162 137 137 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 1992 1425  157 .54 .86 .28  172 .31 .234 .35 80 49414 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 1992 1380  157 .54 .86 .28  172 .31 .234 .35 80 49414 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 1992 45  157 .54 .86 .28  172 .31 .234 .35 80 49414 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 1992 1415  157 .54 .86 .28  172 .31 .234 .35 80 49414 0  0x0

TcpIp  RecvIPV4  0xFFFFFFFF 1 .28663E+17 0 0 1992 740  157 .54 .86 .28  172 .31 .234 .35 80 49414 0  0x0
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Wow64

Wow64 (Win32 emulation on 64-bit Windows) refers to the software that permits the execution 
of 32-bit x86 applications on 64-bit Windows . It is implemented as a set of user-mode DLLs, with 
some support from the kernel for creating 32-bit versions of what would normally only be 64-bit 
data  structures, such as the process environment block (PEB) and thread environment block (TEB) . 
 Changing Wow64 contexts through Get/SetThreadContext is also implemented by the kernel . Here 
are the user-mode DLLs responsible for Wow64:

 ■ Wow64 .dll Manages process and thread creation, and hooks exception-dispatching and 
base system calls exported by Ntoskrnl.exe. It also implements file-system redirection and 
registry redirection .

 ■ Wow64Cpu .dll Manages the 32-bit CPU context of each running thread inside Wow64, and 
provides processor architecture-specific support for switching CPU mode from 32-bit to 64-bit 
and vice versa .

 ■ Wow64Win .dll Intercepts the GUI system calls exported by Win32k .sys .

 ■ IA32Exec .bin and Wowia32x .dll on IA64 systems Contain the IA-32 software  emulator 
and its interface library . Because Itanium processors cannot natively execute x86 32-bit in-
structions in an efficient manner (performance is worse than 30 percent), software emulation 
(through binary translation) is required through the use of these two additional components .

The relationship of these DLLs is shown in Figure 3-31 .

32-bit EXE, DLLs

32-bit Ntdll.dll

Wow64cpu.dll

Wow64.dll Wow64win.dll

64-bit Ntdll.dll

Ntoskrnl.exe Win32k.sys

User32.dllGdi32.dll

FIGURE 3-31 Wow64 architecture 

Wow64 Process Address Space Layout
Wow64 processes can run with 2 GB or 4 GB of virtual space . If the image header has the 
 large-address-aware flag set, the memory manager reserves the user-mode address space above 
the 4-GB boundary through the end of the user-mode boundary . If the image is not marked as large 



 CHAPTER 3 System Mechanisms 225

address space aware, the memory manager reserves the user-mode address space above 2 GB . (For 
more information on large-address-space support, see the section “x86 User Address Space Layouts” 
in Chapter 10 in Part 2 .)

System Calls
Wow64 hooks all the code paths where 32-bit code would transition to the native 64-bit system 
or when the native system needs to call into 32-bit user-mode code . During process creation, the 
process manager maps into the process address space the native 64-bit Ntdll .dll, as well as the 32-bit 
Ntdll .dll for Wow64 processes . When the loader initialization is called, it calls the Wow64 initialization 
code inside Wow64 .dll . Wow64 then sets up the startup context required by the 32-bit Ntdll, switches 
the CPU mode to 32-bits, and starts executing the 32-bit loader . From this point onward, execution 
continues as if the process is running on a native 32-bit system .

Special 32-bit versions of Ntdll.dll, User32.dll, and Gdi32.dll are located in the \Windows\Syswow64 
folder (as well as certain other DLLs that perform interprocess communication, such as Rpcrt4 .dll) . 
These call into Wow64 rather than issuing the native 32-bit system call instruction . Wow64 transitions 
to native 64-bit mode, captures the parameters associated with the system call (converting 32-bit 
pointers to 64-bit pointers), and issues the corresponding native 64-bit system call . When the native 
system call returns, Wow64 converts any output parameters if necessary from 64-bit to 32-bit formats 
before returning to 32-bit mode .

Exception Dispatching
Wow64 hooks exception dispatching through Ntdll’s KiUserExceptionDispatcher . Whenever the 64-bit 
kernel is about to dispatch an exception to a Wow64 process, Wow64 captures the native excep-
tion and context record in user mode and then prepares a 32-bit exception and context record and 
dispatches it the same way the native 32-bit kernel would .

User APC Dispatching
Wow64 also hooks user-mode APC delivery through Ntdll’s KiUserApcDispatcher . Whenever the 
 64-bit kernel is about to dispatch a user-mode APC to a Wow64 process, it maps the 32-bit APC 
 address to a higher range of 64-bit address space . The 64-bit Ntdll then captures the native APC and 
context record in user mode and maps it back to a 32-bit address . It then prepares a 32-bit user-
mode APC and context record and dispatches it the same way the native 32-bit kernel would .

Console Support
Because console support is implemented in user mode by Csrss .exe, of which only a single native 
binary exists, 32-bit applications would be unable to perform console I/O while on 64-bit Windows . 
Similarly to how a special rpcrt4 .dll exits to thunk 32-bit to 64-bit RPCs, the 32-bit Kernel .dll for 
Wow64 contains special code to call into Wow, for thunking parameters during interaction with Csrss 
and Conhost .exe .
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User Callbacks
Wow64 intercepts all callbacks from the kernel into user mode . Wow64 treats such calls as system 
calls; however, the data conversion is done in the reverse order: input parameters are converted 
from 64 bits to 32 bits, and output parameters are converted when the callback returns from 32 bits 
to 64 bits .

File System Redirection
To maintain application compatibility and to reduce the effort of porting applications from Win32 
to 64-bit Windows, system directory names were kept the same. Therefore, the \Windows\System32 
folder contains native 64-bit images . Wow64, as it hooks all the system calls, translates all the path-
related APIs and replaces the path name of the \Windows\System32 folder with \Windows\Syswow64. 
Wow64 also redirects \Windows\LastGood to \Windows\LastGood\syswow64 and \Windows 
\Regedit.exe to \Windows\syswow64\Regedit.exe. Through the use of system environment 
variables, the %PROGRAMFILES% variable is also set to \Program Files (x86) for 32-bit applica-
tions, while it is set to \Program Files folder for 64-bit applications. CommonProgramFiles and 
 CommonProgramFiles (x86) also exist, which always point to the 32-bit location, while ProgramW6432 
and  CommonProgramW6432 point to the 64-bit locations unconditionally .

Note Because certain 32-bit applications might indeed be aware and able to deal with 
 64-bit images, a virtual directory, \Windows\Sysnative, allows any I/Os originating from 
a 32-bit application to this directory to be exempted from file redirection. This directory 
doesn’t actually exist—it is a virtual path that allows access to the real System32 directory, 
even from an application running under Wow64 .

There are a few subdirectories of \Windows\System32 that, for compatibility reasons, are  exempted 
from being redirected such that access attempts to them made by 32-bit applications actually access 
the real one . These directories include the following:

 ■ %windir%\system32\drivers\etc

 ■ %windir%\system32\spool

 ■ %windir%\system32\catroot and %windir%\system32\catroot2

 ■ %windir%\system32\logfiles

 ■ %windir%\system32\driverstore

Finally, Wow64 provides a mechanism to control the file system redirection built 
into Wow64 on a per-thread basis through the Wow64DisableWow64FsRedirection and 
 Wow64RevertWow64FsRedirection functions . This mechanism can have issues with delay-loaded DLLs, 
opening files through the common file dialog and even internationalization—because once redirec-
tion is disabled, the system no longer users it during internal loading either, and certain 64-bit-only 
files would then fail to be found. Using the c:\windows\sysnative path or some of the other consistent 
paths introduced earlier is usually a safer methodology for developers to use .
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Registry Redirection 
Applications and components store their configuration data in the registry. Components usually 
write their configuration data in the registry when they are registered during installation. If the same 
component is installed and registered both as a 32-bit binary and a 64-bit binary, the last component 
registered will override the registration of the previous component because they both write to the 
same location in the registry .

To help solve this problem transparently without introducing any code changes to 32-bit 
 components, the registry is split into two portions: Native and Wow64 . By default, 32-bit components 
access the 32-bit view and 64-bit components access the 64-bit view . This provides a safe execution 
environment for 32-bit and 64-bit components and separates the 32-bit application state from the 
64-bit one if it exists .

To implement this, Wow64 intercepts all the system calls that open registry keys and retranslates 
the key path to point it to the Wow64 view of the registry . Wow64 splits the registry at these points:

 ■ HKLM\SOFTWARE

 ■ HKEY_CLASSES_ROOT

However, note that many of the subkeys are actually shared between 32-bit and 64-bit apps—that 
is, not the entire hive is split .

Under each of these keys, Wow64 creates a key called Wow6432Node . Under this key is stored 
 32-bit configuration information. All other portions of the registry are shared between 32-bit and 
 64-bit applications (for example, HKLM\SYSTEM).

As an extra help, if a 32-bit application writes a REG_SZ or REG_EXPAND_SZ value that starts 
with the data “%ProgramFiles%” or “%commonprogramfiles%” to the registry, Wow64 modifies the 
actual values to “%ProgramFiles(x86)%” and “%commonprogramfiles(x86)%” to match the file sys-
tem redirection and layout explained earlier . The 32-bit application must write exactly these strings 
using this case—any other data will be ignored and written normally . Finally, any key containing 
“ system32” is replaced with “syswow64” in all cases, regardless of flags and case sensitivity, unless 
KEY_WOW64_64KEY is used and the key is on the list of “reflected keys”, which is available on MSDN.

For applications that need to explicitly specify a registry key for a certain view, the following 
flags on the RegOpenKeyEx, RegCreateKeyEx, RegOpenKeyTransacted, RegCreateKeyTransacted, and 
 RegDeleteKeyEx functions permit this:

 ■ KEY_WOW64_64KEY—Explicitly opens a 64-bit key from either a 32-bit or 64-bit application, 
and disables the REG_SZ or REG_EXPAND_SZ interception explained earlier

 ■ KEY_WOW64_32KEY—Explicitly opens a 32-bit key from either a 32-bit or 64-bit application

I/O Control Requests
Besides normal read and write operations, applications can communicate with some device drivers 
through device I/O control functions using the Windows DeviceIoControl API . The application might 
specify an input and/or output buffer along with the call . If the buffer contains pointer-dependent 



228 Windows Internals, Sixth Edition, Part 1

data and the process sending the control request is a Wow64 process, the view of the input and/or 
output structure is different between the 32-bit application and the 64-bit driver, because pointers 
are 4 bytes for 32-bit applications and 8 bytes for 64-bit applications . In this case, the kernel driver is 
expected to convert the associated pointer-dependent structures . Drivers can call the  IoIs32bitProcess 
function to detect whether or not an I/O request originated from a Wow64 process . Look for 
“ Supporting 32-Bit I/O in Your 64-Bit Driver” on MSDN for more details .

16-Bit Installer Applications
Wow64 doesn’t support running 16-bit applications . However, because many application installers 
are 16-bit programs, Wow64 has special case code to make references to certain well-known 16-bit 
installers work . These installers include the following:

 ■ Microsoft ACME Setup version: 1 .2, 2 .6, 3 .0, and 3 .1

 ■ InstallShield version 5 .x (where x is any minor version number)

Whenever a 16-bit process is about to be created using the CreateProcess() API, Ntvdm64 .dll is 
loaded and control is transferred to it to inspect whether the 16-bit executable is one of the sup-
ported installers . If it is, another CreateProcess is issued to launch a 32-bit version of the installer with 
the same command-line arguments .

Printing
32-bit printer drivers cannot be used on 64-bit Windows . Print drivers must be ported to native 64-bit 
versions . However, because printer drivers run in the user-mode address space of the requesting pro-
cess and only native 64-bit printer drivers are supported on 64-bit Windows, a special mechanism is 
needed to support printing from 32-bit processes . This is done by redirecting all printing functions to 
Splwow64 .exe, the Wow64 RPC print server . Because Splwow64 is a 64-bit process, it can load 64-bit 
printer drivers .

Restrictions
Wow64 does not support the execution of 16-bit applications (this is supported on 32-bit versions of 
Windows) or the loading of 32-bit kernel-mode device drivers (they must be ported to native 64-bits) . 
Wow64 processes can load only 32-bit DLLs and can’t load native 64-bit DLLs . Likewise, native 64-bit 
processes can’t load 32-bit DLLs . The one exception is the ability to load resource or data-only DLLs 
cross-architecture, which is allowed because those DLLs contain only data, not code .

In addition to the above, due to page size differences, Wow64 on IA64 systems does not support 
the ReadFileScatter, WriteFileGather, GetWriteWatch, AVX registers, XSAVE, and AWE functions . Also, 
hardware acceleration through DirectX is not available . (Software emulation is provided for Wow64 
processes .)
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User-Mode Debugging

Support for user-mode debugging is split into three different modules. The first one is located in 
the executive itself and has the prefix Dbgk, which stands for Debugging Framework . It provides the 
necessary internal functions for registering and listening for debug events, managing the debug 
object, and packaging the information for consumption by its user-mode counterpart . The user-mode 
component that talks directly to Dbgk is located in the native system library, Ntdll .dll, under a set of 
APIs that begin with the prefix DbgUi . These APIs are responsible for wrapping the underlying debug 
object implementation (which is opaque), and they allow all subsystem applications to use debug-
ging by wrapping their own APIs around the DbgUi implementation . Finally, the third component in 
user-mode debugging belongs to the subsystem DLLs . It is the exposed, documented API (located in 
KernelBase .dll for the Windows subsystem) that each subsystem supports for performing debugging 
of other applications . 

Kernel Support
The kernel supports user-mode debugging through an object mentioned earlier, the debug object . It 
provides a series of system calls, most of which map directly to the Windows debugging API, typically 
accessed through the DbgUi layer first. The debug object itself is a simple construct, composed of 
a series of flags that determine state, an event to notify any waiters that debugger events are pres-
ent, a doubly linked list of debug events waiting to be processed, and a fast mutex used for locking 
the object . This is all the information that the kernel requires for successfully receiving and sending 
debugger events, and each debugged process has a debug port member in its structure pointing to 
this debug object .

Once a process has an associated debug port, the events described in Table 3-23 can cause a 
 debug event to be inserted into the list of events . 

TABLE 3-23 Kernel-Mode Debugging Events

Event Identifier Meaning Triggered By

DbgKmExceptionApi An exception has occurred . KiDispatchException during an exception that 
occurred in user mode

DbgKmCreateThreadApi A new thread has been created . Startup of a user-mode thread

DbgKmCreateProcessApi A new process has been 
 created .

Startup of a user-mode thread that is the first 
thread in the process

DbgKmExitThreadApi A thread has exited . Death of a user-mode thread

DbgKmExitProcessApi A process has exited . Death of a user-mode thread that was the last 
thread in the process

DbgKmLoadDllApi A DLL was loaded . NtMapViewOfSection when the section is an 
image file (could be an EXE as well)

DbgKmUnloadDllApi A DLL was unloaded . NtUnmapViewOfSection when the section is 
an image file (could be an EXE as well)

DbgKmErrorReportApi An exception needs to be 
forwarded to Windows Error 
Reporting (WER) . 

KiDispatchException during an exception that 
occurred in user mode, after the debugger 
was unable to handle it
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Apart from the causes mentioned in the table, there are a couple of special triggering cases 
 outside the regular scenarios that occur at the time a debugger object first becomes associated with a 
process. The first create process and create thread messages will be manually sent when the debugger 
is attached, first for the process itself and its main thread and followed by create thread messages for 
all the other threads in the process . Finally, load dll events for the executable being debugged  
(Ntdll .dll) and then all the current DLLs loaded in the debugged process will be sent .

Once a debugger object has been associated with a process, all the threads in the process are 
suspended . At this point, it is the debugger’s responsibility to start requesting that debug events be 
sent through . Debuggers request that debug events be sent back to user mode by performing a wait 
on the debug object . This call loops the list of debug events . As each request is removed from the list, 
its contents are converted from the internal dbgk structure to the native structure that the next layer 
up understands . As you’ll see, this structure is different from the Win32 structure as well, and another 
layer of conversion has to occur . Even after all pending debug messages have been processed by the 
debugger, the kernel does not automatically resume the process . It is the debugger’s responsibility to 
call the ContinueDebugEvent function to resume execution .

Apart from some more complex handling of certain multithreading issues, the basic model for the 
framework is a simple matter of producers—code in the kernel that generates the debug events in 
the previous table—and consumers—the debugger waiting on these events and acknowledging their 
receipt .

Native Support
Although the basic protocol for user-mode debugging is quite simple, it’s not directly usable by 
Windows applications—instead, it’s wrapped by the DbgUi functions in Ntdll .dll . This abstraction is 
required to allow native applications, as well as different subsystems, to use these routines (because 
code inside Ntdll .dll has no dependencies) . The functions that this component provides are mostly 
analogous to the Windows API functions and related system calls. Internally, the code also provides 
the functionality required to create a debug object associated with the thread . The handle to a debug 
object that is created is never exposed . It is saved instead in the thread environment block (TEB) of 
the debugger thread that performs the attachment . (For more information on the TEB, see Chapter 5 .) 
This value is saved in DbgSsReserved[1] .

When a debugger attaches to a process, it expects the process to be broken into—that is, an int 3 
(breakpoint) operation should have happened, generated by a thread injected into the process . If this 
didn’t happen, the debugger would never actually be able to take control of the process and would 
merely see debug events flying by. Ntdll.dll is responsible for creating and injecting that thread into 
the target process . 

Finally, Ntdll .dll also provides APIs to convert the native structure for debug events into the 
 structure that the Windows API understands .
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EXPERIMENT: Viewing Debugger Objects
Although you’ve been using WinDbg to do kernel-mode debugging, you can also use it to 
 debug user-mode programs . Go ahead and try starting Notepad .exe with the debugger 
 attached using these steps:

1. Run WinDbg, and then click File, Open Executable .

2. Navigate to the \Windows\System32\ directory, and choose Notepad.exe.

3. You’re not going to do any debugging, so simply ignore whatever might come up . 
You can type g in the command window to instruct WinDbg to continue executing 
Notepad .

Now run Process Explorer, and be sure the lower pane is enabled and configured to show 
open handles . (Click on View, Lower Pane View, and then Handles .) You also want to look at 
 unnamed handles, so click on View, Show Unnamed Handles And Mappings .

Next, click on the Windbg .exe process and look at its handle table . You should see an open, 
unnamed handle to a debug object. (You can organize the table by Type to find this entry more 
readily .) You should see something like the following:

You can try right-clicking on the handle and closing it . Notepad should disappear, and the 
following message should appear in WinDbg:

ERROR: WaitForEvent failed, NTSTATUS 0xC0000354 
This usually indicates that the debuggee has been 
killed out from underneath the debugger. 
You can use .tlist to see if the debuggee still exists. 
WaitForEvent failed

In fact, if you look at the description for the NTSTATUS code given, you will find the text: “An 
attempt to do an operation on a debug port failed because the port is in the process of being 
deleted,” which is exactly what you’ve done by closing the handle .
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As you can see, the native DbgUi interface doesn’t do much work to support the framework except 
for this abstraction . The most complicated task it does is the conversion between native and Win32 
debugger structures . This involves several additional changes to the structures .

Windows Subsystem Support
The final component responsible for allowing debuggers such as Microsoft Visual Studio or WinDbg 
to debug user-mode applications is in Kernel32 .dll . It provides the documented Windows APIs . Apart 
from this trivial conversion of one function name to another, there is one important management 
job that this side of the debugging infrastructure is responsible for: managing the duplicated file and 
thread handles .

Recall that each time a load DLL event is sent, a handle to the image file is duplicated by the kernel 
and handed off in the event structure, as is the case with the handle to the process executable during 
the create process event . During each wait call, Kernel32 .dll checks whether this is an event that results 
in new duplicated process and/or thread handles from the kernel (the two create events) . If so, it 
 allocates a structure in which it stores the process ID, thread ID, and the thread and/or process handle 
associated with the event. This structure is linked into the first DbgSsReserved array index in the TEB, 
where we mentioned the debug object handle is stored . Likewise, Kernel32 .dll also checks for exit 
events . When it detects such an event, it “marks” the handles in the data structure .

Once the debugger is finished using the handles and performs the continue call, Kernel32 .dll 
parses these structures, looks for any handles whose threads have exited, and closes the handles for 
the debugger . Otherwise, those threads and processes would actually never exit, because there would 
always be open handles to them as long as the debugger was running .

Image Loader

When a process is started on the system, the kernel creates a process object to represent it (see 
Chapter 5 for more information on processes) and performs various kernel-related initialization tasks . 
However, these tasks do not result in the execution of the application, merely in the preparation of its 
context and environment . In fact, unlike drivers, which are kernel-mode code, applications execute in 
user mode . So most of the actual initialization work is done outside the kernel . This work is performed 
by the image loader, also internally referred to as Ldr.

The image loader lives in the user-mode system DLL Ntdll.dll and not in the kernel library . There-
fore, it behaves just like standard code that is part of a DLL, and it is subject to the same restrictions 
in terms of memory access and security rights . What makes this code special is the guaranty that it 
will always be present in the running process (Ntdll.dll is always loaded) and that it is the first piece 
of code to run in user mode as part of a new application . (When the system builds the initial context, 
the program counter, or instruction pointer, is set to an initialization function inside Ntdll .dll . See 
 Chapter 5 for more information .)
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Because the loader runs before the actual application code, it is usually invisible to users and de-
velopers . Additionally, although the loader’s initialization tasks are hidden, a program typically does 
interact with its interfaces during the run time of a program—for example, whenever loading or un-
loading a DLL or querying the base address of one . Some of the main tasks the loader is  responsible 
for include these:

 ■ Initializing the user-mode state for the application, such as creating the initial heap and setting 
up the thread-local storage (TLS) and fiber-local storage (FLS) slots

 ■ Parsing the import table (IAT) of the application to look for all DLLs that it requires (and then 
recursively parsing the IAT of each DLL), followed by parsing the export table of the DLLs to 
make sure the function is actually present (Special forwarder entries can also redirect an export 
to yet another DLL .)

 ■ Loading and unloading DLLs at run time, as well as on demand, and maintaining a list of all 
loaded modules (the module database)

 ■ Allowing for run-time patching (called hotpatching) support, explained later in the chapter

 ■ Handling manifest files

 ■ Reading the application compatibility database for any shims, and loading the shim engine 
DLL if required

 ■ Enabling support for API sets and API redirection, a core part of the MinWin refactoring effort

 ■ Enabling dynamic runtime compatibility mitigations through the SwitchBranch mechanism

As you can see, most of these tasks are critical to enabling an application to actually run its code; 
without them, everything from calling external functions to using the heap would immediately fail . 
After the process has been created, the loader calls a special native API to continue execution based 
on a context frame located on the stack . This context frame, built by the kernel, contains the actual 
entry point of the application . Therefore, because the loader doesn’t use a standard call or jump into 
the running application, you’ll never see the loader initialization functions as part of the call tree in a 
stack trace for a thread .

EXPERIMENT: Watching the Image Loader
In this experiment, you’ll use global flags to enable a debugging feature called loader snaps . 
This allows you to see debug output from the image loader while debugging application 
startup . 

1. From the directory where you’ve installed WinDbg, launch the Gflags.exe application, 
and then click on the Image File tab .

2. In the Image field, type Notepad .exe, and then press the Tab key . This should enable 
the check boxes . Select the Show Loader Snaps option, and then click OK to dismiss 
the dialog box .
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3. Now follow the steps in the “EXPERIMENT: Viewing Debugger Objects” section to start 
debugging the Notepad .exe application .

4. You should now see a couple of screens of debug information similar to that shown 
here:

0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Initializing process 0x924 
0924:0248 @ 116983652 - LdrpInitializeProcess - INFO: Beginning execution of  
          notepad.exe (C:\Windows\notepad.exe) 
0924:0248 @ 116983652 - LdrpLoadDll - INFO: Loading DLL "kernel32.dll" from path  
          "C:\Windows;C:\Windows\system32;C:\Windows\system;C:\Windows; 
0924:0248 @ 116983652 - LdrpMapDll - INFO: Mapped DLL "kernel32.dll" at address  
           76BD000 
0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure  
          "BaseThreadInitThunk" by name 
0924:0248 @ 116983652 - LdrpRunInitializeRoutines - INFO: Calling init routine  
          76C14592 for DLL "C:\Windows\system32\kernel32.dll" 
0924:0248 @ 116983652 - LdrGetProcedureAddressEx - INFO: Locating procedure  
          "BaseQueryModuleData" by name

5. Eventually, the debugger breaks somewhere inside the loader code, at a special place 
where the image loader checks whether a debugger is attached and fires a breakpoint. 
If you press the G key to continue execution, you will see more messages from the 
loader, and Notepad will appear .

6. Try interacting with Notepad and see how certain operations invoke the loader . A 
good experiment is to open the Save/Open dialog . That demonstrates that the loader 
not only runs at startup, but continuously responds to thread requests that can cause 
delayed loads of other modules (which can then be unloaded after use) .

Early Process Initialization
Because the loader is present in Ntdll .dll, which is a native DLL that’s not associated with any 
 particular subsystem, all processes are subject to the same loader behavior (with some minor 
 differences) . In Chapter 5, we’ll look in detail at the steps that lead to the creation of a process in 
kernel mode, as well as some of the work performed by the Windows function CreateProcess. Here, 
however, we’ll cover the work that takes place in user mode, independent of any subsystem, as soon 
as the first user-mode instruction starts execution. When a process starts, the loader performs the 
following steps:

1. Build the image path name for the application, and query the Image File Execution Options 
key for the application, as well as the DEP and SEH validation linker settings .

2. Look inside the executable’s header to see whether it is a .NET application (specified by the 
presence of a .NET-specific image directory).

3. Initialize the National Language Support (NLS for internationalization) tables for the process .

4. Initialize the Wow64 engine if the image is 32-bit and is running on 64-bit Windows .
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5. Load any configuration options specified in the executable’s header. These options, which a 
developer can define when compiling the application, control the behavior of the executable.

6. Set the affinity mask if one was specified in the executable header.

7.  Initialize FLS and TLS .

8. Initialize the heap manager for the process, and create the first process heap.

9. Allocate an SxS (Side-by-Side Assembly)/Fusion activation context for the process . This  allows 
the system to use the appropriate DLL version file, instead of defaulting to the DLL that 
shipped with the operating system . (See Chapter 5 for more information .)

10. Open the \KnownDlls object directory, and build the known DLL path. For a Wow64 process,  
\KnownDlls32 is used instead.

11. Determine the process’ current directory and default load path (used when loading images 
and opening files).

12. Build the first loader data table entries for the application executable and Ntdll.dll, and insert 
them into the module database .

At this point, the image loader is ready to start parsing the import table of the executable 
 belonging to the application and start loading any DLLs that were dynamically linked during the 
compilation of the application . Because each imported DLL can also have its own import table, this 
operation will continue recursively until all DLLs have been satisfied and all functions to be imported 
have been found . As each DLL is loaded, the loader will keep state information for it and build the 
module database .

DLL Name Resolution and Redirection
Name resolution is the process by which the system converts the name of a PE-format binary to a 
physical file in situations where the caller has not specified or cannot specify a unique file identity. 
Because the locations of various directories (the application directory, the system directory, and so 
on) cannot be hardcoded at link time, this includes the resolution of all binary dependencies as well as 
LoadLibrary operations in which the caller does not specify a full path . 

When resolving binary dependencies, the basic Windows application model locates files in a search 
path—a list of locations that is searched sequentially for a file with a matching base name—although 
various system components override the search path mechanism in order to extend the default ap-
plication model . The notion of a search path is a holdover from the era of the command line, when an 
application’s current directory was a meaningful notion; this is somewhat anachronistic for modern 
GUI applications .

However, the placement of the current directory in this ordering allowed load operations on 
 system binaries to be overridden by placing malicious binaries with the same base name in the ap-
plication’s current directory . To prevent security risks associated with this behavior, a feature known as 
safe DLL search mode was added to the path search computation and, starting with Windows XP SP2, 
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is enabled by default for all processes . Under safe search mode, the current directory is moved behind 
the three system directories, resulting in the following path ordering: 

1. The directory from which the application was launched 

2. The native Windows system directory (for example, C:\Windows\System32) 

3. The 16-bit Windows system directory (for example, C:\Windows\System) 

4. The Windows directory (for example, C:\Windows) 

5. The current directory at application launch time 

6. Any directories specified by the %PATH% environment variable 

The DLL search path is recomputed for each subsequent DLL load operation . The algorithm 
used to compute the search path is the same as the one used to compute the default search path, 
but the application can change specific path elements by editing the %PATH% variable using the 
 SetEnvironmentVariable API, changing the current directory using the SetCurrentDirectory API, or 
using the SetDllDirectory API to specify a DLL directory for the process . When a DLL directory is 
 specified, the directory replaces the current directory in the search path and the loader ignores the 
safe DLL search mode setting for the process . 

Callers can also modify the DLL search path for specific load operations by supplying the   
LOAD_WITH_ALTERED_SEARCH_PATH flag to the LoadLibraryEx API. When this flag is supplied and 
the DLL name supplied to the API specifies a full path string, the path containing the DLL file is used in 
place of the application directory when computing the search path for the operation .

DLL Name Redirection 
Before attempting to resolve a DLL name string to a file, the loader attempts to apply DLL name 
 redirection rules . These redirection rules are used to extend or override portions of the DLL 
namespace—which normally corresponds to the Win32 file system namespace—to extend the 
 Windows application model . In order of application, they are

 ■ MinWin API Set Redirection The API set mechanism is designed to allow the Windows 
team to change the binary that exports a given system API in a manner that is transparent to 
applications .    

 ■  .LOCAL Redirection The  .LOCAL redirection mechanism allows applications to redirect all 
loads of a specific DLL base name, regardless of whether a full path is specified, to a local copy 
of the DLL in the application directory—either by creating a copy of the DLL with the same 
base name followed by .local (for example, MyLibrary.dll.local) or by creating a file folder with 
the name  .local under the application directory and placing a copy of the local DLL in the 
folder (for example, C:\Program Files\My App\.LOCAL\MyLibrary.dll). DLLs redirected by the 
 .LOCAL mechanism are handled identically to those redirected by SxS . (See the next bullet 
point .) The loader honors  .LOCAL redirection of DLLs only when the executable does not have 
an associated manifest, either embedded or external . 
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 ■ Fusion (SxS) Redirection Fusion (also referred to as side-by-side, or SxS) is an extension 
to the Windows application model that allows components to express more detailed binary 
dependency information (usually versioning information) by embedding binary resources 
known as manifests. The Fusion mechanism was first used so that applications could load the 
correct version of the Windows common controls package (comctl32 .dll) after that binary was 
split into different versions that could be installed alongside one another; other binaries have 
since been versioned in the same fashion . As of Visual Studio 2005, applications built with the 
Microsoft linker will use Fusion to locate the appropriate version of the C runtime libraries .

The Fusion runtime tool reads embedded dependency information from a binary’s resource 
section using the Windows resource loader, and it packages the dependency information into 
lookup structures known as activation contexts . The system creates default activation contexts 
at the system and process level at boot and process startup time, respectively; in addition, 
each thread has an associated activation context stack, with the activation context structure 
at the top of the stack considered active . The per-thread activation context stack is managed 
both explicitly, via the ActivateActCtx and DeactivateActCtx APIs, and implicitly by the system 
at certain points, such as when the DLL main routine of a binary with embedded dependency 
information is called . When a Fusion DLL name redirection lookup occurs, the system searches 
for redirection information in the activation context at the head of the thread’s activation con-
text stack, followed by the process and system activation contexts; if redirection information is 
present, the file identity specified by the activation context is used for the load operation.  

 ■ Known DLL Redirection Known DLLs is a mechanism that maps specific DLL base names to 
files in the system directory, preventing the DLL from being replaced with an alternate version 
in a different location . 

One edge case in the DLL path search algorithm is the DLL versioning check performed on 
64-bit and WOW64 applications . If a DLL with a matching base name is located but is subse-
quently determined to have been compiled for the wrong machine architecture—for example, 
a 64-bit image in a 32-bit application—the loader ignores the error and resumes the path 
search operation, starting with the path element after the one used to locate the incorrect file. 
This behavior is designed to allow applications to specify both 64-bit and 32-bit entries in the 
global %PATH% environment variable . 

EXPERIMENT: Observing DLL Load Search Order
You can use Sysinternals Process Monitor to watch how the loader searches for DLLs . When the 
loader attempts to resolve a DLL dependency, you will see it perform CreateFile calls to probe 
each location in the search sequence until either it finds the specified DLL or the load fails. 

Here’s the capture of the loader’s search when an executable named Myapp .exe has a static 
dependency on a library named Mylibrary.dll. The executable is stored in C:\Myapp, but the 
current working directory was C:\ when the executable was launched. For the sake of demon-
stration, the executable does not include a manifest (by default, Visual Studio has one) so that 
the loader will check inside the C:\Myapp\Myapp.exe.local subdirectory that was created for the 



238 Windows Internals, Sixth Edition, Part 1

experiment. To reduce noise, the Process Monitor filter includes the myapp.exe process and any 
paths that contain the string “mylibrary .dll” .

Note how the search order matches that described . First, the loader checks the  .LOCAL 
 subdirectory, then the directory where the executable resides, then C:\Windows\System32 
 directory (because this is a 32-bit executable, that redirects to C:\Windows\SysWOW64), then 
the 16-bit Windows directory, then C:\Windows, and finally, the current directory at the time 
the executable was launched. The Load Image event confirms that the loader successfully 
 resolved the import . 

Loaded Module Database
The loader maintains a list of all modules (DLLs as well as the primary executable) that have been 
loaded by a process . This information is stored in a per-process structure called the process 
 environment block, or PEB (see Chapter 5 for a full description of the PEB)—namely, in a substructure 
identified by Ldr and called PEB_LDR_DATA . In the structure, the loader maintains three doubly-
linked lists, all containing the same information but ordered differently (either by load order, memory 
 location, or initialization order) . These lists contain structures called loader data table entries  
(LDR_DATA_TABLE_ENTRY) that store information about each module . Table 3-24 lists the various 
pieces of information the loader maintains in an entry .

TABLE 3-24 Fields in a Loader Data Table Entry

Field Meaning

BaseDllName Name of the module itself, without the full path

ContextInformation Used by SwitchBranch (described later) to store the current Windows context GUID 
associated with this module

DllBase Holds the base address at which the module was loaded

EntryPoint Contains the initial routine of the module (such as DllMain)

EntryPointActivationContext Contains the SxS/Fusion activation context when calling initializers

Flags Loader state flags for this module (See Table 3-25 for a description of the flags.)
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Field Meaning

ForwarderLinks Linked list of modules that were loaded as a result of export table forwarders from 
the module

FullDllName Fully qualified path name of the module

HashLinks Linked list used during process startup and shutdown for quicker lookups

List Entry Links Links this entry into each of the three ordered lists part of the loader database

LoadCount Reference count for the module (that is, how many times it has been loaded)

LoadTime Stores the system time value when this module was being loaded

OriginalBase Stores the original base address (set by the linker) of this module, enabling faster 
processing of relocated import entries

PatchInformation Information that’s relevant during a hotpatch operation on this module

ServiceTagLinks Linked list of services (see Chapter 4 for more information) referencing this module

SizeOfImage Size of the module in memory

StaticLinks Linked list of modules loaded as a result of static references from this one

TimeDateStamp Time stamp written by the linker when the module was linked, which the loader 
obtains from the module’s image PE header

TlsIndex Thread local storage slot associated with this module

One way to look at a process’ loader database is to use WinDbg and its formatted output of the 
PEB . The next experiment shows you how to do this and how to look at the LDR_DATA_TABLE_ENTRY 
structures on your own .

EXPERIMENT: Dumping the Loaded Modules Database
Before starting the experiment, perform the same steps as in the previous two experiments to 
launch Notepad.exe with WinDbg as the debugger. When you get to the first prompt (where 
you’ve been instructed to type g until now), follow these instructions: 

1. You can look at the PEB of the current process with the !peb command . For now, you’re 
interested only in the Ldr data that will be displayed . (See Chapter 5 for details about 
other information stored in the PEB .)

0: kd> !peb 
PEB at 000007fffffda000 
    InheritedAddressSpace:    No 
    ReadImageFileExecOptions: No 
    BeingDebugged:            No 
    ImageBaseAddress:         00000000ff590000 
    Ldr                       0000000076e72640 
    Ldr.Initialized:          Yes 
    Ldr.InInitializationOrderModuleList: 0000000000212880 . 0000000004731c20 
    Ldr.InLoadOrderModuleList:           0000000000212770 . 0000000004731c00 
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    Ldr.InMemoryOrderModuleList:         0000000000212780 . 0000000004731c10 
            Base TimeStamp                     Module 
        ff590000 4ce7a144 Nov 20 11:21:56 2010 C:\Windows\Explorer.EXE 
        76d40000 4ce7c8f9 Nov 20 14:11:21 2010 C:\Windows\SYSTEM32\ntdll.dll 
        76870000 4ce7c78b Nov 20 14:05:15 2010 C:\Windows\system32\kernel32.dll 
     7fefd2d0000 4ce7c78c Nov 20 14:05:16 2010 C:\Windows\system32\KERNELBASE.dll 
     7fefee20000 4a5bde6b Jul 14 02:24:59 2009 C:\Windows\system32\ADVAPI32.dll

2. The address shown on the Ldr line is a pointer to the PEB_LDR_DATA structure 
 described earlier . Notice that WinDbg shows you the address of the three lists and 
dumps the initialization order list for you, displaying the full path, time stamp, and 
base address of each module . 

3. You can also analyze each module entry on its own by going through the module list 
and then dumping the data at each address, formatted as a LDR_DATA_TABLE_ENTRY 
structure . Instead of doing this for each entry, however, WinDbg can do most of the 
work by using the !list extension and the following syntax: 

!list –t ntdll!_LIST_ENTRY.Flink –x "dt ntdll!_LDR_DATA_TABLE_ENTRY @$extret\" 
0000000076e72640

Note that the last number is variable: it depends on whatever is shown on your 
 machine under Ldr.InLoadOrderModuleList .

4. You should then see the entries for each module:

0:001> !list -t ntdll!_LIST_ENTRY.Flink -x "dt ntdll!_LDR_DATA_TABLE_ENTRY 
@$extret\" 001c1cf8  
   +0x000 InLoadOrderLinks : _LIST_ENTRY [ 0x1c1d68 - 0x76fd4ccc ] 
   +0x008 InMemoryOrderLinks : _LIST_ENTRY [ 0x1c1d70 - 0x76fd4cd4 ] 
   +0x010 InInitializationOrderLinks : _LIST_ENTRY [ 0x0 - 0x0 ] 
   +0x018 DllBase          : 0x00d80000  
   +0x01c EntryPoint       : 0x00d831ed  
   +0x020 SizeOfImage      : 0x28000 
   +0x024 FullDllName      : _UNICODE_STRING "C:\Windows\notepad.exe" 
   +0x02c BaseDllName      : _UNICODE_STRING "notepad.exe" 
   +0x034 Flags            : 0x4010

Although this section covers the user-mode loader in Ntdll .dll, note that the kernel also 
employs its own loader for drivers and dependent DLLs, with a similar loader entry struc-
ture . Likewise, the kernel-mode loader has its own database of such entries, which is directly 
 accessible through the PsActiveModuleList global data variable . To dump the kernel’s loaded 
 module database, you can use a similar !list command as shown in the preceding experiment by 
 replacing the pointer at the end of the command with “nt!PsActiveModuleList” .

Looking at the list in this raw format gives you some extra insight into the loader’s internals, 
such as the flags field, which contains state information that !peb on its own would not show 
you . See Table 3-25 for their meaning . Because both the kernel and user-mode loaders use this 
structure, some flags apply only to kernel-mode drivers, while others apply only to user-mode 
applications (such as  .NET state) .
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TABLE 3-25 Loader Data Table Entry Flags

Flag Meaning

LDRP_STATIC_LINK (0x2) This module is referenced by an import table and is 
required .

LDRP_IMAGE_DLL (0x4) The module is an image DLL (and not a data DLL or 
executable) .

LDRP_IMAGE_INTEGRITY_FORCED (0x20) The module was linked with /FORCEINTEGRITY 
(contains IMAGE_DLLCHARACTERISTICS_FORCE_
INTEGRITY_in its PE header) .

LDRP_LOAD_IN_PROGRESS (0x1000) This module is currently being loaded .

LDRP_UNLOAD_IN_PROGRESS (0x2000) This module is currently being unloaded .

LDRP_ENTRY_PROCESSED (0x4000) The loader has finished processing this module.

LDRP_ENTRY_INSERTED (0x8000) The loader has finished inserting this entry into the 
loaded module database .

LDRP_FAILED_BUILTIN_LOAD (0x20000) Indicates this boot driver failed to load .

LDRP_DONT_CALL_FOR_THREADS (0x40000) Do not send DLL_THREAD_ATTACH/DETACH 
 notifications to this DLL.

LDRP_PROCESS_ATTACH_CALLED (0x80000) This DLL has been sent the DLL_PROCESS_ATTACH 
notification.

LDRP_DEBUG_SYMBOLS_LOADED (0x100000) The debug symbols for this module have been 
loaded by the kernel or user debugger .

LDRP_IMAGE_NOT_AT_BASE (0x200000) This image was relocated from its original base 
 address .

LDRP_COR_IMAGE (0x400000) This module is a  .NET application .

LDRP_COR_OWNS_UNMAP (0x800000) This module should be unmapped by the  .NET 
 runtime .

LDRP_SYSTEM_MAPPED (0x1000000) This module is mapped into kernel address space 
with System PTEs (versus being in the initial boot 
loader’s memory) .

LDRP_IMAGE_VERIFYING (0x2000000) This module is currently being verified by Driver 
Verifier.

LDRP_DRIVER_DEPENDENT_DLL (0x4000000) This module is a DLL that is in a driver’s import 
table .

LDRP_ENTRY_NATIVE (0x8000000) This module was compiled for Windows 2000 or 
later. It’s used by Driver Verifier as an indication that 
a driver might be suspect .

LDRP_REDIRECTED (0x10000000) The manifest file specified a redirected file for this 
DLL .

LDRP_NON_PAGED_DEBUG_INFO (0x20000000) The debug information for this module is in non-
paged memory .

LDRP_MM_LOADED (0x40000000) This module was loaded by the kernel loader 
through MmLoadSystemImage .

LDRP_COMPAT_DATABASE_PROCESSED (0x80000000) The shim engine has processed this DLL .
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Import Parsing
Now that we’ve explained the way the loader keeps track of all the modules loaded for a process, you 
can continue analyzing the startup initialization tasks performed by the loader. During this step, the 
loader will do the following:

1. Load each DLL referenced in the import table of the process’ executable image.

2. Check whether the DLL has already been loaded by checking the module database. If it 
doesn’t find it in the list, the loader opens the DLL and maps it into memory.

3. During the mapping operation, the loader first looks at the various paths where it should 
 attempt to find this DLL, as well as whether this DLL is a “known DLL,” meaning that the sys-
tem has already loaded it at startup and provided a global memory mapped file for accessing 
it. Certain deviations from the standard lookup algorithm can also occur, either through the 
use of a .local file (which forces the loader to use DLLs in the local path) or through a manifest 
file, which can specify a redirected DLL to use to guarantee a specific version.

4. After the DLL has been found on disk and mapped, the loader checks whether the kernel has 
loaded it somewhere else—this is called relocation. If the loader detects relocation, it parses 
the relocation information in the DLL and performs the operations required. If no relocation 
information is present, DLL loading fails.

5. The loader then creates a loader data table entry for this DLL and inserts it into the database.

6. After a DLL has been mapped, the process is repeated for this DLL to parse its import table 
and all its dependencies.

7.  After each DLL is loaded, the loader parses the IAT to look for specific functions that are being 
imported. Usually this is done by name, but it can also be done by ordinal (an index number). 
For each name, the loader parses the export table of the imported DLL and tries to locate a 
match. If no match is found, the operation is aborted.

8. The import table of an image can also be bound. This means that at link time, the  developers 
already assigned static addresses pointing to imported functions in external DLLs. This 
removes the need to do the lookup for each name, but it assumes that the DLLs the appli-
cation will use will always be located at the same address. Because Windows uses address 
space randomization (see Chapter 10 in Part 2 for more information on Address Space Load 
 Randomization, or ASLR), this is usually not the case for system applications and libraries.

9. The export table of an imported DLL can use a forwarder entry, meaning that the actual 
 function is implemented in another DLL. This must essentially be treated like an import or 
 dependency, so after parsing the export table, each DLL referenced by a forwarder is also 
loaded and the loader goes back to step 1.

After all imported DLLs (and their own dependencies, or imports) have been loaded, all the 
required imported functions have been looked up and found, and all forwarders also have been 
loaded and processed, the step is complete: all dependencies that were defined at compile time by 
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the application and its various DLLs have now been fulfilled. During execution, delayed dependencies 
(called delay load), as well as run-time operations (such as calling LoadLibrary) can call into the loader 
and essentially repeat the same tasks . Note, however, that a failure in these steps will result in an error 
launching the application if they are done during process startup . For example, attempting to run an 
application that requires a function that isn’t present in the current version of the operating system 
can result in a message similar to the one in Figure 3-32 .

FIGURE 3-32 Dialog box shown when a required (imported) function is not present in a DLL

Post-Import Process Initialization
After the required dependencies have been loaded, several initialization tasks must be performed to 
fully finalize launching the application. In this phase, the loader will do the following:

1. Check if the application is a  .NET application, and redirect execution to the  .NET runtime entry 
point instead, assuming the image has been validated by the framework .

2. Check if the application itself requires relocation, and process the relocation entries for the 
application . If the application cannot be relocated, or does not have relocation information, 
the loading will fail .

3. Check if the application makes use of TLS, and look in the application executable for the TLS 
entries it needs to allocate and configure. 

4. If this is a Windows application, the Windows subsystem thread-initialization thunk code is 
located after loading kernel32 .dll, and the Authz/AppLocker enforcement is enabled . (See 
Chapter 6 for more information on Software Restriction Policies .) If Kernel32 .dll is not found, 
the system is presumably assumed to be running in MinWin and only Kernelbase .dll is loaded .

5. Any static imports are now loaded .

6. At this point, the initial debugger breakpoint will be hit when using a debugger such as 
WinDbg . This is where you had to type g to continue execution in the earlier experiments .

7.  Make sure that the application will be able to run properly if the system is a multiprocessor 
system .

8. Set up the default data execution prevention (DEP) options, including for exception-chain 
validation, also called “software” DEP . (See Chapter 10 in Part 2 for more information on DEP .)
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9. Check whether this application requires any application compatibility work, and load the shim 
engine if required .

10. Detect if this application is protected by SecuROM, SafeDisc, and other kinds of wrapper or 
protection utilities that could have issues with DEP (and reconfigure DEP settings in those 
cases) .

11. Run the initializers for all the loaded modules .

12. Run the post-initialization Shim Engine callback if the module is being shimmed for 
 application compatibility .

13. Run the associated subsystem DLL post-process initialization routine registered in the PEB . For 
Windows applications, this does Terminal Services–specific checks, for example.

Running the initializers is the last main step in the loader’s work . This is the step that calls the 
DllMain routine for each DLL (allowing each DLL to perform its own initialization work, which might 
even include loading new DLLs at run time) as well as processes the TLS initializers of each DLL . This 
is one of the last steps in which loading an application can fail . If all the loaded DLLs do not return a 
successful return code after finishing their DllMain routines, the loader aborts starting the application . 
As a very last step, the loader calls the TLS initializer of the actual application .

SwitchBack
As each new version of Windows fixes bugs such as race conditions and incorrect parameter 
 validation checks in existing API functions, an application-compatibility risk is created for each 
change, no matter how minor . Windows makes use of a technology called SwitchBack, implemented 
in the loader, which enables software developers to embed a GUID specific to the Windows version 
they are targeting in their executable’s associated manifest . For example, if a developer wants to take 
advantage of improvements added in Windows 7 to a given API, she would include the Windows 7 
GUID in her manifest, while if a developer has a legacy application that depends on Windows Vista–
specific behavior, she would put the Windows Vista GUID in the manifest instead . SwitchBack parses 
this information and correlates it with embedded information in SwitchBack-compatible DLLs (in the 
 .sb_data image section) to decide which version of an affected API should be called by the module . 
Because SwitchBack works at the loaded-module level, it enables a process to have both legacy and 
current DLLs concurrently calling the same API, yet observing different results .

Windows currently defines two GUIDs that represent either Windows Vista or Windows 7 
 compatibility settings:

 ■ {e2011457-1546-43c5-a5fe-008deee3d3f0} for Windows Vista

 ■ {35138b9a-5d96-4fbd-8e2d-a2440225f93a} for Windows 7

These GUIDs must be present in the application’s manifest file under the SupportedOS ID  present 
in a compatibility attribute entry . (If the application manifest does not contain a GUID, Windows 
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Vista is chosen as the default compatibility mode .) Running under the Windows 7 context affects the 
 following components:

 ■ RPC components use the Windows thread pool instead of a private implementation .

 ■ DirectDraw Lock cannot be acquired on the primary buffer .

 ■ Blitting on the desktop is not allowed without a clipping window .

 ■ A race condition in GetOverlappedResult is fixed.

Whenever a Windows API is affected by changes that might break compatibility, the function’s 
entry code calls the SbSwitchProcedure to invoke the SwitchBack logic . It passes along a pointer to 
the SwitchBack Module Table, which contains information about the SwitchBack mechanisms em-
ployed in the module . The table also contains a pointer to an array of entries for each SwitchBack 
point. This table contains a description of each branch-point that identifies it with a symbolic name 
and a comprehensive description, along with an associated mitigation tag . Typically, there will be 
two branch-points in a module, one for Windows Vista behavior, and one for Windows 7 behavior . 
For each branch-point, the required SwitchBack context is given—it is this context that determines 
which of the two (or more) branches is taken at runtime . Finally, each of these descriptors contains a 
function pointer to the actual code that each branch should execute . If the application is running with 
the Windows 7 GUID, this will be part of its SwitchBack context, and the SbSelectProcedure API, upon 
parsing the module table, will perform a match operation. It finds the module entry descriptor for the 
context and proceeds to call the function pointer included in the descriptor . 

SwitchBack uses ETW to trace the selection of given SwitchBack contexts and branch-points and 
feeds the data into the Windows AIT (Application Impact Telemetry) logger . This data can be peri-
odically collected by Microsoft to determine the extent to which each compatibility entry is being 
used, identify the applications using it (a full stack trace is provided in the log), and notify third-party 
vendors .

As mentioned, the compatibility level of the application is stored in its manifest . At load time, the 
loader parses the manifest file, creates a context data structure, and caches it in the pContextData 
member of the process environment block . (For more information on the PEB, see Chapter 5 .) This 
context data contains the associated compatibility GUIDs that this process is executing under and 
determines which version of the branch-points in the called APIs that employ SwitchBack will be 
executed .

API Sets
While SwitchBack uses API redirection for specific application-compatibility scenarios, there is a 
much more pervasive redirection mechanism used in Windows for all applications, called API Sets . Its 
purpose is to enable fine-grained categorization of Windows APIs into sub-DLLs instead of having 
large multipurpose DLLs that span nearly thousands of APIs that might not be needed on all types of 
 Windows systems today and in the future . This technology, developed mainly to support the refactor-
ing of the bottom-most layers of the Windows architecture to separate it from higher layers, goes 
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hand in hand with the breakdown of Kernel32 .dll and Advapi32 .dll (among others) into multiple, 
virtual DLL files.

For example, the following graphic shows that Kernel32 .dll, which is a core Windows library, 
 imports from many other DLLs, beginning with API-MS-WIN . Each of these DLLs contain a small 
subset of the APIs that Kernel32 normally provides, but together they make up the entire API surface 
exposed by Kernel32 .dll . The CORE-STRING library, for instance, provides only the Windows base 
string functions . 

In splitting functions across discrete files, two objectives are achieved: first, doing this allows future 
applications to link only with the API libraries that provide the functionality that they need, and 
second, if Microsoft were to create a version of Windows that did not support, for example, Localiza-
tion (say a non-user-facing, English-only embedded system), it would be possible to simply remove 
the sub-DLL and modify the API Set schema . This would result in a smaller Kernel32 binary, and any 
applications that ran without requiring localization would still run .

With this technology, a “base” Windows system called “MinWin” is defined (and, at the source level, 
built), with a minimum set of services that includes the kernel, core drivers (including file systems, 
basic system processes such as CSRSS and the Service Control Manager, and a handful of Windows 
services) . Windows Embedded, with its Platform Builder, provides what might seem to be a similar 
technology, as system builders are able to remove select “Windows components,” such as the shell, or 
the network stack . However, removing components from Windows leaves dangling dependencies—
code paths that, if exercised, would fail because they depend on the removed components . MinWin’s 
dependencies, on the other hand, are entirely self-contained .
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When the process manager initializes, it calls the PspInitializeApiSetMap function, which is respon-
sible for creating a section object (using a standard section object) of the API Set redirection table, 
which is stored in %SystemRoot%\System32\ApiSetSchema.dll. The DLL contains no executable code, 
but it has a section called .apiset that contains API Set mapping data that maps virtual API Set DLLs 
to logical DLLs that implement the APIs . Whenever a new process starts, the process manager maps 
the section object into the process’ address space and sets the ApiSetMap field in the process’ PEB to 
point to the base address where the section object was mapped .

In turn, the loader’s LdrpApplyFileNameRedirection function, which is normally responsible for the 
 .local and SxS/Fusion manifest redirection that was mentioned earlier, also checks for API Set redirec-
tion data whenever a new import library that has a name starting with “API-“ loads (either dynamically 
or statically) . The API Set table is organized by library with each entry describing in which logical DLL 
the function can be found, and that DLL is what gets loaded . Although the schema data is a binary 
format, you can dump its strings with the Sysinternals Strings tool to see which DLLs are currently 
defined:

C:\Windows\System32>strings apisetschema.dll 
... 
MS-Win-Core-Console-L1-1-0 
kernel32.dllMS-Win-Core-DateTime-L1-1-0 
MS-Win-Core-Debug-L1-1-0 
kernelbase.dllMS-Win-Core-DelayLoad-L1-1-0 
MS-Win-Core-ErrorHandling-L1-1-0 
MS-Win-Core-Fibers-L1-1-0 
MS-Win-Core-File-L1-1-0 
MS-Win-Core-Handle-L1-1-0 
MS-Win-Core-Heap-L1-1-0 
MS-Win-Core-Interlocked-L1-1-0 
MS-Win-Core-IO-L1-1-0 
MS-Win-Core-LibraryLoader-L1-1-0 
MS-Win-Core-Localization-L1-1-0 
MS-Win-Core-LocalRegistry-L1-1-0 
MS-Win-Core-Memory-L1-1-0 
MS-Win-Core-Misc-L1-1-0 
MS-Win-Core-NamedPipe-L1-1-0 
MS-Win-Core-ProcessEnvironment-L1-1-0 
MS-Win-Core-ProcessThreads-L1-1-0 
MS-Win-Core-Profile-L1-1-0 
MS-Win-Core-RtlSupport-L1-1-0 
ntdll.dll 
MS-Win-Core-String-L1-1-0
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Hypervisor (Hyper-V)

One of the key technologies in the software industry—used by system administrators, developers, 
and testers alike—is called virtualization, and it refers to the ability to run multiple operating systems 
simultaneously on the same physical machine . One operating system, in which the virtualization soft-
ware is executing, is called the host, while the other operating systems are running as guests inside the 
virtualization software . The usage scenarios for this model cover everything from being able to test 
an application on different platforms to having fully virtual servers all actually running as part of the 
same machine and managed through one central point .

Until recently, all the virtualization was done by the software itself, sometimes assisted by 
 hardware-level virtualization technology (called host-based virtualization) . Thanks to hardware 
 virtualization, the CPU can do most of the notifications required for trapping instructions and virtual-
izing access to memory. These notifications, as well as the various configuration steps required for 
allowing guest operating systems to run concurrently, must be handled by a piece of infrastructure 
compatible with the CPU’s virtualization support . Instead of relying on a piece of separate software 
running inside a host operating system to perform these tasks, a thin piece of low-level system 
software, which uses strictly hardware-assisted virtualization support, can be used—a hypervisor . 
 Figure 3-33 shows a simple architectural overview of these two kinds of systems .

Guest 2Guest 1

Host OS VMM*

Hardware

Hosted virtualization

* Represents software product such as Virtual PC

Guest 2Guest 1

VMM**

Hardware

Hypervisor virtualization

** This VMM is the hypervisor.

FIGURE 3-33 Two architectures for virtualization

With Hyper-V, Windows server computers can install support for hypervisor-based virtualization as 
a server role (as long as an edition with Hyper-V support is licensed) . Because the hypervisor is part of 
the operating system, managing the guests inside it, as well as interacting with them, is fully integrat-
ed in the operating system through standard management mechanisms such as WMI and services . 
(See Chapter 4 for more information on these topics .) 

Finally, apart from having a hypervisor that allows running other guests managed by a Windows 
Server host, both client and server editions of Windows also ship with enlightenments, which are spe-
cial optimizations in the kernel and possibly device drivers that detect that the code is being run as 
a guest under a hypervisor and perform certain tasks differently, or more efficiently, considering this 
environment . We will look at some of these improvements later; for now, we’ll take a look at the basic 
architecture of the Windows virtualization stack, shown in Figure 3-34 .
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FIGURE 3-34 Windows Hyper-V architectural stack

Partitions
One of the key architectural components behind the Windows hypervisor is the concept of a  partition. 
A partition essentially references an instance of an operating system installation, which can refer 
either to what’s traditionally called the host or to the guest . Under the Windows hypervisor model, 
these two terms are not used; instead, we talk of either a parent partition or a child partition, respec-
tively . Consequently, at a minimum, a Hyper-V system will have a parent partition, which is recom-
mended to contain a Windows Server Core installation, as well as the virtualization stack and its 
associated components . Although this installation type is recommended because it allows minimiz-
ing patches and reducing the security surface area, resulting in increased availability of the server, a 
full installation is also supported . Each operating system running within the virtualized environment 
represents a child partition, which might contain certain additional tools that optimize access to the 
hardware or allow management of the operating system .

Parent Partition
One of the main goals behind the design of the Windows hypervisor was to have it as small and 
modular as possible, much like a microkernel, instead of providing a full, monolithic module . This 
means that most of the virtualization work is actually done by a separate virtualization stack and that 
there are also no hypervisor drivers. In lieu of these, the hypervisor uses the existing Windows driver 
architecture and talks to actual Windows device drivers . This architecture results in several compo-
nents that provide and manage this behavior, which are collectively called the hypervisor stack .
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Logically, it is the parent partition that is responsible for providing the hypervisor, as well as the 
entire hypervisor stack . Because these are Microsoft components, only a Windows machine can be a 
root partition, naturally . A parent partition should have almost no resource usage for itself because its 
role is to run other operating systems . The main components that the parent partition provides are 
shown in Figure 3-35 .
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drivers
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FIGURE 3-35 Components of a parent partition

Parent Partition Operating System
The Windows installation (typically the minimal footprint server installation, called Windows Server 
Core, to minimize resource usage) is responsible for providing the hypervisor and the device drivers 
for the hardware on the system (which the hypervisor will need to access), as well as for running the 
hypervisor stack . It is also the management point for all the child partitions .

Virtual Machine Manager Service and Worker Processes
The virtual machine management service (%SystemRoot%\System32\Vmms.exe) is responsible for 
providing the Windows Management Instrumentation (WMI) interface to the hypervisor, which allows 
managing the child partitions through a Microsoft Management Console (MMC) plug-in . It is also 
responsible for communicating requests to applications that need to communicate to the hypervisor 
or to child partitions . It controls settings such as which devices are visible to child partitions, how the 
memory and processor allocation for each partition is defined, and more. 

The virtual machine worker processes (VMWPs), on the other hand, perform various virtualization 
work that a typical monolithic hypervisor would perform (similar to the work of a software-based 
virtualization solution) . This means managing the state machine for a given child partition (to allow 
support for features such as snapshots and state transitions), responding to various notifications com-
ing in from the hypervisor, performing the emulation of certain devices exposed to child partitions, 
and collaborating with the VM service and configuration component. 
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On a system with child partitions performing lots of I/O or privileged operations, you would 
 expect most of the CPU usage to be visible in the parent partition: you can identify them by the name 
Vmwp .exe (one for each child partition) . The worker process also includes components responsible 
for remote management of the virtualization stack, as well as an RDP component that allows using 
the remote desktop client to connect to any child partition and remotely view its user interface and 
interact with it .

Virtualization Service Providers
Virtualization service providers (VSPs) are responsible for the high-speed emulation of certain devices 
visible to child partitions (the exact difference between VSP-emulated devices and user-mode– 
process-emulated devices will be explained later), and unlike the VM service and processes, VSPs can 
also run in kernel mode as drivers . More detail on VSPs will follow in the section that describes device 
architecture in the virtualization stack .

VM Infrastructure Driver and Hypervisor API Library
Because the hypervisor cannot be directly accessed by user-mode applications, such as the VM 
 service that is responsible for management, the virtualization stack must actually talk to a driver in 
kernel mode that is responsible for relaying the requests to the hypervisor . This is the job of the VM 
infrastructure driver (VID) . The VID also provides support for certain low-memory memory devices, 
such as MMIO and ROM emulation .

A library located in kernel mode provides the actual interface to the hypervisor (called hypercalls) . 
Messages can also come from child partitions (which will perform their own hypercalls), because there 
is only one hypervisor for the whole system and it can listen to messages coming from any partition . 
You can find this functionality in the Winhv.sys device driver.

Hypervisor
At the bottom of the architecture is the hypervisor itself, which registers itself with the processor at 
system boot-up time and provides its services for the stack to use (through the use of the hypercall 
interface) . This early initialization is performed by the hvboot.sys driver, which is configured to start 
early on during a system boot . Because Intel and AMD processors have slightly differing implementa-
tions of hardware-assisted virtualization, there are actually two different hypervisors—the correct one 
is selected at boot-up time by querying the processor through CPUID instructions . On Intel systems, 
the Hvix64 .exe binary is loaded, while on AMD systems, the Hvax64 .exe image is used .

Child Partitions
The child partition, as discussed earlier, is an instance of any operating system running parallel to the 
parent partition . (Because you can save or pause the state of any child, it might not necessarily be 
running, but there will be a worker process for it .) Unlike the parent partition, which has full access 
to the APIC, I/O ports, and physical memory, child partitions are limited for security and manage-
ment reasons to their own view of address space (the Guest Virtual Address Space, or GVA, which is 
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 managed by the hypervisor) and have no direct access to hardware . In terms of hypervisor access, it 
is also limited mainly to notifications and state changes. For example, a child partition doesn’t have 
control over other partitions (and can’t create new ones) .

Child partitions have many fewer virtualization components than a parent partition because they 
are not responsible for running the virtualization stack—only for communicating with it . Also, these 
components can also be considered optional because they enhance performance of the environment 
but are not critical to its use . Figure 3-36 shows the components present in a typical Windows child 
partition .

User mode

Guest applications

Kernel mode

Windows
kernel

Virtualization
service
clients
(VSCs)

Enlightenments

FIGURE 3-36 Components in a child partition

EXPERIMENT: Examining Child Partitions from the Parent with LiveKd
With Sysinternals LiveKd, you can examine a Windows XP or higher virtual machine from the 
parent partition without having to boot the child operating system in debugging mode . First, 
specify the –hvl option to LiveKd, which has it list the IDs and names of active child partitions:

Then run LiveKd with the –hv switch and specify the ID or name of the child partition that 
you want to examine . Just as for debugging the local system with Livekd, the contents of the 
virtual machine’s memory can change as you execute LiveKd commands, resulting in LiveKd 
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seeing inconsistencies caused by data reflecting different points in time. If you want LiveKd to 
see a consistent view, you can specify the –p option to have the child partition paused while 
LiveKd is running . All commands that work on a local system also work when you use LiveKd 
to explore a virtual machine . Here’s the partial output of the !vm kernel debugger command, 
which lists various memory-related statistics, when executed on a Hyper-V child partition:

Virtualization Service Clients
Virtualization service clients (VSCs) are the child partition analogues of VSPs . Like VSPs, VSCs are used 
for device emulation, which is a topic of later discussion .

Enlightenments
Enlightenments are one of the key performance optimizations that Windows virtualization takes 
advantage of. They are direct modifications to the standard Windows kernel code that can detect that 
this operating system is running in a child partition and perform work differently . Usually, these opti-
mizations are highly hardware-specific and result in a hypercall to notify the hypervisor. An example 



254 Windows Internals, Sixth Edition, Part 1

is notifying the hypervisor of a long busy-wait spin loop . The hypervisor can keep some state stale in 
this scenario instead of keeping track of the state at every single loop instruction . Entering and exiting 
an interrupt state can also be coordinated with the hypervisor, as well as access to the APIC, which 
can be enlightened to avoid trapping the real access and then virtualizing it .

Another example has to do with memory management, specifically TLB flushing and changing 
address space . (See Chapter 9 for more information on these concepts .) Usually, the operating system 
executes a CPU instruction to flush this information, which affects the entire processor. However, 
because a child partition could be sharing a CPU with many other child partitions, such an operation 
would also flush this information for those operating systems, resulting in noticeable performance 
degradation . If Windows is running under a hypervisor, it instead issues a hypercall to have the 
 hypervisor flush only the specific information belonging to the child partition.

Hardware Emulation and Support
A virtualization solution must also provide optimized access to devices . Unfortunately, most de-
vices aren’t made to accept multiple requests coming in from different operating systems . The 
 hypervisor steps in by providing the same level of synchronization where possible and by emulating 
certain  devices when real access to hardware cannot be permitted . In addition to devices, memory 
and  processors must also be virtualized . Table 3-26 describes the three types of hardware that the 
 hypervisor must manage . 

TABLE 3-26 Virtualized Hardware

Component Managed By Usage

Processor Hypervisor built-in scheduler and 
related microkernel components

Manage usage of hardware’s processing power, share 
 multiple processors across multiple child partitions, 
manage and switch processor states (such as registers) .

Memory Hypervisor built-in memory 
manager and related microkernel 
components

Manage hardware’s RAM usage and availability . Protect 
memory from child partitions and parent partition . 
Provide a contiguous view of physical memory starting 
at address 0 .

Devices VM worker processes—hypervisor 
responsible only for interception 
and notification

Provide hardware multiplexing so that multiple child 
partitions can access the same device on the physical 
machine . Optimize access to physical devices to be as 
fast as possible .

Instead of exposing actual hardware to child partitions, the hypervisor exposes virtual devices 
(called VDevs) . VDevs are packaged as COM components that run inside a VM worker process, and 
they are the central manageable object behind the device . (Usually, VDevs expose a WMI interface .) 
The Windows virtualization stack provides support for two kinds of virtual devices: emulated devices 
and synthetic devices (also called enlightened I/O) . The former provide support for various devices that 
the operating systems on the child partition would expect to find, while the latter requires specific 
support from the guest operating system. On the other hand, synthetic devices provide a significant 
performance benefit by reducing CPU overhead.
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Emulated Devices
Emulated devices work by presenting the child partition with a set of I/O ports, memory ranges, and 
interrupts that are being controlled and monitored by the hypervisor . When access to these resources 
is detected, the VM worker process eventually gets notified through the virtualization stack (shown 
earlier in Figure 3-34) . The process then emulates whatever action is expected from the device and 
completes the request, going back through the hypervisor and then to the child partition . From 
this topological view alone, one can see that there is a definite loss in performance, without even 
 considering that the software emulation of a hardware device is usually slow .

The need for emulated devices comes from the fact that the hypervisor needs to support 
 nonhypervisor-aware operating systems, as well as the early installation steps of even Windows itself . 
During the boot process, the installer can’t simply load all the child partition’s required components 
(such as VSCs) to use synthetic devices, so a Windows installation will always use emulated devices 
(which is why installation will seem very slow, but once installed the operating system will run quite 
close to native speed) . Emulated devices are also used for hardware that doesn’t require high-speed 
emulation and for which software emulation might even be faster . This includes items such as COM 
(serial) ports, parallel ports, or the motherboard itself . 

Note Hyper-V emulates an Intel i440BX motherboard, an S3 Trio video card, and an Intel 
21140 NIC .

Synthetic Devices
Although emulated devices work adequately for 10-Mbit network connections, low-resolution VGA 
displays, and 16-bit sound cards, the operating systems and hardware that child partitions usually 
 require in today’s usage scenarios require a lot more processing power, such as support for 1000-
Mbit GbE connections; full-color, high-resolution 3D support; and high-speed access to storage 
devices . To support this kind of virtualized hardware access at an acceptable CPU usage level and 
virtualized throughput, the virtualization stack uses a variety of components to optimize device I/Os 
to their  fullest (similar to kernel enlightenments) . Three components are part of this support, and they 
all belong to what’s presented to the user as integration components or ICs:

 ■ Virtualization service providers (VSPs)

 ■ Virtualization service clients/consumers (VSCs)

 ■ VMBus

Figure 3-37 shows a diagram of how an enlightened, or synthetic storage I/O, is handled by the 
virtualization stack .
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FIGURE 3-37 I/O handling paths in Hyper-V

As shown in Figure 3-37, VSPs run in the parent partition, where they are associated with a specific 
device that they are responsible for enlightening. (We’ll use that as a term instead of emulating when 
referring to synthetic devices.) VSCs reside in the child partition and are also associated with a specific 
device . Note, however, that the term provider can refer to multiple components spread across the 
device stack . For example, a VSP can be any of the following:

 ■ A user-mode service

 ■ A user-mode COM component

 ■ A kernel-mode driver

In all three cases, the VSP will be associated with the actual virtual device inside the VM worker 
process . VSCs, on the other hand, are almost always designed to be drivers sitting at the lowest level 
of the device stack (see Chapter 8 in Part 2 for more information on device stacks) and intercept I/Os 
to a device and redirect them through a more optimized path . The main optimization that is per-
formed by this model is to avoid actual hardware access and use VMBus instead . Under this model, 
the hypervisor is unaware of the I/O, and the VSP redirects it directly to the parent partition’s kernel 
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storage stack, avoiding a trip to user mode as well . Other VSPs can perform work directly on the 
device, by talking to the actual hardware and bypassing any driver that might have been loaded on 
the parent partition . Another option is to have a user-mode VSP, which can make sense when dealing 
with lower-bandwidth devices .

As described earlier, VMBus is the name of the bus transport used to optimize device access by 
implementing a communications protocol using hypervisor services . VMBus is a bus driver present 
on both the parent partition and the child partitions responsible for the Plug and Play enumeration 
of synthetic devices in a child . It also contains the optimized cross-partition messaging protocol that 
uses a transport method that is appropriate for the data size . One of these methods is to provide a 
shared ring buffer between each partition—essentially an area of memory on which a certain amount 
of data is loaded on one side and unloaded on the other side . No memory needs to be allocated 
or freed because the buffer is continuously reused and simply rotated . Eventually, it might become 
full with requests, which would mean that newer I/Os would overwrite older I/Os . In this uncom-
mon  scenario, VMBus simply delays newer requests until older ones complete . The other messaging 
 transport is direct child memory mapping to the parent address space for large enough transfers .

Virtual Processors
Just as the hypervisor doesn’t allow direct access to hardware (or to memory, as you’ll see later), child 
partitions don’t really see the actual processors on the machine but have a virtualized view of CPUs 
as well . On the root machine, the administrator and the operating system deal with logical processors, 
which are the actual processors on which threads can run (for example, a dual quad-core machine 
has eight logical processors), and assign these processors to various child partitions . For example, one 
child partition could be scheduled on logical processors 1, 2, 3, and 4, while the second child partition 
is scheduled on processors 5, 6, 7, and 8 . These operations are all made possible through the use of 
virtual processors, or VPs . 

Because processors can be shared across multiple child partitions, the hypervisor includes its own 
scheduler that distributes the workload of the various partitions across each processor . Additionally, 
the hypervisor maintains the register state for each virtual processor and to an appropriate “processor 
switch” when the same logical processor is being used by another child partition . The parent parti-
tion has the ability to access all these contexts and modify them as required, an essential part of the 
virtualization stack that must respond to certain instructions and perform actions .

The hypervisor is also directly responsible for virtualizing processor APICs and providing a  simpler, 
less-featured virtual APIC, including support for the timer that’s found on most APICs (however, 
at a slower rate) . Because not all operating systems support APICs, the hypervisor also allows for 
the  injection of interrupts through a hypercall, which permits the virtualization stack to emulate a 
 standard i8059 PIC .

Finally, because Windows supports dynamic processor addition, an administrator can add new 
processors to a child partition at run time to increase the responsiveness of the guest operating 
 systems if it’s under heavy load .
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Memory Virtualization
The final piece of hardware that must be abstracted away from child partitions is memory, not only 
for the normal behavior of the guest operating systems, but also for security and stability . Improperly 
managing the child partitions’ access to memory could result in privacy disclosures and data corrup-
tion, as well as possible malicious attacks by “escaping” the child partition and attacking the parent 
(which would then allow attacks on the other child partitions) . Apart from this aspect, there is also the 
matter of the guest operating system’s view of physical address space . Almost all operating systems 
expect memory to begin at address 0 and be somewhat contiguous, so simply assigning chunks of 
physical memory to each child partition wouldn’t work even if enough memory was available on the 
system .

To solve this problem, the hypervisor implements an address space called the guest  physical 
 address space (GPA space). The GPA starts at address 0, which satisfies the needs of operating systems 
inside child partitions . However, the GPA is not a simple mapping to a chunk of physical memory 
because of the second problem (the lack of contiguous memory) . As such, GPAs can point to any 
location in the machine’s physical memory (which is called the system physical address space, or 
SPA space), and there must be a translation system to go from one address type to another . This 
 translation system is maintained by the hypervisor and is nearly identical to the way virtual memory 
is mapped to physical memory on x86 and x64 processors . (See Chapter 10 in Part 2 for more 
 information on the memory manager and address translation .)

As for actual virtual addresses in the child partition (which are called guest virtual address space—
GVA space), these continue to be managed by the operating system without any change in behavior . 
What the operating system believes are real physical addresses in its own page tables are actually 
SPAs . Figure 3-38 shows an overview of the mapping between each level .
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FIGURE 3-38 Guest virtual and physical address translation

This means that when a guest operating system boots up and creates the page tables to map 
virtual to physical memory, the hypervisor intercepts SPAs and keeps its own copy of the page tables . 
Conceptually, whenever a piece of code accesses a virtual address inside a guest operating system, 
the hypervisor does the initial page table translation to go from the guest virtual address to the GPA 
and then maps that GPA to the respective SPA . In reality, this operation is optimized through the use 
of shadow page tables (SPTs), which the hypervisor maintains to have direct GVA-to-SPA translations 
and simply loads when appropriate so that the guest accesses the SPA directly . 
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Second-Level Address Translation and Tagged TLB
Because the translation from GVA to GPA to SPA is expensive (because it must be done in 
software), CPU manufacturers have worked to curtail this inefficiency by making the processor 
natively aware of the address translation requirements of a virtual machine—in other words, 
an advanced processor could understand that the memory access is occurring from a hosted 
virtual machine and perform the GVA-to-SPA lookup on its own, without requiring assistance 
from the hypervisor . This lookup technology is called Second-Level Address Translation (SLAT) 
because it covers both the target-to-host translation (second level) and the host VA–to–host 
PA translation (first level). For marketing purposes, however, Intel has called this support VT 
Extended/Nested Page Table (NPT) technology, while AMD calls it AMD-V Rapid Virtualization 
Indexing (RVI) . 

The latest version of the Hyper-V stack takes full advantage of this processor support, 
reducing the complexity of its code and minimizing the number of context switches required 
to handle page faults in hosted partitions . Additionally, SLAT enables Hyper-V to throw out its 
shadow page tables and relevant mappings, which allows an additional reduction of memory 
overhead as well . These changes increase the scalability of Hyper-V on such systems, notably 
leading to an increase in the maximum number of virtual machines that a single host (Hyper-V 
server) can serve, or run concurrently . According to tests performed by Microsoft, support for 
SLAT increases the maximum number of supported sessions between 1 .6 and 2 .5 times . Fur-
thermore, the processor overhead drops from about 10 percent to 2 percent, and each virtual 
machine consumes one less megabyte of physical RAM on the host .

In addition, both Intel and AMD introduced a functionality that was typically found only on 
RISC processors such as ARM, MIPS, or PPC, which is the ability of the processor to differentiate 
between the processes associated with each cached virtual-to-physical translation entry in the 
translation look-aside buffer (TLB) . On CISC processors such as the x86 and x64, the TLB was 
built as a systemwide resource—each time the operating system switched the currently execut-
ing process, the TLB had to be flushed to invalidate any cached entries that might’ve belonged 
to the previous executing process . If the processor, instead, could be told that the process has 
changed, the TLB would avoid a flush and the processor would simply not use the cached en-
tries that did not correspond to this process . New entries would be created, eventually overrid-
ing other processes’ older entries . This type of smarter TLB is called a tagged TLB, because each 
cache entry is tagged with a per-process identifier.

Flushing the TLB is even worse when dealing with Hyper-V systems because a different 
process can actually correspond to a completely different VM . In other words, each time the 
hypervisor and operating system scheduled another VM for execution, the host’s TLB had to 
be flushed, flushing away all the cached translations the previous VM had performed, slow-
ing down memory access, and causing significant latency. When running on a processor that 
implements a tagged TLB, the Hyper-V can simply notify the processor that a new process/VM 
is running and that the entries of other VM should not be used . AMD processors with RVI sup-
port tagged TLBs through an Address Space Identifier, or ASID, while recent Intel Nehalem-EX 
processors implement a tagged TLB by using a Virtual Processor Identifier (VPID). 
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Dynamic Memory
A feature called Dynamic Memory enables systems administrators to make a virtual machine’s 
physical memory allocation variable based on the memory demands of the active virtual ma-
chines, in much the same way that the Windows memory manager adjusts the physical memory 
assigned to each process based on their memory demands . The capability means that adminis-
trators do not have to precisely gauge the size of a virtual machine required for optimal perfor-
mance and that the system’s physical memory is more effectively used by the virtual machines 
that need it . 

Dynamic Memory’s architecture consists of several components, shown in Figure 3-39 . 
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FIGURE 3-39 Dynamic Memory architecture

The principle components of the architecture are as follows:

 ■ The Dynamic Memory balancer, which is implemented in the virtual machine management 
service . The balancer is responsible for assigning physical memory to child partitions .

 ■ The Dynamic Memory VSP (DM VSP), which runs in the VMWPs of child partitions that 
have dynamic memory enabled .

 ■ The Dynamic Memory VSC (DM VSC, %SystemRoot%\System32\Drivers\Dmvsc.sys), 
 installed as an enlightenment driver running in the child partitions .
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To configure a VM for dynamic memory, an administrator chooses Dynamic in the VM’s 
memory settings as shown in Figure 3-40 . 

FIGURE 3-40 Dynamic memory configuration dialog

The associated settings include the amount of memory that will be assigned to the VM 
when it starts (Startup RAM), the maximum amount that it can be assigned (Maximum RAM), 
the percentage of the VM’s memory that should be available for immediate use by the operat-
ing system if its memory demand increases, and finally, the weight of the VM with respect to 
other VMs . In addition to serving as weighting for the distribution of physical memory among 
virtual machines that have dynamic memory enabled, the hypervisor also uses it as a guide for 
the startup order of virtual machines configured to start when the system boots. Finally, the 
available memory percentage is a reference to memory within the VM that the VM’s operating 
system has not assigned to a process, device drivers, or itself, and that can be assigned without 
incurring a page fault . Chapter 10 in Part 2 describes available memory in more detail . 

When the DM VSC starts in a child partition that has dynamic memory enabled in its 
memory configuration, it first checks to see if the operating system supports dynamic memory 
capabilities . It performs this check by simply calling the memory manager’s hot-add memory 
function, specifying a block of child physical memory already assigned to the virtual machine . 
If the memory manager supports hot add, it returns an error indicating that the address range 
is already in use, and if it doesn’t, it reports that the function is not supported . If dynamic 
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memory is supported, the DM VSC establishes a connection to the DM VSP via VMBus . Because 
the system’s memory usage fluctuates during the boot process, after all autostart Windows 
services have finished initializing, the VSC begins reporting memory statistics once per second 
that indicate the current system commit level in the virtual machine . (See Chapter 10 in Part 2 
for more information on system commit .)

The DM VSP in the parent partition calculates a memory pressure value for its corresponding 
VM using the following calculation based on the VM’s memory report:

Memory Pressure = Committed Memory / Physical Memory 

Physical Memory refers to the amount of memory currently assigned to the VM’s partition . It 
also keeps a running exponential average pressure that represents the previous 20 seconds of 
pressure reports, adjusting the average pressure only when the current pressure deviates from 
the average by at least a standard deviation . 

A component called the balancer executes in the VMMS service . Once per second, it  analyzes 
the memory pressures reported by the DM VSPs, considers VM policy configuration, and de-
termines if and how much memory should be redistributed . If a global Hyper-V setting called 
NUMA spanning is enabled, the balancer uses two balancing engines: one engine is the global 
balancer, and it is responsible for assigning new VMs to NUMA nodes . It does so based on the 
memory usage and VM pressures of the nodes at the time of the assignment . Each NUMA node 
has its own local balancer that manages the distribution of the node’s memory across the VMs 
assigned to the node . If the NUMA spanning option is off, the global balancer has no role other 
than to invoke the only local balancer for the system . 

The benefit of assigning VMs to NUMA nodes is that VMs will be guaranteed the fastest 
memory accesses possible . The tradeoff, however, is that it might not be possible to start or 
add memory to a VM in the case where the sum of unassigned memory is sufficient but no one 
node has enough available memory to accommodate the amount of memory requested . 

A local balancer increases or decreases a global target memory pressure to use all  available 
memory under its management or to use it until a minimum pressure level is reached that 
indicates all VMs have ample memory . The balancer then loops over the VMs, determining 
how much memory to add or remove from each VM to reach the target pressure . During the 
calculations, the balancer reserves a minimum amount of memory for the host . The host’s 
reservation is a base amount of approximately 400 MB plus 30 MB for each 1 GB of RAM on 
the system . Factors that can affect the amount of memory reserved include whether or not the 
system is using SLAT or software paging, and whether multimedia redirection is enabled . Every 
five minutes, the balancer also removes memory from VMs that have so much memory that 
their pressure is essentially zero . 

Note that if the child partition’s operating system is running a 32-bit version of Windows, the 
dynamic memory engine will not assign the partition more than 4 GB of memory . 

Once it has calculated the amounts of memory to add and remove from VMs, it asks each 
WP to perform the desired operation . If the operation is to remove memory, the WP signals 



 CHAPTER 3 System Mechanisms 263

the child DM VSC over VMBUS of the amount to remove and the DM VSC balloons its memory 
usage by allocating physical memory from the system using the MmAllocatePagesForMdlEx 
function . It retrieves the allocated GPAs and sends that back to the WP, which passes them to 
the Hyper-V memory manager . The Hyper-V memory manager then converts the GPAs to SPAs 
and adds the memory to its free memory pool . 

If it’s a memory add operation, the WP asks the Hyper-V memory manager first if the VM 
has any physical memory assigned to it but currently allocated by the VSC’s balloon . If it does, 
the WP retrieves the GPAs for an amount that should be unballooned and asks the VSC to free 
those pages, making them available again for use by the VM’s operating system . If the amount 
that can be released by unballooning falls short of the amount of physical memory the balancer 
wants to give the VM, it asks the Hyper-V memory manager to give the remaining amount 
from its free memory pool to the child partition via Windows support for hot-add memory and 
reports the GPAs it added to the WP, which in turn relays them to the child’s DM VSC .

EXPERIMENT: Watching Dynamic Memory
You can watch the behavior of Dynamic Memory by configuring Dynamic Memory for a 
VM running a 64-bit Dynamic Memory-compatible operating system, such as Windows 7 or 
 Windows Server 2008 R2 . Hyper-V exposes several Dynamic Memory–related performance 
counters under Hyper-V Dynamic Memory Balancer and Dynamic Memory VM . Counters 
 include the amount of memory assigned to a guest, the guest operating system–visible 
memory (the amount of memory it thinks it has), its current and average memory pressure, and 
the amount of memory added and removed over time:
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After freshly booting the virtual machine, add the Guest Visible Physical Memory and 
 Physical Memory counters . Set the scale to three times the current Guest Visible Physical 
 Memory value, which will be at least as large as the Physical Memory value . Then run the 
 Sysinternals Testlimit tool in the virtual machine with the following commandline:  
testlimit -m 1000 -c 1 

Assuming you have enough available physical memory on the system, this causes Testlimit 
to allocate about 1 GB of virtual memory, raising the memory pressure in the virtual machine . 
After a few seconds, you will see the guest visible and actual physical memory assigned to the 
virtual machine jump to the same value . Roughly 30 seconds later, you’ll see another jump 
when the balancer decides that the additional memory is not enough to completely relieve the 
memory pressure in the virtual machine and, because there’s more memory available on the 
host, gives the virtual machine some more .

If you terminate Testlimit, the memory levels remain constant for several minutes if there’s 
no memory demands from the host or other virtual machines, but eventually the balancer will 
respond to the lack of memory pressure in the virtual machine by trimming memory . Note that 
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the Guest Visible Physical Memory counter remains unchanged, but the Physical Memory 
 counter drops back to a level near what it was before Testlimit executed:

Intercepts
We’ve talked about the various ways in which access to hardware, processors, and memory is 
 virtualized by the hypervisor and sometimes handed off to a VM worker process, but we haven’t 
yet talked about the mechanism that allows this to happen—intercepts. Intercepts are configurable 
hooks that a parent partition can install and configure in order to respond to. These can include the 
 following items:

 ■ I/O intercepts, useful for device emulation

 ■ MSR intercepts, useful for APIC emulation and profiling

 ■ Access to GPAs, useful for device emulation, monitoring, and profiling (Additionally, the 
 intercept can be fine-tuned to a specific access, such as read, write, or execute.)

 ■ Exception intercepts such as page faults, useful for maintaining machine state and memory 
emulation (for example, maintaining copy-on-write)
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Once the hypervisor detects an event for which an intercept has been registered, it sends an 
 intercept message through the virtualization stack and puts the VP in a suspended state . The virtu-
alization stack (usually the worker process) must then handle the event and resume the VP (typically 
with a modified register state that reflects the work performed to handle the intercept).

Live Migration
To support scenarios such as planned hardware upgrades and resource load balancing across  servers, 
Hyper-V includes support for migrating virtual machines between nodes of a Windows Failover 
 Cluster with minimal downtime . The key to Live Migration’s efficiency is that the bulk of the transfer of 
the virtual machine’s memory from the source to the target occurs while the virtual machine contin-
ues to run on the source node; only when the memory transfer is complete does the virtual machine 
suspend and resume operating on the target node. This small window when final virtual machine 
state migrates is typically less than the default TCP timeout value, preserving open connections 
from clients using services of the virtual machine and making the migration transparent from their 
 perspective . Figure 3-41 shows the Live Migration process .
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FIGURE 3-41 Live migration transfer steps

The Live Migration process proceeds in a number of steps, shown in Figure 3-41:

1. Migration Setup The VMMS of the hosting (source) node of the virtual machine opens 
a TCP connection with the destination host. It transfers the virtual machine’s configuration 
information, which includes virtual hardware specifications such as the number of processors 
and amount of RAM, to the destination . VMMS on the destination (target) node instantiates a 
paused virtual machine matching the configuration. The VMMS on the source notifies the vir-
tual machine’s worker process that the live migration is ready to proceed and hands it the TCP 
connection . Likewise, the target VMMS hands its end of the connection to the target worker 
process . 

2. Memory Transfer The memory transfer phase consists of several subphases:

a. The source VMWP creates a bitmap with one bit representing each page of the virtual 
machine’s guest physical memory . It sets every bit to indicate that the page is dirty, which 
means that the page’s current contents have not yet been sent to the target . 
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b. The source VMWP registers a memory-change notification callback with the hypervisor 
that sets the corresponding bit in the bitmap for each page of the virtual machine that 
changes . 

c. The source VMWP proceeds to walk through the dirty-page bitmap in 16-KB blocks, 
clearing the dirty bits in the dirty-page bitmap for the pages in the block, reading each 
dirty page’s contents via a hypervisor call, and sending the contents to the target . The 
target VMWP invokes the hypervisor to inject the memory contents into the target virtual 
machine’s guest physical memory . 

d. When it’s finished iterating over the dirty-page bitmap, the source VMWP checks to see if 
any pages have been dirtied during the iteration . If not, it moves to the next phase of the 
migration, but if any pages have been dirtied, it repeats the iteration. If it’s iterated five 
times, the virtual machine is dirtying memory faster than the worker process can send 
modifications, so it proceeds to the next phase of the migration.

5. State Transfer The source VMWP suspends the virtual machine and makes a final iteration 
through the dirty-page bitmap to send over any pages that were dirtied since the last pass . 
Because the virtual machine is suspended during the transfer, no more pages will be dirtied . 
Then the source worker process sends the virtual machine’s state, including the contents of 
the virtual processor registers. Finally, it notifies VMMS that the migration is complete, waits 
for acknowledgement, and then sends a message to the target transferring ownership of the 
virtual machine . As the last migration step, the target worker process moves the virtual ma-
chine to the running state . 

6. Another aspect of Live Migration is the transfer of ownership of the virtual machine’s files, 
including its VHDs . Traditional Windows Clustering is a shared-nothing model, where each 
LUN of the cluster’s storage system is owned by one node at a time . The LUN’s owning node 
has sole access to the LUN and any files stored on it. This model can lead to management 
complexity because each virtual machine must be stored on a separate LUN and therefore a 
separate volume, causing an explosion of volumes in a cluster hosting many virtual machines . 
It poses an even more significant challenge for Live Migration because LUN ownership transfer 
is an expensive operation, consisting of the source node flushing any modified file data to the 
LUN, the source node unmounting the volumes formatted on the LUN, ownership transfer 
from the source node to target node, and the target node mounting the volumes . Depending 
on the number of volumes on the LUN and the amount of dirty data that needs to be written 
back, the entire sequence can take tens of seconds, which would prevent Live Migration from 
meeting its goal of perceived nearly-instantaneous migrations . 

7.  To address the limitations of the traditional clustering model and make Live Migration pos-
sible, Live Migration leverages a storage feature called Clustered Shared Volumes (CSV) . With 
CSV, one node owns the namespace of the volumes on a LUN while others can have exclusive 
ownership of individual files. Exclusive ownership permits the node hosting the virtual ma-
chine to directly access the on-disk storage of the VHD file, bypassing the network file system 
accesses normally required to interact with a LUN owned by another node . Only when a node 
wants to create or delete files, change the size of files (for example, to extend the size of a 
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dynamic or differencing VHD), or change other file metadata such as timestamps does it need 
to send a request via the SMB2 protocol to the owning node if it’s not the owner .

8. The hybrid sharing model of CSV enables LUN ownership to remain unchanged during Live 
Migration and enables only ownership of individual migrating virtual machine’s file to change, 
avoiding the unmounts and mount operations. Also, only dirty data specific to the virtual ma-
chine files must be written before the migration, something that can typically happen concur-
rently with the memory migration . Figure 3-42 depicts the storage ownership changes during 
a Live Migration . CSV’s implementation is described in the “File System Filter Drivers” section 
of Chapter 12, “File Systems,” in Part 2 . 

VHD
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FIGURE 3-42 Clustered Shared Volumes in Live Migration

Kernel Transaction Manager

One of the more tedious aspects of software development is handling error conditions . This is 
 especially true if, in the course of performing a high-level operation, an application has completed 
one or more subtasks that result in changes to the file system or registry. For example, an applica-
tion’s software updating service might make several registry updates, replace one of the application’s 
executables, and then be denied access when it attempts to update a second executable . If the service 
doesn’t want to leave the application in the resulting inconsistent state, it must track all the changes it 
makes and be prepared to undo them. Testing the error-recovery code is difficult, and consequently 
often skipped, so errors in the recovery code can negate the effort .

Applications can, with very little effort, gain automatic error-recovery capabilities by using a kernel 
mechanism called the Kernel Transaction Manager (KTM), which provides the facilities required to 
perform such transactions and enables services such as the distributed transaction coordinator (DTC) 
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in user mode to take advantage of them . Any developer who uses the appropriate APIs can take 
 advantage of these services as well .

KTM does more than solve large-scale issues like the one presented . Even on single-user home 
computers, installing a service patch or performing a system restore are large operations that involve 
both files and registry keys. Unplug an older Windows computer during such an operation, and the 
chances for a successful boot are slim . Even though the NT File System (NTFS) has always had a log 
file permitting the file system to guarantee atomic operations (see Chapter 12 in Part 2 for more 
information on NTFS), this only means that whichever file was being written to during the process 
will get fully written or fully deleted—it does not guarantee the entire update or restore  operation . 
Likewise, the registry has had numerous improvements over the years to deal with  corruption (see 
Chapter 4 for more information on the registry), but the fixes apply only at the key/value level. 

As the heart of transaction support, KTM allows transactional resource managers such as NTFS and 
the registry to coordinate their updates for a specific set of changes made by an application. NTFS 
uses an extension to support transactions, called TxF . The registry uses a similar extension, called TxR . 
These kernel-mode resource managers work with KTM to coordinate the transaction state, just as 
user-mode resource managers use DTC to coordinate transaction state across multiple user-mode 
resource managers . Third parties can also use KTM to implement their own resource managers .

TxF and TxR both define a new set of file system and registry APIs that are similar to existing ones, 
except that they include a transaction parameter. If an application wants to create a file within a trans-
action, it first uses KTM to create the transaction, and then it passes the resulting transaction handle 
to the new file creation API. Although we’ll look at the registry and NTFS implementations of KTM 
later, these are not its only possible uses . In fact, it provides four system objects that allow a variety of 
operations to be supported . These are listed in Table 3-27 .

TABLE 3-27 KTM Objects

Object Meaning Usage

Transaction Collection of data operations to 
be performed . Provides atomic, 
consistent, isolated, and durable 
operations .

Can be associated with the registry and file 
I/O to make those operations part of the same 
larger operation . 

Enlistment Association between a resource 
manager and a transaction .

Register with a transaction to receive 
 notifications on it. The enlistment can specify 
which notifications should be generated.

Resource Manager (RM) Container for the transactions and 
the data on which they operate .

Provides an interface for clients to read and 
write the data, typically on a database .

Transaction Manager 
(TM)

Container of all transactions that 
are part of the associated resource 
managers . As an instance of a log, 
it knows about all transaction states 
but not their data .

Provides an infrastructure through which clients 
and resource managers can communicate, and 
provides and coordinates recovery operations 
after a crash . Clients use the TM for transactions; 
RMs use the TM for enlistments .
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EXPERIMENT: Listing Transaction Managers
Windows ships with a built-in tool called Ktmutil .exe that allows you to see ongoing 
 transactions as well as registered transaction managers on the system (and force the outcome 
of ongoing transactions) . In this experiment, you’ll use it to display the transaction managers 
typically seen on a Windows machine .

Start an elevated command prompt and type:

Ktmutil.exe tm list

Here’s an example of output on a typical Windows system:

C:\Windows\system32>ktmutil tm list 
TmGuid                                 TmLogPath 
-------------------------------------- ----------------------------------------- 
{fef0dc5f-0392-11de-979f-002219dd8c25} \Device\HarddiskVolume2\$Extend\$RmMetadata\$TxfLog
\$TxfLog::KtmLog 
{fef0dc63-0392-11de-979f-002219dd8c25} \Device\HarddiskVolume1\$Extend\$RmMetadata\$TxfLog
\$TxfLog::KtmLog 
{5e68e4aa-129e-11e0-8635-806e6f6e6963} \Device\HarddiskVolume2\Windows\ServiceProfiles\
NetworkService\ntuser.dat{5e68e4a8-129e-11e0-8635-806e6f6e6963}.TM 
{5e68e4ae-129e-11e0-8635-005056c00008} \Device\HarddiskVolume2\Windows\ServiceProfiles\
LocalService\ntuser.dat{5e68e4ac-129e-11e0-8635-005056c00008}.TM 
{51ce23c9-0d6c-11e0-8afb-806e6f6e6963} \SystemRoot\System32\Config\TxR\{51ce23c7-0d6c-
11e0-8afb-806e6f6e6963}.TM 
{51ce23ee-0d6c-11e0-8afb-005056c00008} \Device\HarddiskVolume2\Users\markruss\ntuser.
dat{51ce23ec-0d6c-11e0-8afb-005056c00008}.TM 
{51ce23f2-0d6c-11e0-8afb-005056c00008} \Device\HarddiskVolume2\Users\markruss\AppData\
Local\Microsoft\Windows\UsrClass.dat{51ce23f0-0d6c-11e0-8afb-005056c00008}.TM 

Hotpatch Support

Rebooting a machine to apply the latest patches can mean significant downtime for a server, which 
is why Windows supports a run-time method of patching, called a hot patch (or simply hotpatch), in 
contrast to a cold patch, which requires a reboot. Hotpatching doesn’t simply allow files to be over-
written during execution; instead, it includes a complex series of operations that can be requested 
(and combined) . These operations are listed in Table 3-28 .

TABLE 3-28 Hotpatch Operations

Operation Meaning Usage

Rename Image Replacing a DLL that is on the disk 
and currently used by other applica-
tions, or replacing a driver that is on 
the disk and is currently loaded by 
the kernel

When an entire library in user mode needs to 
be replaced, the kernel can detect which pro-
cesses and services are referencing it, unload 
them, and then update the DLL and restart the 
programs and services (which is done through 
the restart manager) . When a driver needs to 
be replaced, the kernel can unload the driver 
(the driver requires an unload routine), update 
it, and then reload it .
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Operation Meaning Usage

Object Swap Atomically renaming an object in 
the object directory namespace

When a file (typically a known DLL) needs to 
be renamed atomically but not affect any pro-
cess that might be using it (so that the process 
can start using the new file immediately, using 
the old handle, without requiring an applica-
tion restart) .

Patch Function Code Replacing the code of one or more 
functions inside an image file with 
another version

If a DLL or driver can’t be replaced or renamed 
during run time, functions in the image can be 
directly patched . A hotpatch DLL that contains 
the newer code is jumped to whenever an 
older function is called .

Refresh System DLL Reload the memory mapped 
 section object for Ntdll .dll

The system native library, Ntdll .dll, is loaded 
only once during boot-up and then simply 
duplicated into the address space of every 
new process . If it has been hotpatched, the 
system must refresh this section to load the 
newer version .

Although hotpatches use internal kernel mechanisms, their actual implementation is no different 
from cold patches. The patch is delivered through Windows Update, typically as an executable file 
containing a program called Update .exe that performs the extraction of the patch and the update 
process. For hotpatches, however, an additional hotpatch file, containing the .hp extension, will be 
present. This file contains a special PE header called .HOT1 . This header contains a data structure 
describing the various patch descriptors present inside the file. Each of these descriptors identifies 
the offset in the original file that needs to be patched, a validation mechanism (which can include a 
simple comparison of the old data, a checksum, or a hash), and the new data to be patched . The ker-
nel parses the descriptors and applies the appropriate modifications. In the case of a protected process 
(see Chapter 5 for more information on processes) and other digitally signed images, the hotpatch 
must also be digitally signed in order to prevent fake patches from being applied to sensitive files or 
processes .

Note Because the hotpatch file also includes the original data, the hotpatching mechanism 
can also be used to uninstall a patch at run time .

Compile-time hotpatching support works by adding 7 additional bytes to the beginning of 
each function—4 are considered part of the end of the previous function, and 2 are part of the 
 function prolog—that is, the function’s beginning . Here’s an example of a function that was built with 
 hotpatching information:

lkd> u nt!NtCreateFile - 5 
nt!FsRtlTeardownPerFileContexts+0x169: 
82227ea5 90              nop 
82227ea6 90              nop 
82227ea7 90              nop 
82227ea8 90              nop 
82227ea9 90              nop 
nt!NtCreateFile: 
82227eaa 8bff            mov     edi,edi
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Notice that the five nop instructions don’t actually do anything, while the mov edi, edi at the 
beginning of the NtCreateFile function are also essentially meaningless—no actual state-changing 
operation takes place . Because 7 bytes are available, the NtCreateFile prologue can be transformed 
into a short jump to the buffer of five instructions available, which are then converted to a near jump 
instruction to the patched routine . Here’s NtCreateFile after having been hotpatched:

lkd> u nt!NtCreateFile - 5 
nt!FsRtlTeardownPerFileContexts+0x169: 
82227ea5 e93d020010      jmp     nt_patch!NtCreateFile (922280e7) 
nt!NtCreateFile: 
82227eaa ebfc            jmp     nt!FsRtlTeardownPerFileContexts+0x169 (82227ea5)

This method allows only the addition of 2 bytes to each function by jumping into the previous 
function’s alignment padding that it would most likely have at its end anyway . 

There are some limitations to the hotpatching functionality:

 ■ Patches that third-party applications such as security software might block or that might be 
incompatible with the operation of third-party applications

 ■ Patches that modify a file’s export table or import table

 ■ Patches that change data structures, fix infinite loops, or contain inline assembly code

Kernel Patch Protection

Some 32-bit device drivers modify the behavior of Windows in unsupported ways . For example, 
they patch the system call table to intercept system calls or patch the kernel image in memory to 
add functionality to specific internal functions. Shortly after the release of 64-bit Windows for x64 
and before a rich third-party ecosystem had developed, Microsoft saw an opportunity to preserve 
the  stability of 64-bit Windows . To prevent these kinds of changes, x64 Windows implements Kernel 
Patch Protection (KPP), also referred to as PatchGuard . KPP’s job on the system is similar to what 
its name implies—it attempts to deter common techniques for patching the system, or hooking it . 
Table 3-29 lists which components or structures are protected and for what purpose .

TABLE 3-29 Components Protected by KPP

Component Legitimate Usage Potential Malicious Usage

Ntoskrnl .exe, Hal .dll, Ci .dll, 
Kdcom .dll, Pshed .dll, Clfs .sys, 
Ndis .sys, Tcpip .sys

Kernel, HAL, and their dependen-
cies . Lower layer of network stack .

Patching code in the kernel and/or HAL to 
 subvert normal operation and behavior . 
Patching Ndis .sys to silently add back doors on 
open ports .

Global Descriptor Table (GDT) CPU hardware protection for the 
implementation of ring privilege 
levels (Ring 0 vs . Ring 3) .

Ability to set up a callgate, a CPU  mechanism 
through which user (Ring 3) code could per-
form operations with  kernel privileges (Ring 0) .
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Component Legitimate Usage Potential Malicious Usage

Interrupt Descriptor Table 
(IDT)

Table read by the CPU to deliver 
interrupt vectors to the correct 
 handling routine .

Malicious drivers could intercept file I/Os 
directly at the interrupt level, or hook page 
faults to hide contents of memory . Rootkits 
could hook the INT2E handler to hook all 
 system calls from a single point .

System Service Descriptor 
Table (SSDT)

Table containing the array of 
 pointers for each system call 
 handler .

Rootkits could modify the output or input of 
calls from user mode and hide processes, files, 
or registry keys .

Processor Machine State 
Registers (MSRs)

LSTAR MSR is used to set the 
handler of the SYSENTER and/
or SYSCALL instructions used for 
 system calls .

LSTAR could be overwritten by a malicious 
driver to provide a single hook for all system 
calls performed on the system .

KdpStub, KiDebugRoutine, 
KdpTrap function pointers

Used for run-time configuration of 
where exceptions should be deliv-
ered, based on whether a kernel 
debugger is remotely connected to 
the machine .

Value of the pointers could be overwritten by a 
malicious rootkit to take control of the system 
at predetermined times and perform invisible 
background tasks .

PsInvertedFunctionTable Cache of exception directories used 
on x64, allowing quick mapping 
between code where an exception 
happened and its handler .

Could be used to take control of the system 
during the exception handling of unrelated 
system code, including KPP’s own exception 
code responsible for detecting modifications 
in the first place.

Kernel stacks Store function arguments, the call 
stack (where a function should 
 return), and variables .

A driver could allocate memory on the side, 
set it as a kernel stack for a thread, and then 
manipulate its contents to redirect calls and 
parameters .

Object types Definitions for the various objects 
(such as processes and files) that the 
system supports through the object 
manager .

Could be used as part of a technique called 
DKOM (Direct Kernel Object Modification) 
to modify system behavior—for example, by 
hooking the object callbacks that each object 
type has registered .

Other Code related to bug-checking the 
system during a KPP violation, 
 executing the DPCs and timers 
 associated with KPP, and more . 

By modifying certain parts of the system used 
by KPP, malicious drivers could attempt to 
silence, ignore, or otherwise cripple KPP . 

Note Because certain 64-bit Intel processors implement a slightly different feature set of 
the x64 architecture, the kernel needs to perform run-time code patching to work around 
the lack of a prefetch instruction . KPP can deter kernel patching even on these processors, 
by exempting those specific patches from detection. Additionally, because of hypervisor 
(Hyper-V) enlightenments (more information on the hypervisor is provided earlier in this 
chapter), certain functions in the kernel are patched at boot time, such as the swap  context 
routine . These patches are also allowed by very explicit checks to make sure they are 
known patches to the hypervisor-enlightened versions .
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When KPP detects a change in any of the structures mentioned (as well as some other internal 
consistency checks), it crashes the system with code 0x109—CRITICAL_STRUCTURE_CORRUPTION .

For third-party developers who used techniques that KPP deters, the following supported 
 techniques can be used:

 ■ File system minifilters (see Chapter 8 in Part 2 for more information on these) to hook all file 
operations, including loading image files and DLLs, that can be intercepted to purge malicious 
code on-the-fly or block reading of known bad executables.

 ■ Registry filter notifications (see Chapter 4 for more information on these notifications) to hook 
all registry operations. Security software can block modification of critical parts of the registry, 
as well as heuristically determine malicious software by registry access patterns or known bad 
registry keys .

 ■ Process notifications (see Chapter 5 for more information on these notifications). Security 
 software can monitor the execution and termination of all processes and threads on the 
system, as well as DLLs being loaded or unloaded. With the enhanced notifications added for 
antivirus and other security vendors, they also have the ability to block process launch .

 ■ Object manager filtering (explained in the object manager section earlier). Security software 
can remove certain access rights being granted to processes and/or threads to defend their 
own utilities against certain operations .

There is no way to disable KPP once it’s enabled . Because device driver developers might need to 
make changes to a running system as part of debugging, KPP does not enable if the system boots in 
debugging mode with an active kernel-debugging connection .

Code Integrity

Code integrity is a Windows mechanism that authenticates the integrity and source of executable 
images (such as applications, DLLs, or drivers) by validating a digital certificate contained within the 
image’s resources. This mechanism works in conjunction with system policies, defining how sign-
ing should be enforced . One of these policies is the Kernel Mode Code Signing (KMCS) policy, which 
 requires that kernel-mode code be signed with a valid Authenticode certificate rooted by one of 
several recognized code signing authorities, such as Verisign or Thawte . 

To address backward-compatibility concerns, the KMCS policy is only fully enforced on 64-bit 
machines, because those drivers have to be recompiled recently in order to run on that Windows 
architecture . This, in turn, implies that a company or individual is still responsible for maintaining the 
driver and is able to sign it . On 32-bit machines, however, many older devices ship with outdated 
 drivers, possibly from out-of-business companies, so signing those drivers would sometimes be 
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 unfeasible . Figure 3-43 shows the warning displayed on 64-bit Windows machines that attempt to 
load an unsigned driver .

Note Windows also has a second driver-signing policy, which is part of the Plug and Play 
manager . This policy is applied solely to Plug and Play drivers, and unlike the kernel-mode 
code-signing policy, it can be configured to allow unsigned Plug and Play drivers (but not 
on 64-bit systems, where the KMCS policy takes precedence) . See Chapter 8 in Part 2 for 
more information on the Plug and Play manager .

 
FIGURE 3-43 Warning when attempting to install an unsigned 64-bit driver

Even on 32-bit Windows, code integrity writes an event to the Code Integrity event log when it 
loads an unsigned driver .

Note Protected Media Path applications can also query the kernel for its integrity state, 
which includes information on whether or not unsigned 32-bit drivers are loaded on the 
system. In such scenarios, they are allowed to disable protected, high-definition media 
playback as a method to ensure the security and reliability of the encrypted stream .

The code-integrity mechanism doesn’t stop at driver load time, however . Stronger measures also 
exist to authenticate per-page image contents for executable pages . This requires using a special 
flag while signing the driver binary and will generate a catalog with the cryptographic hash of every 
executable page on which the driver will reside . (Pages are a unit of protection on the CPU; for more 
information, see Chapter 10 in Part 2.) This method allows for detection of modification of an  existing 
driver, which might happen either at run time by another driver or through a page file or  hibernation 
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file attack (in which the contents of memory are edited on the disk and then reloaded into  memory). 
Generating such per-page hashes is also a requirement for the new filtering model, as well as 
 Protected Media Path components .

Conclusion

In this chapter, we examined the key base system mechanisms on which the Windows executive is 
built . In the next chapter, we’ll look at three important mechanisms involved with the management 
infrastructure of Windows: the registry, services, and Windows Management Instrumentation (WMI) .
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C H A P T E R  4

Management Mechanisms

This chapter describes four fundamental mechanisms in the Microsoft Windows operating system 
that are critical to its management and configuration:

 ■ The registry

 ■ Services

 ■ Unified Background Process Manager

 ■ Windows Management Instrumentation

 ■ Windows Diagnostics Infrastructure

The Registry

The registry plays a key role in the configuration and control of Windows systems. It is the  repository 
for both systemwide and per-user settings . Although most people think of the registry as static 
data stored on the hard disk, as you’ll see in this section, the registry is also a window into various 
 in- memory structures maintained by the Windows executive and kernel .

We’ll start by providing you with an overview of the registry structure, a discussion of the data 
types it supports, and a brief tour of the key information Windows maintains in the registry . Then 
we’ll look inside the internals of the configuration manager, the executive component responsible for 
implementing the registry database . Among the topics we’ll cover are the internal on-disk structure 
of the registry, how Windows retrieves configuration information when an application requests it, and 
what measures are employed to protect this critical system database .

Viewing and Changing the Registry
In general, you should never have to edit the registry directly: application and system settings 
stored in the registry that might require manual changes should have a corresponding user 
 interface to control their modification. However, as you’ve already seen a number of times in this 
book, some advanced and debug settings have no editing user interface . Therefore, both graphical 
user interface (GUI) and command-line tools are included with Windows to enable you to view and 
modify the registry .
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Windows comes with one main GUI tool for editing the registry—Regedit .exe—and a number of 
command-line registry tools . Reg .exe, for instance, has the ability to import, export, back up, and 
restore keys, as well as to compare, modify, and delete keys and values. It can also set or query flags 
used in UAC virtualization . Regini .exe, on the other hand, allows you to import registry data based on 
text files that contain ASCII or Unicode configuration data.

The Windows Driver Kit (WDK) also supplies a redistributable component, Offreg .dll, which hosts 
the Offline Registry Library. This library allows loading registry hive files in their binary format and 
applying operations on the files themselves, bypassing the usual logical loading and mapping that 
Windows requires for registry operations. Its use is primarily to assist in offline registry access, such 
as for purposes of integrity checking and validation. It can also provide performance benefits if the 
underlying data is not meant to be visible by the system, because the access is done through local 
file I/O instead of registry system calls.

Registry Usage
There are four principal times at which configuration data is read:

 ■ During the initial boot process, the boot loader reads configuration data and the list of 
boot device drivers to load into memory before initializing the kernel . Because the Boot 
 Configuration Database (BCD) is really stored in a registry hive, one could argue that registry 
access happens even earlier, when the Boot Manager displays the list of operating systems .

 ■ During the kernel boot process, the kernel reads settings that specify which device  drivers 
to load and how various system elements—such as the memory manager and process 
 manager—configure themselves and tune system behavior.

 ■ During logon, Explorer and other Windows components read per-user preferences from the 
registry, including network drive-letter mappings, desktop wallpaper, screen saver, menu 
 behavior, icon placement, and perhaps most importantly, which startup programs to launch 
and which files were most recently accessed.

 ■ During their startup, applications read systemwide settings, such as a list of optionally installed 
components and licensing data, as well as per-user settings that might include menu and 
 toolbar placement and a list of most-recently accessed documents .

However, the registry can be read at other times as well, such as in response to a modification of 
a registry value or key . Although the registry provides asynchronous callbacks that are the preferred 
way to receive change notifications, some applications constantly monitor their configuration set-
tings in the registry through polling and automatically take updated settings into account . In general, 
however, on an idle system there should be no registry activity and such applications violate best 
practices . (Process Monitor, from Sysinternals, is a great tool for tracking down such activity and the 
application or applications at fault .)
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The registry is commonly modified in the following cases:

 ■ Although not a modification, the registry’s initial structure and many default settings are 
defined by a prototype version of the registry that ships on the Windows setup media that is 
copied onto a new installation .

 ■ Application setup utilities create default application settings and settings that reflect 
 installation configuration choices.

 ■ During the installation of a device driver, the Plug and Play system creates settings in the 
 registry that tell the I/O manager how to start the driver and creates other settings that con-
figure the driver’s operation. (See Chapter 8, “I/O System,” in Part 2 for more information on 
how device drivers are installed .)

 ■ When you change application or system settings through user interfaces, the changes are 
often stored in the registry .

Registry Data Types
The registry is a database whose structure is similar to that of a disk volume . The registry contains 
keys, which are similar to a disk’s directories, and values, which are comparable to files on a disk. 
A key is a container that can consist of other keys (subkeys) or values . Values, on the other hand, 
store data . Top-level keys are root keys . Throughout this section, we’ll use the words subkey and key 
 interchangeably .

Both keys and values borrow their naming convention from the file system. Thus, you can 
 uniquely identify a value with the name mark, which is stored in a key called trade, with the name 
trade\mark. One exception to this naming scheme is each key’s unnamed value . Regedit displays the 
unnamed value as (Default) .

Values store different kinds of data and can be one of the 12 types listed in Table 4-1 . The majority 
of registry values are REG_DWORD, REG_BINARY, or REG_SZ . Values of type REG_DWORD can store 
numbers or Booleans (on/off values); REG_BINARY values can store numbers larger than 32 bits or raw 
data such as encrypted passwords; REG_SZ values store strings (Unicode, of course) that can represent 
elements such as names, file names, paths, and types.

TABLE 4-1 Registry Value Types

Value Type Description

REG_NONE No value type

REG_SZ Fixed-length Unicode string

REG_EXPAND_SZ Variable-length Unicode string that can have embedded 
environment variables

REG_BINARY Arbitrary-length binary data
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Value Type Description

REG_DWORD 32-bit number

REG_DWORD_BIG_ENDIAN 32-bit number, with high byte first

REG_LINK Unicode symbolic link

REG_MULTI_SZ Array of Unicode NULL-terminated strings

REG_RESOURCE_LIST Hardware resource description

REG_FULL_RESOURCE_DESCRIPTOR Hardware resource description

REG_RESOURCE_REQUIREMENTS_LIST Resource requirements

REG_QWORD  64-bit number

The REG_LINK type is particularly interesting because it lets a key transparently point to another 
key . When you traverse the registry through a link, the path searching continues at the target of the 
link. For example, if \Root1\Link has a REG_LINK value of \Root2\RegKey and RegKey contains the 
value RegValue, two paths identify RegValue: \Root1\Link\RegValue and \Root2\RegKey\RegValue. As 
explained in the next section, Windows prominently uses registry links: three of the six registry root 
keys are links to subkeys within the three nonlink root keys .

Registry Logical Structure
You can chart the organization of the registry via the data stored within it . There are six root keys (and 
you can’t add new root keys or delete existing ones) that store information, as shown in Table 4-2 .

TABLE 4-2 The Six Root Keys

Root Key Description

HKEY_CURRENT_USER Stores data associated with the currently logged-on user

HKEY_USERS Stores information about all the accounts on the machine

HKEY_CLASSES_ROOT Stores file association and Component Object Model (COM) object 
 registration information

HKEY_LOCAL_MACHINE Stores system-related information

HKEY_PERFORMANCE_DATA Stores performance information

HKEY_CURRENT_CONFIG Stores some information about the current hardware profile

Why do root-key names begin with an H? Because the root-key names represent Windows handles 
(H) to keys (KEY) . As mentioned in Chapter 1, “Concepts and Tools,” HKLM is an abbreviation used 
for HKEY_LOCAL_MACHINE . Table 4-3 lists all the root keys and their abbreviations . The following 
 sections explain in detail the contents and purpose of each of these six root keys .
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TABLE 4-3 Registry Root Keys

Root Key Abbreviation Description Link

HKEY_CURRENT_USER HKCU Points to the user profile 
of the currently logged-
on user

Subkey under HKEY_USERS 
 corresponding to currently logged-
on user

HKEY_USERS HKU Contains subkeys for all 
loaded user profiles

Not a link

HKEY_CLASSES_ROOT HKCR Contains file association 
and COM registration in-
formation

Not a direct link; rather, a merged 
view of HKLM\SOFTWARE\Classes 
and   
HKEY_USERS\<SID>\SOFTWARE\
Classes

HKEY_LOCAL_MACHINE HKLM Global settings for the 
machine .

Not a link

HKEY_CURRENT_CONFIG HKCC Current hardware profile HKLM\SYSTEM\CurrentControlSet\
Hardware Profiles\Current

HKEY_PERFORMANCE_DATA HKPD Performance counters Not a link

HKEY_CURRENT_USER
The HKCU root key contains data regarding the preferences and software configuration of the locally 
logged-on user. It points to the currently logged-on user’s user profile, located on the hard disk at  
\Users\<username>\Ntuser.dat. (See the section “Registry Internals” later in this chapter to find out 
how root keys are mapped to files on the hard disk.) Whenever a user profile is loaded (such as at 
logon time or when a service process runs under the context of a specific user name), HKCU is created 
to map to the user’s key under HKEY_USERS . Table 4-4 lists some of the subkeys under HKCU .

TABLE 4-4 HKEY_CURRENT_USER Subkeys

Subkey Description

AppEvents Sound/event associations

Console Command window settings (for example, width, height, and colors)

Control Panel Screen saver, desktop scheme, keyboard, and mouse settings, as well as 
 accessibility and regional settings

Environment Environment variable definitions

EUDC Information on end-user defined characters

Identities Windows Mail account information

Keyboard Layout Keyboard layout setting (for example, U .S . or U .K .)

Network Network drive mappings and settings

Printers Printer connection settings

Software User-specific software preferences

Volatile Environment Volatile environment variable definitions
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HKEY_USERS
HKU contains a subkey for each loaded user profile and user class registration database on the 
system. It also contains a subkey named HKU\.DEFAULT that is linked to the profile for the system 
(which is used by processes running under the local system account and is described in more detail in 
the section “Services” later in this chapter). This is the profile used by Winlogon, for example, so that 
changes to the desktop background settings in that profile will be implemented on the logon screen. 
When a user logs on to a system for the first time and her account does not depend on a roaming 
domain profile (that is, the user’s profile is obtained from a central network location at the direction 
of a domain controller), the system creates a profile for her account that’s based on the profile stored 
in %SystemDrive%\Users\Default.

The location under which the system stores profiles is defined by the registry value  
HKLM\Software\Microsoft\Windows NT\CurrentVersion\ProfileList\ProfilesDirectory, which is by 
default set to %SystemDrive%\Users. The ProfileList key also stores the list of profiles present on a 
system. Information for each profile resides under a subkey that has a name reflecting the security 
identifier (SID) of the account to which the profile corresponds. (See Chapter 6, “Security,” for more 
information on SIDs.) Data stored in a profile’s key includes the time of the last load of the profile in 
the ProfileLoadTimeLow value, the binary representation of the account SID in the Sid value, and the 
path to the profile’s on-disk hive (which is described later in this chapter in the “Hives” section) in the 
ProfileImagePath directory. Windows shows the list of profiles stored on a system in the User  Profiles 
management dialog box, shown in Figure 4-1, which you access by clicking Settings in the User 
 Profiles section of the Advanced tab in the Advanced System Settings of the System Control Panel 
applet .

FIGURE 4-1 The User Profiles management dialog box
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EXPERIMENT: Watching Profile Loading and Unloading
You can see a profile load into the registry and then unload by using the Runas command to 
launch a process in an account that’s not currently logged on to the machine . While the new 
process is running, run Regedit and note the loaded profile key under HKEY_USERS. After 
 terminating the process, perform a refresh in Regedit by pressing the F5 key and the profile 
should no longer be present .

HKEY_CLASSES_ROOT
HKCR consists of three types of information: file extension associations, COM class registrations, and 
the virtualized registry root for User Account Control (UAC) . (See Chapter 6 for more information 
on UAC.) A key exists for every registered file name extension. Most keys contain a REG_SZ value 
that points to another key in HKCR containing the association information for the class of files that 
 extension represents .

For example, HKCR\.xls would point to information on Microsoft Office Excel files in a key such as 
HKCU\.xls\Excel.Sheet.8. Other keys contain configuration details for COM objects registered on the 
system . The UAC virtualized registry is located in the VirtualStore key, which is not related to the other 
kinds of data stored in HKCR .

The data under HKEY_CLASSES_ROOT comes from two sources:

 ■ The per-user class registration data in HKCU\SOFTWARE\Classes (mapped to the file on hard 
disk \Users\<username>\AppData\Local\Microsoft\Windows\Usrclass.dat)

 ■ Systemwide class registration data in HKLM\SOFTWARE\Classes

The reason that there is a separation of per-user registration data from systemwide registration 
data is so that roaming profiles can contain these customizations. It also closes a security hole: a non-
privileged user cannot change or delete keys in the systemwide version HKEY_CLASSES_ROOT, and 
thus cannot affect the operation of applications on the system . Nonprivileged users and applications 
can read systemwide data and can add new keys and values to systemwide data (which are mirrored 
in their per-user data), but they can modify existing keys and values in their private data only .

HKEY_LOCAL_MACHINE
HKLM is the root key that contains all the systemwide configuration subkeys: BCD00000000, 
 COMPONENTS (loaded dynamically as needed), HARDWARE, SAM, SECURITY, SOFTWARE, and 
 SYSTEM .

The HKLM\BCD00000000 subkey contains the Boot Configuration Database (BCD) information 
loaded as a registry hive . This database replaces the Boot.ini file that was used before Windows 
Vista and adds greater flexibility and isolation of per-installation boot configuration data. (For more 
 information on the BCD, see Chapter 13, "Startup and Shutdown,” in Part 2 .)
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Each entry in the BCD, such as a Windows installation or the command-line settings for the 
 installation, is stored in the Objects subkey, either as an object referenced by a GUID (in the case of a 
boot entry) or as a numeric subkey called an element . Most of these raw elements are  documented 
in the BCD reference in the MSDN Library and define various command-line settings or boot 
 parameters . The value associated with each element subkey corresponds to the value for its respective 
command-line flag or boot parameter.

The BCDEdit command-line utility allows you to modify the BCD using symbolic names for the 
elements and objects . It also provides extensive help for all the boot options available; unfortunately, 
it works only locally . Because the registry can be opened remotely as well as imported from a hive 
file, you can modify or read the BCD of a remote computer by using the Registry Editor. The following 
experiment shows you how to enable kernel debugging by using the Registry Editor .

EXPERIMENT: Offline or Remote BCD Editing
In this experiment, you enable debugging through editing the BCD inside the registry . For 
the purposes of this example, you edit the local copy of the BCD, but the point of this tech-
nique is that it can be used on any machine’s BCD hive . Follow these steps to add the /DEBUG 
 command-line flag:

1. Open the Registry Editor, and then navigate to the HKLM\BCD00000000 key. Expand 
every subkey so that the numerical identifiers of each Elements key are fully visible.
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2. Identify the boot entry for your Windows installation by locating the Description 
with a Type value of 0x10200003, and then check ID 0x12000004 in the Elements 
tree. In the Element value of that subkey, you should find the name of your version of 
 Windows, such as Windows 7 . If you have more than one Windows installation on your 
machine, you may need to check the 0x22000002 Element, which contains the path, 
such as \Windows.

3. Now that you’ve found the correct GUID for your Windows installation, create a new 
subkey under the Elements subkey for that GUID and name it 0x260000a0 . If this 
 subkey already exists, simply navigate to it .

4. If you had to create the subkey, now create a binary value called Element inside it .

5. Edit the value and set it to 01 . This will enable kernel-mode debugging . Here’s what 
these changes should look like:

Note The 0x12000004 ID corresponds to BcdLibraryString_ApplicationPath, 
while the 0x22000002 ID corresponds to BcdOSLoaderString_SystemRoot . 
Finally, the ID you added, 0x260000a0, corresponds to BcdOSLoaderBoolean_
KernelDebuggerEnabled . These values are documented in the BCD reference 
in the MSDN Library .

The HKLM\COMPONENTS subkey contains information pertinent to the Component Based 
 Servicing (CBS) stack. This stack contains various files and resources that are part of a Windows 
installation image (used by the Automated Installation Kit or the OEM Preinstallation Kit) or an active 
installation . The CBS APIs that exist for servicing purposes use the information located in this key to 
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identify installed components and their configuration information. This information is used whenever 
components are installed, updated, or removed either individually (called units) or in groups (called 
packages) . To optimize system resources, because this key can get quite large, it is only dynamically 
loaded and unloaded as needed if the CBS stack is servicing a request .

The HKLM\HARDWARE subkey maintains descriptions of the system’s legacy hardware and some 
hardware device-to-driver mappings . On a modern system, only a few peripherals—such as keyboard, 
mouse, and ACPI BIOS data—are likely to be found here . The Device Manager tool (which is avail-
able by running System from Control Panel and then clicking Device Manager) lets you view registry 
hardware information that it obtains by simply reading values out of the HARDWARE key (although it 
primarily uses the HKLM\SYSTEM\CurrentControlSet\Enum tree). 

HKLM\SAM holds local account and group information, such as user passwords, group definitions, 
and domain associations . Windows Server systems that are operating as domain controllers store 
domain accounts and groups in Active Directory, a database that stores domainwide settings and 
information . (Active Directory isn’t described in this book .) By default, the security descriptor on the 
SAM key is configured so that even the administrator account doesn’t have access.

HKLM\SECURITY stores systemwide security policies and user-rights assignments. HKLM\SAM is 
linked into the SECURITY subkey under HKLM\SECURITY\SAM. By default, you can’t view the contents 
of HKLM\SECURITY or HKLM\SAM\SAM because the security settings of those keys allow access only 
by the System account . (System accounts are discussed in greater detail later in this chapter .) You 
can change the security descriptor to allow read access to administrators, or you can use PsExec to 
run Regedit in the local system account if you want to peer inside . However, that glimpse won’t be 
very revealing because the data is undocumented and the passwords are encrypted with one-way 
 mapping—that is, you can’t determine a password from its encrypted form .

HKLM\SOFTWARE is where Windows stores systemwide configuration information not needed to 
boot the system . Also, third-party applications store their systemwide settings here, such as paths to 
application files and directories and licensing and expiration date information.

HKLM\SYSTEM contains the systemwide configuration information needed to boot the system, 
such as which device drivers to load and which services to start . Because this information is criti-
cal to starting the system, Windows also maintains a copy of part of this information, called the last 
known good control set, under this key . The maintenance of a copy allows an administrator to select 
a  previously working control set in the case that configuration changes made to the current control 
set prevent the system from booting . For details on when Windows declares the current control set 
“good,” see the section “Accepting the Boot and Last Known Good” later in this chapter .

HKEY_CURRENT_CONFIG
HKEY_CURRENT_CONFIG is just a link to the current hardware profile, stored under HKLM\SYSTEM 
\CurrentControlSet\Hardware Profiles\Current. Hardware profiles are no longer supported in 
 Windows, but the key still exists to support legacy applications that might be depending on its 
 presence .
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HKEY_PERFORMANCE_DATA
The registry is the mechanism used to access performance counter values on Windows, whether those 
are from operating system components or server applications. One of the side benefits of providing 
access to the performance counters via the registry is that remote performance monitoring works “for 
free” because the registry is easily accessible remotely through the normal registry APIs .

You can access the registry performance counter information directly by opening a special key 
named HKEY_PERFORMANCE_DATA and querying values beneath it. You won’t find this key by look-
ing in the Registry Editor; this key is available only programmatically through the Windows registry 
functions, such as RegQueryValueEx . Performance information isn’t actually stored in the registry; the 
registry functions use this key to locate the information from performance data providers .

You can also access performance counter information by using the Performance Data Helper 
(PDH) functions available through the Performance Data Helper API (Pdh .dll) . Figure 4-2 shows the 
 components involved in accessing performance counter information .
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FIGURE 4-2 Registry performance counter architecture

Transactional Registry (TxR)
Thanks to the Kernel Transaction Manager (KTM; for more information see the section about the KTM 
in Chapter 3, “System Mechanisms”), developers have access to a straightforward API that allows them 
to implement robust error-recovery capabilities when performing registry operations, which can be 
linked with nonregistry operations, such as file or database operations.

Three APIs support transactional modification of the registry: RegCreateKeyTransacted, 
 RegOpenKeyTransacted, and RegDeleteKeyTransacted . These new routines take the same parameters 
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as their nontransacted analogs, except that a new transaction handle parameter is added . A developer 
supplies this handle after calling the KTM function CreateTransaction .

After a transacted create or open operation, all subsequent registry operations—such as  creating, 
deleting, or modifying values inside the key—will also be transacted . However, operations on 
the subkeys of a transacted key will not be automatically transacted, which is why the third API, 
 RegDeleteKeyTransacted exists . It allows the transacted deletion of subkeys, which RegDeleteKeyEx 
would not normally do .

Data for these transacted operations is written to log files using the common logging file system 
(CLFS) services, similar to other KTM operations . Until the transaction itself is committed or rolled 
back (both of which might happen programmatically or as a result of a power failure or system 
crash, depending on the state of the transaction), the keys, values, and other registry modifica-
tions  performed with the transaction handle will not be visible to external applications through the 
 nontransacted APIs. Also, transactions are isolated from each other; modifications made inside one 
transaction will not be visible from inside other transactions or outside the transaction until the 
 transaction is committed .

Note A nontransactional writer will abort a transaction in case of conflict—for example, 
if a value was created inside a transaction and later, while the transaction is still active, a 
 nontransactional writer tries to create a value under the same key . The nontransactional 
operation will succeed, and all operations in the conflicting transaction will be aborted.

The isolation level (the “I” in ACID) implemented by TxR resource managers is read-commit, which 
means that changes become available to other readers (transacted or not) immediately after being 
committed . This mechanism is important for people who are familiar with transactions in databases, 
where the isolation level is predictable-reads (or cursor-stability, as it is called in database literature) . 
With a predictable-reads isolation level, after you read a value inside a transaction, subsequent reads 
will give you back the same data . Read-commit does not make this guarantee . One of the conse-
quences is that registry transactions can’t be used for “atomic” increment/decrement operations on a 
registry value .

To make permanent changes to the registry, the application that has been using the  transaction 
handle must call the KTM function CommitTransaction . (If the application decides to undo the 
changes, such as during a failure path, it can call the RollbackTransaction API .) The changes will then 
be visible through the regular registry APIs as well .

Note If a transaction handle created with CreateTransaction is closed before the 
 transaction is committed (and there are no other handles open to that transaction), the 
system will roll back that transaction .
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Apart from using the CLFS support provided by the KTM, TxR also stores its own internal log files in 
the %SystemRoot%\System32\Config\Txr folder on the system volume; these files have a  . regtrans-ms 
extension and are hidden by default . Even if there are no third-party applications installed, your 
 system likely will contain files in this directory because Windows Update and Component Based 
 Servicing make use of TxR to atomically write data to the registry to avoid system failure or incon-
sistent component data in the case of an incomplete update . In fact, if you take a look at some of 
the transaction files, you should be able to see the key names on which the transaction was being 
performed .

There is a global registry resource manager (RM) that services all the hives that are mounted 
at boot time . For every hive that is mounted explicitly, an RM is created . For applications that use 
registry transactions, the creation of an RM is transparent because KTM ensures that all RMs taking 
part in the same transaction are coordinated in the two-phase commit/abort protocol . For the global 
registry RM, the CLFS log files are stored, as mentioned earlier, inside System32\Config\Txr. For other 
hives, they are stored alongside the hive (in the same directory) . They are hidden and follow the same 
naming convention, ending in .regtrans-ms. The log file names are prefixed with the name of the hive 
to which they correspond .

Monitoring Registry Activity
Because the system and applications depend so heavily on configuration settings to guide their 
behavior, system and application failures can result from changing registry data or security . When the 
system or an application fails to read settings that it assumes it will always be able to access, it might 
not function properly, display error messages that hide the root cause, or even crash . It’s virtually 
impossible to know what registry keys or values are misconfigured without understanding how the 
system or the application that’s failing is accessing the registry . In such situations, the Process Monitor 
utility from Windows Sysinternals (http://technet.microsoft.com/sysinternals) might provide the answer .

Process Monitor lets you monitor registry activity as it occurs . For each registry access, Process 
Monitor shows you the process that performed the access; the time, type, and result of the access; 
and the stack of the thread at the moment of the access . This information is useful for seeing how 
applications and the system rely on the registry, discovering where applications and the system store 
configuration settings, and troubleshooting problems related to applications having missing registry 
keys or values. Process Monitor includes advanced filtering and highlighting so that you can zoom in 
on activity related to specific keys or values or to the activity of particular processes.

Process Monitor Internals
Process Monitor relies on a device driver that it extracts from its executable image at run time and 
then starts. Its first execution requires that the account running it have the Load Driver privilege as 
well as the Debug privilege; subsequent executions in the same boot session require only the Debug 
privilege because, once loaded, the driver remains resident .
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EXPERIMENT: Viewing Registry Activity on an Idle System
Because the registry implements the RegNotifyChangeKey function that applications can use 
to request notification of registry changes without polling for them, when you launch Process 
Monitor on a system that’s idle you should not see repetitive accesses to the same registry keys 
or values. Any such activity identifies a poorly written application that unnecessarily negatively 
affects a system’s overall performance .

Run Process Monitor, and after several seconds examine the output log to see whether 
you can spot polling behavior . Right-click on an output line associated with polling, and then 
choose Process Properties from the context menu to view details about the process performing 
the activity .

EXPERIMENT: Using Process Monitor to Locate Application Registry 
Settings
In some troubleshooting scenarios, you might need to determine where in the registry the 
system or an application stores particular settings . This experiment has you use Process Monitor 
to discover the location of Notepad’s settings . Notepad, like most Windows applications, saves 
user preferences—such as word-wrap mode, font and font size, and window position—across 
executions . By having Process Monitor watching when Notepad reads or writes its settings, you 
can identify the registry key in which the settings are stored . Here are the steps for doing this:

1. Have Notepad save a setting you can easily search for in a Process Monitor trace . 
You can do this by running Notepad, setting the font to Times New Roman, and then 
 exiting Notepad .

2. Run Process Monitor. Open the filter dialog box and the Process Name filter, and type 
notepad.exe as the string to match. This step specifies that Process Monitor will log 
only activity by the notepad .exe process .

3. Run Notepad again, and after it has launched stop Process Monitor’s event capture by 
toggling Capture Events on the Process Monitor File menu .

4. Scroll to the top line of the resultant log and select it .

5. Press Ctrl+F to open a Find dialog box, and search for times new . Process Monitor 
should highlight a line like the one shown in the following screen that represents 
Notepad reading the font value from the registry . Other operations in the immediate 
vicinity should relate to other Notepad settings .
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6. Finally, right-click the highlighted line and click Jump To . Process Monitor will execute 
Regedit (if it’s not already running) and cause it to navigate to and select the Notepad-
referenced registry value .

Process Monitor Troubleshooting Techniques
Two basic Process Monitor troubleshooting techniques are effective for discovering the cause of 
registry-related application or system problems:

 ■ Look at the last thing in the Process Monitor trace that the application did before it failed . This 
action might point to the problem .

 ■ Compare a Process Monitor trace of the failing application with a trace from a working system .

To follow the first approach, run Process Monitor and then run the application. At the point the 
failure occurs, go back to Process Monitor and stop the logging (by pressing Ctrl+E) . Then go to the 
end of the log and find the last operations performed by the application before it failed (or crashed, 
hung, or whatever). Starting with the last line, work your way backward, examining the files, registry 
keys, or both that were referenced—often this will help pinpoint the problem .

Use the second approach when the application fails on one system but works on another . Capture 
a Process Monitor trace of the application on the working and failing systems, and save the output 
to a log file. Then open the good and bad log files with Microsoft Excel (accepting the defaults in the 
Import wizard), and delete the first three columns. (If you don’t delete the first three columns, the 
comparison will show every line as different because the first three columns contain information that 
is different from run to run, such as the time and the process ID .) Finally, compare the resulting log 
files. (You can do this by using WinDiff, which is included in the Windows SDK).

Entries in a Process Monitor trace that have values of NAME NOT FOUND or ACCESS DENIED in 
the Result column are ones you should investigate . NAME NOT FOUND is reported when an applica-
tion attempts to read from a registry key or value that doesn’t exist . In many cases, a missing key or 
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value is innocuous because a process that fails to read a setting from the registry simply falls back on 
default values. In some cases, however, applications expect to find values for which there is no default 
and will fail if they are missing .

Access-denied errors are a common source of registry-related application failures and occur when 
an application doesn’t have permission to access a key the way that it wants . Applications that do not 
validate registry operation results or perform proper error recovery will fail .

A common result string that might appear suspicious is BUFFER OVERFLOW . It does not indicate 
a buffer-overflow exploit in the application that receives it. Instead, it’s used by the configuration 
manager to inform an application that the buffer it specified to store a registry value is too small to 
hold the value . Application developers often take advantage of this behavior to determine how large 
a buffer to allocate to store a value. They first perform a registry query with a zero-length buffer that 
returns a buffer-overflow error and the length of the data it attempted to read. The application then 
allocates a buffer of the indicated size and rereads the value . You should therefore see operations that 
return BUFFER OVERFLOW repeat with a successful result .

In one example of Process Monitor being used to troubleshoot a real problem, it saved a user from 
doing a complete reinstall of his Windows system . The symptom was that Internet Explorer would 
hang on startup if the user did not first manually dial the Internet connection. This Internet connec-
tion was set as the default connection for the system, so starting Internet Explorer should have caused 
an automatic dial-up to the Internet (because Internet Explorer was set to display a default home 
page upon startup) .

An examination of a Process Monitor log of Internet Explorer startup activity, going backward 
from the point in the log where Internet Explorer hung, showed a query to a key under  
HKCU\Software\Microsoft\RAS Phonebook. The user reported that he had previously uninstalled the 
dialer program associated with the key and manually created the dial-up connection . Because the 
dial-up connection name did not match that of the uninstalled dialer program, it appeared that the 
key had not been deleted by the dialer’s uninstall program and that it was causing Internet Explorer 
to hang . After the key was deleted, Internet Explorer functioned as expected .

Logging Activity in Unprivileged Accounts or During Logon/Logoff
A common application-failure scenario is that an application works when run in an account that has 
Administrative group membership but not when run in the account of an unprivileged user . As de-
scribed earlier, executing Process Monitor requires security privileges that are not normally assigned 
to standard user accounts, but you can capture a trace of applications executing in the logon session 
of an unprivileged user by using the Runas command to execute Process Monitor in an administrative 
account .

If a registry problem relates to account logon or logoff, you’ll also have to take special steps to 
be able to use Process Monitor to capture a trace of those phases of a logon session . Applications 
that are run in the local system account are not terminated when a user logs off, and you can take 
advantage of that fact to have Process Monitor run through a logoff and subsequent logon . You can 
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launch Process Monitor in the local system account either by using the At command that’s built into 
Windows and specifying the /interactive flag, or by using the Sysinternals PsExec utility, like this:

psexec –i 0 –s –d c:\procmon.exe

The –i 0 switch directs PsExec to have Process Monitor’s window appear on the session 0 
 interactive window station’s default desktop, the –s switch has PsExec run Process Monitor in the local 
system account, and the –d switch has PsExec launch Process Monitor and exit without waiting for 
Process Monitor to terminate . When you execute this command, the instance of Process Monitor that 
executes will survive logoff and reappear on the desktop when you log back on, having captured the 
registry activity of both actions .

Another way to monitor registry activity during the logon, logoff, boot, or shutdown process is to 
use the Process Monitor log boot feature, which you can enable by selecting Log Boot on the Options 
menu . The next time you boot the system, the Process Monitor device driver logs registry activity 
from early in the boot to %SystemRoot%\Procmon.pml. It will continue logging to that file until disk 
space runs out, the system shuts down, or you run Process Monitor. A log file storing a registry trace 
of startup, logon, logoff, and shutdown on a Windows system will typically be between 50 and 150 
MB in size .

Registry Internals
In this section, you’ll find out how the configuration manager—the executive subsystem that 
 implements the registry—organizes the registry’s on-disk files. We’ll examine how the configura-
tion manager manages the registry as applications and other operating system components read 
and change registry keys and values. We’ll also discuss the mechanisms by which the configuration 
 manager tries to ensure that the registry is always in a recoverable state, even if the system crashes 
while the registry is being modified.

Hives
On disk, the registry isn’t simply one large file but rather a set of discrete files called hives . Each hive 
contains a registry tree, which has a key that serves as the root or starting point of the tree . Subkeys 
and their values reside beneath the root . You might think that the root keys displayed by the Registry 
Editor correlate to the root keys in the hives, but such is not the case . Table 4-5 lists registry hives and 
their on-disk file names. The path names of all hives except for user profiles are coded into the con-
figuration manager. As the configuration manager loads hives, including system profiles, it notes each 
hive’s path in the values under the HKLM\SYSTEM\CurrentControlSet\Control\Hivelist subkey, remov-
ing the path if the hive is unloaded . It creates the root keys, linking these hives together to build the 
registry structure you’re familiar with and that the Registry Editor displays .

You’ll notice that some of the hives listed in Table 4-5 are volatile and don’t have associated 
files. The system creates and manages these hives entirely in memory; the hives are therefore 
 temporary . The system creates volatile hives every time it boots . An example of a volatile hive is the 
HKLM\HARDWARE hive, which stores information about physical devices and the devices’ assigned 
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resources . Resource assignment and hardware detection occur every time the system boots, so not 
storing this data on disk is logical .

TABLE 4-5 On-Disk Files Corresponding to Paths in the Registry

Hive Registry Path Hive File Path

HKEY_LOCAL_MACHINE\BCD00000000 \Boot\BCD

HKEY_LOCAL_MACHINE\COMPONENTS %SystemRoot%\System32\Config\Components

HKEY_LOCAL_MACHINE\SYSTEM %SystemRoot%\System32\Config\System

HKEY_LOCAL_MACHINE\SAM %SystemRoot%\System32\Config\Sam

HKEY_LOCAL_MACHINE\SECURITY %SystemRoot%\System32\Config\Security

HKEY_LOCAL_MACHINE\SOFTWARE %SystemRoot%\System32\Config\Software

HKEY_LOCAL_MACHINE\HARDWARE Volatile hive

HKEY_USERS\<SID of local service account> %SystemRoot%\ServiceProfiles\LocalService\Ntuser.dat

HKEY_USERS\<SID of network service account> %SystemRoot%\ServiceProfiles\NetworkService\NtUser.dat

HKEY_USERS\<SID of username> \Users\<username>\Ntuser.dat

HKEY_USERS\<SID of username>_Classes \Users\<username>\AppData\Local\Microsoft\Windows\
Usrclass .dat

HKEY_USERS\.DEFAULT %SystemRoot%\System32\Config\Default

EXPERIMENT: Manually Loading and Unloading Hives
Regedit has the ability to load hives that you can access through its File menu . This  capability 
can be useful in troubleshooting scenarios where you want to view or edit a hive from an un-
bootable system or a backup medium . In this experiment, you’ll use Regedit to load a version of 
the HKLM\SYSTEM hive that Windows Setup creates during the install process.

1. Hives can be loaded only underneath HKLM or HKU, so open Regedit, select HKLM, 
and choose Load Hive from the Regedit File menu .

2. Navigate to the %SystemRoot%\System32\Config\RegBack directory in the Load Hive 
dialog box, select System and open it . When prompted, type Test as the name of the 
key under which it will load .

3. Open the newly created HKLM\Test key, and explore the contents of the hive.

4. Open HKLM\SYSTEM\CurrentControlSet\Control\Hivelist, and locate the entry  
\Registry\Machine\Test, which demonstrates how the configuration manager lists 
loaded hives in the Hivelist key .

5. Select HKLM\Test, and then choose Unload Hive from the Regedit File menu to unload 
the hive .
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Hive Size Limits
In some cases, hive sizes are limited . For example, Windows places a limit on the size of the  
HKLM\SYSTEM hive. It does so because Winload reads the entire HKLM\SYSTEM hive into physical 
memory near the start of the boot process when virtual memory paging is not enabled . Winload 
also loads Ntoskrnl and boot device drivers into physical memory, so it must constrain the amount of 
physical memory assigned to HKLM\SYSTEM. (See Chapter 13 in Part 2 for more information on the 
role Winload plays during the startup process .) On 32-bit systems, Winload allows the hive to be as 
large as 400 MB or one-half the amount of physical memory on the system, whichever is lower . On 
x64 systems, the lower bound is 1 .5 GB . On Itanium systems, it is 32 MB .

Registry Symbolic Links
A special type of key known as a registry symbolic link makes it possible for the configuration 
 manager to link keys to organize the registry. A symbolic link is a key that redirects the  configuration 
manager to another key. Thus, the key HKLM\SAM is a symbolic link to the key at the root of the SAM 
hive . Symbolic links are created by specifying the REG_CREATE_LINK parameter to  RegCreateKey 
or RegCreateKeyEx. Internally, the configuration manager will create a REG_LINK value called 
 SymbolicLinkValue, which will contain the path to the target key . Because this value is a REG_LINK 
 instead of a REG_SZ, it will not be visible with Regedit—it is, however, part of the on-disk registry hive .

EXPERIMENT: Looking at Hive Handles
The configuration manager opens hives by using the kernel handle table (described in 
 Chapter 3) so that it can access hives from any process context . Using the kernel handle table 
is an efficient alternative to approaches that involve using drivers or executive components to 
access from the System process only handles that must be protected from user processes . You 
can use Process Explorer to see the hive handles, which will be displayed as being opened in the 
System process . Select the System process, and then select Handles from the Lower Pane View 
menu entry on the View menu. Sort by handle type, and scroll until you see the hive files, as 
shown in the following screen .
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Hive Structure
The configuration manager logically divides a hive into allocation units called blocks in much the 
same way that a file system divides a disk into clusters. By definition, the registry block size is 4096 
bytes (4 KB) . When new data expands a hive, the hive always expands in block-granular increments . 
The first block of a hive is the base block.

The base block includes global information about the hive, including a signature—regf—that 
identifies the file as a hive, updated sequence numbers, a time stamp that shows the last time a write 
operation was initiated on the hive, information on registry repair or recovery performed by  Winload, 
the hive format version number, a checksum, and the hive file’s internal file name (for example,  
\Device\HarddiskVolume1\WINDOWS\SYSTEM32\CONFIG\SAM). We’ll clarify the significance of the 
updated sequence numbers and time stamp when we describe how data is written to a hive file.

The hive format version number specifies the data format within the hive. The configuration 
manager uses hive format version 1.3 (which improved searching by caching the first four charac-
ters of the name inside the cell index structure for quick lookups) for all hives except for System and 
Software for roaming profile compatibility with Windows 2000. For System and Software hives, it uses 
version 1 .5 because of the later format’s optimizations for large values (values larger than 1 MB are 
supported) and searching (instead of caching the first four characters of a name, a hash of the entire 
name is used to reduce collisions) .

Windows organizes the registry data that a hive stores in containers called cells . A cell can hold a 
key, a value, a security descriptor, a list of subkeys, or a list of key values . A 4-byte character tag at the 
beginning of a cell’s data describes the data’s type as a signature . Table 4-6 describes each cell data 
type in detail. A cell’s header is a field that specifies the cell’s size as the 1’s complement (not  present 
in the CM_ structures) . When a cell joins a hive and the hive must expand to contain the cell, the 
 system creates an allocation unit called a bin .

A bin is the size of the new cell rounded up to the next block or page boundary, whichever is 
higher . The system considers any space between the end of the cell and the end of the bin to be free 
space that it can allocate to other cells . Bins also have headers that contain a signature, hbin, and a 
field that records the offset into the hive file of the bin and the bin’s size.

TABLE 4-6 Cell Data Types

Data Type Structure Type Description

Key cell CM_KEY_NODE A cell that contains a registry key, also called a key node . A key 
cell contains a signature (kn for a key, kl for a link node), the 
time stamp of the most recent update to the key, the cell index 
of the key’s parent key cell, the cell index of the subkey-list cell 
that identifies the key’s subkeys, a cell index for the key’s secu-
rity descriptor cell, a cell index for a string key that specifies the 
class name of the key, and the name of the key (for example, 
CurrentControlSet) . It also saves cached information such as the 
number of subkeys under the key, as well as the size of the largest 
key, value name, value data, and class name of the subkeys under 
this key .
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Data Type Structure Type Description

Value cell CM_KEY_VALUE A cell that contains information about a key’s value . This cell 
 includes a signature (kv), the value’s type (for example,   
REG_ DWORD or REG_BINARY), and the value’s name (for 
 example, Boot-Execute) . A value cell also contains the cell index of 
the cell that contains the value’s data .

Subkey-list cell CM_KEY_INDEX A cell composed of a list of cell indexes for key cells that are all 
subkeys of a common parent key .

Value-list cell CM_KEY_INDEX A cell composed of a list of cell indexes for value cells that are all 
values of a common parent key .

Security-descriptor cell CM_KEY_SECURITY A cell that contains a security descriptor . Security-descriptor cells 
include a signature (ks) at the head of the cell and a reference 
count that records the number of key nodes that share the securi-
ty descriptor . Multiple key cells can share security-descriptor cells .

By using bins, instead of cells, to track active parts of the registry, Windows minimizes some 
management chores . For example, the system usually allocates and deallocates bins less frequently 
than it does cells, which lets the configuration manager manage memory more efficiently. When the 
configuration manager reads a registry hive into memory, it reads the whole hive, including empty 
bins, but it can choose to discard them later . When the system adds and deletes cells in a hive, the 
hive can contain empty bins interspersed with active bins . This situation is similar to disk fragmenta-
tion, which occurs when the system creates and deletes files on the disk. When a bin becomes empty, 
the configuration manager joins to the empty bin any adjacent empty bins to form as large a contigu-
ous empty bin as possible. The configuration manager also joins adjacent deleted cells to form larger 
free cells. (The configuration manager shrinks a hive only when bins at the end of the hive become 
free . You can compact the registry by backing it up and restoring it using the Windows RegSaveKey 
and RegReplaceKey functions, which are used by the Windows Backup utility .)

The links that create the structure of a hive are called cell indexes . A cell index is the offset of a cell 
into the hive file minus the size of the base block. Thus, a cell index is like a pointer from one cell to 
another cell that the configuration manager interprets relative to the start of a hive. For example, as 
you saw in Table 4-6, a cell that describes a key contains a field specifying the cell index of its parent 
key; a cell index for a subkey specifies the cell that describes the subkeys that are subordinate to the 
specified subkey. A subkey-list cell contains a list of cell indexes that refer to the subkey’s key cells. 
Therefore, if you want to locate, for example, the key cell of subkey A, whose parent is key B, you 
must first locate the cell containing key B’s subkey list using the subkey-list cell index in key B’s cell. 
Then you locate each of key B’s subkey cells by using the list of cell indexes in the subkey-list cell . For 
each subkey cell, you check to see whether the subkey’s name, which a key cell stores, matches the 
one you want to locate, in this case, subkey A .

The distinction between cells, bins, and blocks can be confusing, so let’s look at an example of a 
simple registry hive layout to help clarify the differences. The sample registry hive file in Figure 4-3 
contains a base block and two bins. The first bin is empty, and the second bin contains several cells. 
Logically, the hive has only two keys: the root key Root, and a subkey of Root, Sub Key . Root has two 



298 Windows Internals, Sixth Edition, Part 1

values, Val 1 and Val 2 . A subkey-list cell locates the root key’s subkey, and a value-list cell locates 
the root key’s values . The free spaces in the second bin are empty cells . Figure 4-3 doesn’t show the 
security cells for the two keys, which would be present in a hive .

Block boundaries

Key cell (key node)
Value cell
Value-list cell

Subkey-list cell
Free space

Base block Empty bin Root Val 1 Val 2Sub
Key

Bin 1

Bin 2

FIGURE 4-3 Internal structure of a registry hive

To optimize searches for both values and subkeys, the configuration manager sorts subkey-list 
cells alphabetically . The configuration manager can then perform a binary search when it looks for a 
subkey within a list of subkeys. The configuration manager examines the subkey in the middle of the 
list, and if the name of the subkey the configuration manager is looking for is alphabetically before 
the name of the middle subkey, the configuration manager knows that the subkey is in the first half 
of the subkey list; otherwise, the subkey is in the second half of the subkey list . This splitting process 
continues until the configuration manager locates the subkey or finds no match. Value-list cells aren’t 
sorted, however, so new values are always added to the end of the list .

Cell Maps
If hives never grew, the configuration manager could perform all its registry management on the 
in-memory version of a hive as if the hive were a file. Given a cell index, the configuration manager 
could calculate the location in memory of a cell simply by adding the cell index, which is a hive file 
offset, to the base of the in-memory hive image . Early in the system boot, this process is exactly 
what Winload does with the SYSTEM hive: Winload reads the entire SYSTEM hive into memory as 
a  read-only hive and adds the cell indexes to the base of the in-memory hive image to locate cells . 
Unfortunately, hives grow as they take on new keys and values, which means the system must allocate 
paged pool memory to store the new bins that contain added keys and values . Thus, the paged pool 
that keeps the registry data in memory isn’t necessarily contiguous .

EXPERIMENT: Viewing Hive Paged Pool Usage
There are no administrative-level tools that show you the amount of paged pool that registry 
hives, including user profiles, are consuming on Windows. However, the !reg dumppool kernel 
debugger command shows you not only how many pages of the paged pool each loaded hive 
consumes but also how many of the pages store volatile and nonvolatile data . The command 
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prints the total hive memory usage at the end of the output . (The command shows only the last 
32 characters of a hive’s name .)

kd> !reg dumppool  
  
dumping hive at e20d66a8 (a\Microsoft\Windows\UsrClass.dat)  
  Stable Length = 1000  
  1/1 pages present  
  Volatile Length = 0  
  
dumping hive at e215ee88 (ettings\Administrator\ntuser.dat)  
  Stable Length = f2000  
  242/242 pages present  
  Volatile Length = 2000  
  2/2 pages present  
  
dumping hive at e13fa188 (\SystemRoot\System32\Config\SAM)  
  Stable Length = 5000  
  5/5 pages present  
  Volatile Length = 0  
  
...

To deal with noncontiguous memory addresses referencing hive data in memory, the  configuration 
manager adopts a strategy similar to what the Windows memory manager uses to map virtual 
 memory addresses to physical memory addresses. The configuration manager employs a two-level 
scheme, which Figure 4-4 illustrates, that takes as input a cell index (that is, a hive file offset) and 
returns as output both the address in memory of the block the cell index resides in and the address 
in memory of the block the cell resides in . Remember that a bin can contain one or more blocks and 
that hives grow in bins, so Windows always represents a bin with a contiguous region of memory . 
Therefore, all blocks within a bin occur within the same cache manager view .

Cell index

Directory index Table index Byte offset

Hive’s cell map
directory

Target block
Cell map table

32 0

1023

0

0

Hive cell map directory pointer

511

Cell

FIGURE 4-4 Structure of a cell index
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To implement the mapping, the configuration manager divides a cell index logically into fields, 
in the same way that the memory manager divides a virtual address into fields. Windows interprets 
a cell index’s first field as an index into a hive’s cell map directory. The cell map directory contains 
1024 entries, each of which refers to a cell map table that contains 512 map entries . An entry in this 
cell map table is specified by the second field in the cell index. That entry locates the bin and block 
memory addresses of the cell . Not all bins are necessarily mapped into memory, and if a cell lookup 
yields an address of 0, the configuration manager maps the bin into memory, unmapping another on 
the mapping LRU list it maintains, if necessary .

In the final step of the translation process, the configuration manager interprets the last field of 
the cell index as an offset into the identified block to precisely locate a cell in memory. When a hive 
initializes, the configuration manager dynamically creates the mapping tables, designating a map 
entry for each block in the hive, and it adds and deletes tables from the cell directory as the changing 
size of the hive requires .

The Registry Namespace and Operation
The configuration manager defines a key object type to integrate the registry’s namespace with the 
kernel’s general namespace. The configuration manager inserts a key object named Registry into the 
root of the Windows namespace, which serves as the entry point to the registry . Regedit shows key 
names in the form HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet, but the Windows subsystem 
translates such names into their object namespace form (for example, \Registry\Machine\System 
\CurrentControlSet). When the Windows object manager parses this name, it encounters the key 
object by the name of Registry first and hands the rest of the name to the configuration manager. The 
configuration manager takes over the name parsing, looking through its internal hive tree to find the 
desired key or value. Before we describe the flow of control for a typical registry operation, we need 
to discuss key objects and key control blocks . Whenever an application opens or creates a registry 
key, the object manager gives a handle with which to reference the key to the application . The handle 
corresponds to a key object that the configuration manager allocates with the help of the object 
manager . By using the object manager’s object support, the configuration manager takes advantage 
of the security and reference-counting functionality that the object manager provides .

For each open registry key, the configuration manager also allocates a key control block . A key 
control block stores the name of the key, includes the cell index of the key node that the control block 
refers to, and contains a flag that notes whether the configuration manager needs to delete the key 
cell that the key control block refers to when the last handle for the key closes . Windows places all key 
control blocks into a hash table to enable quick searches for existing key control blocks by name . A 
key object points to its corresponding key control block, so if two applications open the same registry 
key, each will receive a key object, and both key objects will point to a common key control block .

When an application opens an existing registry key, the flow of control starts with the application 
specifying the name of the key in a registry API that invokes the object manager’s name-parsing rou-
tine. The object manager, upon encountering the configuration manager’s registry key object in the 
namespace, hands the path name to the configuration manager. The configuration manager performs 
a lookup on the key control block hash table . If the related key control block is found there, there’s no 
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need for any further work; otherwise, the lookup provides the configuration manager with the closest 
key control block to the searched key, and the lookup continues by using the in-memory hive data 
structures to search through keys and subkeys to find the specified key. If the configuration man-
ager finds the key cell, the configuration manager searches the key control block tree to determine 
whether the key is open (by the same application or another one) . The search routine is optimized 
to always start from the closest ancestor with a key control block already opened . For example, if an 
application opens \Registry\Machine\Key1\Subkey2, and \Registry\Machine is already opened, the 
parse routine uses the key control block of \Registry\Machine as a starting point. If the key is open, 
the configuration manager increments the existing key control block’s reference count. If the key isn’t 
open, the configuration manager allocates a new key control block and inserts it into the tree. Then 
the configuration manager allocates a key object, points the key object at the key control block, and 
returns control to the object manager, which returns a handle to the application .

When an application creates a new registry key, the configuration manager first finds the key cell 
for the new key’s parent. The configuration manager then searches the list of free cells for the hive in 
which the new key will reside to determine whether cells exist that are large enough to hold the new 
key cell. If there aren’t any free cells large enough, the configuration manager allocates a new bin and 
uses it for the cell, placing any space at the end of the bin on the free cell list. The new key cell fills 
with pertinent information—including the key’s name—and the configuration manager adds the key 
cell to the subkey list of the parent key’s subkey-list cell . Finally, the system stores the cell index of the 
parent cell in the new subkey’s key cell .

The configuration manager uses a key control block’s reference count to determine when to delete 
the key control block . When all the handles that refer to a key in a key control block close, the refer-
ence count becomes 0, which denotes that the key control block is no longer necessary . If an applica-
tion that calls an API to delete the key sets the delete flag, the configuration manager can delete the 
associated key from the key’s hive because it knows that no application is keeping the key open .

EXPERIMENT: Viewing Key Control Blocks
You can use the kernel debugger to list all the key control blocks allocated on a system with the 
command !reg openkeys command . Alternatively, if you want to view the key control block for a 
particular open key, use !reg findkcb:

kd> !reg findkcb \registry\machine\software\microsoft  
  
Found KCB = e1034d40 :: \REGISTRY\MACHINE\SOFTWARE\MICROSOFT

You can then examine a reported key control block with the !reg kcb command:

kd> !reg kcb e1034d40  
  
Key              : \REGISTRY\MACHINE\SOFTWARE\MICROSOFT  
RefCount         : 1f  
Flags            : CompressedName, Stable  
ExtFlags         :  
Parent           : 0xe1997368  
KeyHive          : 0xe1c8a768  
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KeyCell          : 0x64e598 [cell index]  
TotalLevels      : 4  
DelayedCloseIndex: 2048  
MaxNameLen       : 0x3c  
MaxValueNameLen  : 0x0  
MaxValueDataLen  : 0x0  
LastWriteTime    : 0x 1c42501:0x7eb6d470  
KeyBodyListHead  : 0xe1034d70 0xe1034d70  
SubKeyCount      : 137  
ValueCache.Count : 0  
KCBLock          : 0xe1034d40  
KeyLock          : 0xe1034d40

The Flags field indicates that the name is stored in compressed form, and the SubKeyCount 
field shows that the key has 137 subkeys.

Stable Storage
To make sure that a nonvolatile registry hive (one with an on-disk file) is always in a recoverable state, 
the configuration manager uses log hives . Each nonvolatile hive has an associated log hive, which is 
a hidden file with the same base name as the hive and a logN extension. To ensure forward progress, 
the configuration manger uses a dual-logging scheme. There are potentially two log files: .log1 and 
 .log2 . If, for any reason,  .log1 was written but a failure occurred while writing dirty data to the primary 
log file, the next time a flush happens, a switch to .log2 will occur with the cumulative dirty data. If 
that fails as well, the cumulative dirty data (the data in  .log1 and the data that was dirtied in between) 
is saved in  .log2 . As a consequence,  .log1 will be used again next time around, until a successful write 
operation is done to the primary log file. If no failure occurs, only .log1 is used.

For example, if you look in your %SystemRoot%\System32\Config directory (and you have the 
Show Hidden Files And Folders folder option selected), you’ll see System .log1, Sam .log1, and other 
.log1 and .log2 files. When a hive initializes, the configuration manager allocates a bit array in which 
each bit represents a 512-byte portion, or sector, of the hive . This array is called the dirty sector 
array because an on bit in the array means that the system has modified the corresponding  sector 
in the hive in memory and must write the sector back to the hive file. (An off bit means that the 
 corresponding sector is up to date with the in-memory hive’s contents .)

When the creation of a new key or value or the modification of an existing key or value takes place, 
the configuration manager notes the sectors of the hive that change in the hive’s dirty sector array. 
Then the configuration manager schedules a lazy write operation, or a hive sync. The hive lazy writer 
system thread wakes up five seconds after the request to synchronize the hive and writes dirty hive 
sectors for all hives from memory to the hive files on disk. Thus, the system flushes, at the same time, 
all the registry modifications that take place between the time a hive sync is requested and the time 
the hive sync occurs . When a hive sync takes place, the next hive sync will occur no sooner than five 
seconds later .
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Note The RegFlushKey API’s name implies that the function flushes only modified 
data for a specified key to disk, but it actually triggers a full registry flush, which has a 
 major  performance impact on the system . For that reason and the fact that the registry 
 automatically makes sure that modified data is in stable storage within seconds,  application 
programmers should avoid using it .

If the lazy writer simply wrote all a hive’s dirty sectors to the hive file and the system crashed in 
mid-operation, the hive file would be in an inconsistent (corrupted) and unrecoverable state . To 
prevent such an occurrence, the lazy writer first dumps the hive’s dirty sector array and all the dirty 
sectors to the hive’s log file, increasing the log file’s size if necessary. The lazy writer then updates 
a sequence number in the hive’s base block and writes the dirty sectors to the hive . When the lazy 
writer is finished, it updates a second sequence number in the base block. Thus, if the system crashes 
during the write operations to the hive, at the next reboot the configuration manager will notice 
that the two sequence numbers in the hive’s base block don’t match. The configuration manager can 
update the hive with the dirty sectors in the hive’s log file to roll the hive forward. The hive is then up 
to date and consistent .

The Windows Boot Loader also contains some code related to registry reliability . For example, it 
can parse the System.log file before the kernel is loaded and do repairs to fix consistency. Addition-
ally, in certain cases of hive corruption (such as if a base block, bin, or cell contains data that fails 
consistency checks), the configuration manager can reinitialize corrupted data structures, possibly 
deleting subkeys in the process, and continue normal operation . If it has to resort to a self-healing 
operation, it pops up a system error dialog box notifying the user .

Registry Filtering
The configuration manager in the Windows kernel implements a powerful model of registry filtering, 
which allows for monitoring of registry activity by tools such as Process Monitor . When a driver uses 
the callback mechanism, it registers a callback function with the configuration manager. The configu-
ration manager executes the driver’s callback function before and after the execution of registry sys-
tem services so that the driver has full visibility and control over registry accesses . Antivirus products 
that scan registry data for viruses or prevent unauthorized processes from modifying the registry are 
other users of the callback mechanism .

Registry callbacks are also associated with the concept of altitudes . Altitudes are a way for different 
vendors to register a “height” on the registry filtering stack so that the order in which the system calls 
each callback routine can be deterministic and correct . This avoids a scenario in which an antivirus 
product would be scanning encrypted keys before an encryption product would run its own callback 
to decrypt them . With the Windows registry callback model, both types of tools are assigned a base 
altitude corresponding to the type of filtering they are doing—in this case, encryption versus scan-
ning . Secondly, companies that create these types of tools must register with Microsoft so that within 
their own group, they will not collide with similar or competing products .
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The filtering model also includes the ability to either completely take over the processing of 
the registry operation (bypassing the configuration manager and preventing it from handling the 
request) or redirect the operation to a different operation (such as Wow64’s registry redirection) . 
 Additionally, it is also possible to modify the output parameters as well as the return value of a 
 registry operation .

Finally, drivers can assign and tag per-key or per-operation driver-defined information for their 
own purposes . A driver can create and assign this context data during a create or open operation, 
which the configuration manager will remember and return during each subsequent operation on the 
key .

Registry Optimizations
The configuration manager makes a few noteworthy performance optimizations . First, virtually every 
registry key has a security descriptor that protects access to the key . Storing a unique security-de-
scriptor copy for every key in a hive would be highly inefficient, however, because the same security 
settings often apply to entire subtrees of the registry . When the system applies security to a key, the 
configuration manager checks a pool of the unique security descriptors used within the same hive as 
the key to which new security is being applied, and it shares any existing descriptor for the key, ensur-
ing that there is at most one copy of every unique security descriptor in a hive .

The configuration manager also optimizes the way it stores key and value names in a hive. Al-
though the registry is fully Unicode-capable and specifies all names using the Unicode convention, if 
a name contains only ASCII characters, the configuration manager stores the name in ASCII form in 
the hive. When the configuration manager reads the name (such as when performing name lookups), 
it converts the name into Unicode form in memory. Storing the name in ASCII form can significantly 
reduce the size of a hive .

To minimize memory usage, key control blocks don’t store full key registry path names . Instead, 
they reference only a key’s name. For example, a key control block that refers to \Registry\System\
Control would refer to the name Control rather than to the full path . A further memory optimiza-
tion is that the configuration manager uses key name control blocks to store key names, and all key 
control blocks for keys with the same name share the same key name control block . To optimize 
performance, the configuration manager stores the key control block names in a hash table for quick 
lookups .

To provide fast access to key control blocks, the configuration manager stores frequently accessed 
key control blocks in the cache table, which is configured as a hash table. When the configuration 
manager needs to look up a key control block, it first checks the cache table. Finally, the configuration 
manager has another cache, the delayed close table, that stores key control blocks that applications 
close so that an application can quickly reopen a key it has recently closed . To optimize lookups, these 
cache tables are stored for each hive. The configuration manager removes the oldest key control 
blocks from the delayed close table as it adds the most recently closed blocks to the table .   
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Services

Almost every operating system has a mechanism to start processes at system startup time that 
provide services not tied to an interactive user . In Windows, such processes are called services or 
Windows services, because they rely on the Windows API to interact with the system . Services are 
similar to UNIX daemon processes and often implement the server side of client/server applications . 
An example of a Windows service might be a web server, because it must be running regardless of 
whether anyone is logged on to the computer and it must start running when the system starts so 
that an administrator doesn’t have to remember, or even be present, to start it .

Windows services consist of three components: a service application, a service control  program 
(SCP), and the service control manager (SCM) . First, we’ll describe service applications, service 
 accounts, and the operations of the SCM . Then we’ll explain how auto-start services are started 
 during the system boot . We’ll also cover the steps the SCM takes when a service fails during its 
startup and the way the SCM shuts down services .

Service Applications
Service applications, such as web servers, consist of at least one executable that runs as a Windows 
service. A user wanting to start, stop, or configure a service uses an SCP. Although Windows supplies 
built-in SCPs that provide general start, stop, pause, and continue functionality, some service applica-
tions include their own SCP that allows administrators to specify configuration settings particular to 
the service they manage .

Service applications are simply Windows executables (GUI or console) with additional code to 
receive commands from the SCM as well as to communicate the application’s status back to the SCM . 
Because most services don’t have a user interface, they are built as console programs .

When you install an application that includes a service, the application’s setup program 
must  register the service with the system . To register the service, the setup program calls the 
 Windows  CreateService function, a services-related function implemented in Advapi32 .dll  
(%SystemRoot%\System32\Advapi32.dll). Advapi32, the “Advanced API” DLL, implements all the 
client-side SCM APIs .

When a setup program registers a service by calling CreateService, a message is sent to the SCM 
on the machine where the service will reside . The SCM then creates a registry key for the service 
 under HKLM\SYSTEM\CurrentControlSet\Services. The Services key is the nonvolatile representation 
of the SCM’s database. The individual keys for each service define the path of the executable image 
that contains the service as well as parameters and configuration options.

After creating a service, an installation or management application can start the service via the 
StartService function . Because some service-based applications also must initialize during the boot 
process to function, it’s not unusual for a setup program to register a service as an auto-start service, 
ask the user to reboot the system to complete an installation, and let the SCM start the service as the 
system boots .
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When a program calls CreateService, it must specify a number of parameters describing the 
service’s characteristics . The characteristics include the service’s type (whether it’s a service that runs 
in its own process rather than a service that shares a process with other services), the location of the 
service’s executable image file, an optional display name, an optional account name and password 
used to start the service in a particular account’s security context, a start type that indicates whether 
the service starts automatically when the system boots or manually under the direction of an SCP, 
an error code that indicates how the system should react if the service detects an error when start-
ing, and, if the service starts automatically, optional information that specifies when the service starts 
 relative to other services .

The SCM stores each characteristic as a value in the service’s registry key . Figure 4-5 shows an 
example of a service registry key .

FIGURE 4-5 Example of a service registry key

Table 4-7 lists all the service characteristics, many of which also apply to device drivers . (Not every 
characteristic applies to every type of service or device driver.) If a service needs to store configura-
tion information that is private to the service, the convention is to create a subkey named Parameters 
under its service key and then store the configuration information in values under that subkey. The 
service then can retrieve the values by using standard registry functions .

Note The SCM does not access a service’s Parameters subkey until the service is deleted, at 
which time the SCM deletes the service’s entire key, including subkeys like Parameters .
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TABLE 4-7 Service and Driver Registry Parameters

Value Setting Value Name Value Setting Description

Start SERVICE_BOOT_START (0) Winload preloads the driver so that it is in 
memory during the boot . These drivers are 
initialized just prior to SERVICE_ SYSTEM_
START drivers .

SERVICE_SYSTEM_START (1) The driver loads and initializes during kernel 
initialization after SERVICE_ BOOT_START 
drivers have initialized .

SERVICE_AUTO_START (2) The SCM starts the driver or service after the 
SCM process, Services .exe, starts .

SERVICE_DEMAND_START (3) The SCM starts the driver or service on 
 demand .

SERVICE_DISABLED (4) The driver or service doesn’t load or initialize .

ErrorControl SERVICE_ERROR_IGNORE (0) Any error the driver or service returns 
is  ignored, and no warning is logged or 
 displayed .

SERVICE_ERROR_NORMAL (1) If the driver or service reports an error, an 
event log message is written .

SERVICE_ERROR_SEVERE (2) If the driver or service returns an error and 
last known good isn’t being used, reboot into 
last known good; otherwise, continue the 
boot .

SERVICE_ERROR_CRITICAL (3) If the driver or service returns an error and 
last known good isn’t being used, reboot into 
last known good; otherwise, stop the boot 
with a blue screen crash .

Type SERVICE_KERNEL_DRIVER (1) Device driver .

SERVICE_FILE_SYSTEM_DRIVER (2) Kernel-mode file system driver.

SERVICE_ADAPTER (4) Obsolete .

SERVICE_RECOGNIZER_DRIVER (8) File system recognizer driver .

SERVICE_WIN32_OWN_PROCESS (16) The service runs in a process that hosts only 
one service .

SERVICE_WIN32_SHARE_PROCESS (32) The service runs in a process that hosts 
 multiple services .

SERVICE_INTERACTIVE_PROCESS (256) The service is allowed to display windows on 
the console and receive user input, but only 
on the console session (0) to prevent interact-
ing with user/console applications on other 
sessions .

Group Group name The driver or service initializes when its group 
is initialized .

Tag Tag number The specified location in a group  initialization 
order . This parameter doesn’t apply to 
 services .

ImagePath Path to the service or driver executable file If ImagePath isn’t specified, the I/O  manager 
looks for drivers in %SystemRoot%\
System32\Drivers. Required for Windows 
services .
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Value Setting Value Name Value Setting Description

DependOnGroup Group name The driver or service won’t load unless a 
 driver or service from the specified group 
loads .

DependOnService Service name The service won’t load until after the 
 specified service loads. This parameter 
doesn’t apply to device drivers other than 
those with a start type of SERVICE_AUTO_
START or SERVICE_DEMAND_START .

ObjectName Usually LocalSystem, but it can be an 
 account name, such as .\Administrator

Specifies the account in which the ser-
vice will run . If ObjectName isn’t speci-
fied, LocalSystem is the account used. This 
 parameter doesn’t apply to device drivers .

DisplayName Name of the service The service application shows services by this 
name. If no name is specified, the name of 
the service’s registry key becomes its name .

Description Description of service Up to 32767-byte description of the service .

FailureActions Description of actions the SCM should 
take when the service process exits 
 unexpectedly

Failure actions include restarting the service 
process, rebooting the system, and running 
a specified program. This value doesn’t apply 
to drivers .

FailureCommand Program command line The SCM reads this value only if 
FailureActions specifies that a program 
should execute upon service failure . This 
value doesn’t apply to drivers .

DelayedAutoStart 0 or 1 (TRUE or FALSE) Tells the SCM to start this service after a 
certain delay has passed since the SCM was 
started . This reduces the number of services 
starting simultaneously during startup .

PreshutdownTimeout Timeout in milliseconds This value allows services to override the 
default preshutdown notification timeout of 
180 seconds . After this timeout, the SCM will 
perform shutdown actions on the service if it 
has not yet responded .

ServiceSidType SERVICE_SID_TYPE_NONE (0) Backward-compatibility setting .

SERVICE_SID_TYPE_UNRESTRICTED (1) The SCM will add the service SID as a group 
owner to the service process’ token when it 
is created . 

SERVICE_SID_TYPE_RESTRICTED (3) Same as above, but the SCM will also add the 
service SID to the restricted SID list of the 
service process, along with the world, logon, 
and write-restricted SIDs .

RequiredPrivileges List of privileges This value contains the list of privileges that 
the service requires to function . The SCM will 
compute their union when creating the token 
for the shared process related to this service, 
if any .

Security Security descriptor This value contains the optional security 
 descriptor that defines who has what access 
to the service object created internally by the 
SCM . If this value is omitted, the SCM applies 
a default security descriptor .
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Notice that Type values include three that apply to device drivers: device driver, file system driver, 
and file system recognizer. These are used by Windows device drivers, which also store their parame-
ters as registry data in the Services registry key . The SCM is responsible for starting drivers with a Start 
value of SERVICE_AUTO_START or SERVICE_DEMAND_START, so it’s natural for the SCM database to 
include drivers . Services use the other types, SERVICE_WIN32_OWN_PROCESS and SERVICE_WIN32_
SHARE_PROCESS, which are mutually exclusive . An executable that hosts more than one service 
 specifies the SERVICE_WIN32_SHARE_PROCESS type.

An advantage to having a process run more than one service is that the system resources that 
would otherwise be required to run them in distinct processes are saved . A potential disadvantage is 
that if one of the services of a collection running in the same process causes an error that terminates 
the process, all the services of that process terminate . Also, another limitation is that all the services 
must run under the same account (however, if a service takes advantage of service security hardening 
mechanisms, it can limit some of its exposure to malicious attacks) .

When the SCM starts a service process, the process must immediately invoke the 
 StartServiceCtrlDispatcher function . StartServiceCtrlDispatcher accepts a list of entry points into 
services, one entry point for each service in the process. Each entry point is identified by the name of 
the service the entry point corresponds to . After making a named-pipe communications  connection 
to the SCM, StartServiceCtrlDispatcher waits for commands to come through the pipe from the SCM . 
The SCM sends a service-start command each time it starts a service the process owns . For each 
start command it receives, the StartServiceCtrlDispatcher function creates a thread, called a service 
thread, to invoke the starting service’s entry point and implement the command loop for the service . 
StartServiceCtrlDispatcher waits indefinitely for commands from the SCM and returns control to the 
process’ main function only when all the process’ services have stopped, allowing the service process 
to clean up resources before exiting .

A service entry point’s first action is to call the RegisterServiceCtrlHandler function . This  function 
receives and stores a pointer to a function, called the control handler, which the service  implements to 
handle various commands it receives from the SCM . RegisterServiceCtrlHandler doesn’t  communicate 
with the SCM, but it stores the function in local process memory for the  StartServiceCtrlDispatcher 
function . The service entry point continues initializing the service, which can include allocating mem-
ory, creating communications end points, and reading private configuration data from the registry. 
As explained earlier, a convention most services follow is to store their parameters under a subkey of 
their service registry key, named Parameters .

While the entry point is initializing the service, it must periodically send status messages, using the 
SetServiceStatus function, to the SCM indicating how the service’s startup is progressing . After the 
entry point finishes initialization, a service thread usually sits in a loop waiting for requests from client 
applications . For example, a Web server would initialize a TCP listen socket and wait for inbound HTTP 
connection requests .

A service process’ main thread, which executes in the StartServiceCtrlDispatcher function, receives 
SCM commands directed at services in the process and invokes the target service’s control han-
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dler function (stored by RegisterServiceCtrlHandler) . SCM commands include stop, pause, resume, 
 interrogate, and shutdown or application-defined commands. Figure 4-6 shows the internal organiza-
tion of a service process . Pictured are the two threads that make up a process hosting one service: the 
main thread and the service thread .

Pipe to
SCM

Main

StartServiceCtrlDispatcher

Service control handler

RegisterServiceCtrlHandler

Initialize

Process client requests

Main thread

Connections to
service clients

Service thread

1.  StartServiceCtrlDispatcher launches service thread.
2.  Service thread registers control handler.
3.  StartServiceCtrlDispatcher calls handlers in response to SCM commands.
4.  Service thread processes client requests.

2
3

3

1

4

FIGURE 4-6 Inside a service process

Service Accounts
The security context of a service is an important consideration for service developers as well as for 
system administrators because it dictates what resources the process can access . Unless a service 
installation program or administrator specifies otherwise, most services run in the security context 
of the local system account (displayed sometimes as SYSTEM and other times as LocalSystem) . Two 
other built-in accounts are the network service and local service accounts . These accounts have fewer 
 capabilities than the local system account from a security standpoint, and any built-in Windows 
service that does not require the power of the local system account runs in the appropriate alternate 
service account . The following subsections describe the special characteristics of these accounts .

The Local System Account
The local system account is the same account in which core Windows user-mode operating system 
components run, including the Session Manager (%SystemRoot%\System32\Smss.exe), the Windows 
subsystem process (Csrss.exe), the Local Security Authority process (%SystemRoot%\System32 
\Lsass.exe), and the Logon process (%SystemRoot%\System32\Winlogon.exe). For more information 
on these latter two processes, see Chapter 6 .
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From a security perspective, the local system account is extremely powerful—more powerful than 
any local or domain account when it comes to security ability on a local system . This account has the 
following characteristics:

 ■ It is a member of the local administrators group . Table 4-8 shows the groups to which the local 
system account belongs . (See Chapter 6 for information on how group membership is used in 
object access checks .)

 ■ It has the right to enable virtually every privilege (even privileges not normally granted to the 
local administrator account, such as creating security tokens) . See Table 4-9 for the list of privi-
leges assigned to the local system account . (Chapter 6 describes the use of each privilege .)

 ■ Most files and registry keys grant full access to the local system account. (Even if they don’t 
grant full access, a process running under the local system account can exercise the take- 
ownership privilege to gain access .)

 ■ Processes running under the local system account run with the default user profile  
(HKU\.DEFAULT). Therefore, they can’t access configuration information stored in the user 
profiles of other accounts.

 ■ When a system is a member of a Windows domain, the local system account includes the 
machine security identifier (SID) for the computer on which a service process is running. 
Therefore, a service running in the local system account will be automatically authenticated 
on other machines in the same forest by using its computer account . (A forest is a grouping of 
domains .)

 ■ Unless the machine account is specifically granted access to resources (such as network shares, 
named pipes, and so on), a process can access network resources that allow null sessions—that 
is, connections that require no credentials . You can specify the shares and pipes on a particu-
lar computer that permit null sessions in the NullSessionPipes and NullSessionShares registry 
values under HKLM\SYSTEM\CurrentControlSet\Services\lanmanserver\parameters.

TABLE 4-8 Service Account Group Membership

Local System Network Service Local Service 

Everyone
Authenticated Users
Administrators

Everyone
Authenticated Users
Users
Local
Network Service
Service

Everyone
Authenticated Users
Users
Local
Local Service
Service
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TABLE 4-9 Service Account Privileges

Local System Network Service Local Service 

SeAssignPrimaryTokenPrivilege
SeAuditPrivilege
SeBackupPrivilege
SeChangeNotifyPrivilege
SeCreateGlobalPrivilege
SeCreatePagefilePrivilege
SeCreatePermanentPrivilege
SeCreateTokenPrivilege
SeDebugPrivilege
SeImpersonatePrivilege
SeIncreaseBasePriorityPrivilege
SeIncreaseQuotaPrivilege
SeLoadDriverPrivilege
SeLockMemoryPrivilege
SeManageVolumePrivilege
SeProfileSingleProcessPrivilege
SeRestorePrivilege
SeSecurityPrivilege
SeShutdownPrivilege
SeSystemEnvironmentPrivilege
SeSystemTimePrivilege
SeTakeOwnershipPrivilege
SeTcbPrivilege
SeUndockPrivilege (client only)

SeAssignPrimaryTokenPrivilege
SeAuditPrivilege
SeChangeNotifyPrivilege
SeCreateGlobalPrivilege
SeImpersonatePrivilege
SeIncreaseQuotaPrivilege
SeShutdownPrivilege
SeUndockPrivilege (client only)
Privileges assigned to the Everyone, 
Authenticated Users, and Users 
groups

SeAssignPrimaryTokenPrivilege
SeAuditPrivilege
SeChangeNotifyPrivilege
SeCreateGlobalPrivilege
SeImpersonatePrivilege
SeIncreaseQuotaPrivilege
SeShutdownPrivilege
SeUndockPrivilege (client only)
Privileges assigned to the Everyone, 
Authenticated Users, and Users 
groups

The Network Service Account
The network service account is intended for use by services that want to authenticate to other 
 machines on the network using the computer account, as does the local system account, but do 
not have the need for membership in the Administrators group or the use of many of the privileges 
assigned to the local system account . Because the network service account does not belong to the 
Administrators group, services running in the network service account by default have access to far 
fewer registry keys and file system folders and files than the services running in the local system 
 account . Further, the assignment of few privileges limits the scope of a compromised network service 
process . For example, a process running in the network service account cannot load a device driver or 
open arbitrary processes .

Another difference between the network service and local system accounts is that processes 
 running in the network service account use the network service account’s profile. The registry 
 component of the network service profile loads under HKU\S-1-5-20, and the files and directories that 
make up the component reside in %SystemRoot%\ServiceProfiles\NetworkService.

A service that runs in the network service account is the DNS client, which is responsible for 
 resolving DNS names and for locating domain controllers .

The Local Service Account
The local service account is virtually identical to the network service account with the important 
 difference that it can access only network resources that allow anonymous access . Table 4-9 shows 
that the network service account has the same privileges as the local service account, and Table 4-8 
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shows that it belongs to the same groups with the exception that it belongs to the Network Service 
group instead of the Local Service group. The profile used by processes running in the local service 
loads into HKU\S-1-5-19 and is stored in %SystemRoot%\ServiceProfiles\LocalService.

Examples of services that run in the local service account include the Remote Registry Service, 
which allows remote access to the local system’s registry, and the LmHosts service, which performs 
NetBIOS name resolution .

Running Services in Alternate Accounts
Because of the restrictions just outlined, some services need to run with the security credentials of a 
user account. You can configure a service to run in an alternate account when the service is created or 
by specifying an account and password that the service should run under with the Windows Services 
MMC snap-in . In the Services snap-in, right-click on a service and select Properties, click on the Log 
On tab, and select the This Account option, as shown in Figure 4-7 .

Running with Least Privilege
Services typically are subject to an all-or-nothing model, meaning that all privileges available to the 
account the service process is running under are available to a service running in the process that 
might require only a subset of those privileges . To better conform to the principle of least privilege, in 
which Windows assigns services only the privileges they require, developers can specify the privileges 
their service requires, and the SCM creates a security token that contains only those privileges .

FIGURE 4-7 Service account settings
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Note The privileges a service specifies must be a subset of those that are available to the 
service account in which it runs .

Service developers use the ChangeServiceConfig2 API to indicate the list of privileges they desire . 
The API saves that information in the registry under the Parameters key for the service . When the 
service starts, the SCM reads the key and adds those privileges to the token of the process in which 
the service is running .

If there is a RequiredPrivileges value and the service is a stand-alone service (running as a 
 dedicated process), the SCM creates a token containing only the privileges that the service needs . 
For services running as part of a multiservice service process (as are most services that are part of 
Windows) and specifying required privileges, the SCM computes the union of those privileges and 
combines them for the service-hosting process’ token . In other words, only the privileges not speci-
fied by any of the services that are part of that service group will be removed. In the case in which the 
registry value does not exist, the SCM has no choice but to assume that the service is either incom-
patible with least privileges or requires all privileges in order to function . In this case, the full token is 
created, containing all privileges, and no additional security is offered by this model . To strip almost 
all privileges, services can specify only the Change Notify privilege .

EXPERIMENT: Viewing Privileges Required by Services
You can look at the privileges a service requires with the Service Control utility, Sc .exe, and the 
qprivs option . Additionally, Process Explorer can show you information about the security token 
of any service process on the system, so you can compare the information returned by Sc .exe 
with the privileges part of the token . The following steps show you how to do this for some of 
the best locked-down services on the system .

1. Use Sc.exe to take a look at the required privileges specified by Dhcp by typing the 
following into a command prompt:

sc qprivs dhcp

You should see two privileges being requested: the SeCreateGlobalPrivilege and the 
SeChangeNotifyPrivilege .

2. Run Process Explorer, and take a look at the process list .

You should see a couple of Svchost .exe processes that are hosting the services on your 
machine . Process Explorer highlights these in pink .

3. Now locate the service hosting process in which the Dhcp service is running . It should 
be running alongside other services that are part of the LocalServiceNetworkRestricted 
service group, such as the Audiosrv service and Eventlog service . You can do this by 
hovering the mouse over each Svchost process and reading the tooltip, which contains 
the names of the services running inside the service host .
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4. Once you’ve found the process, double-click to open the Properties dialog box and 
select the Security tab .

Note that although the service is running as part of the local service account, the list of 
 privileges Windows assigned to it is much shorter than the list available to the local service 
 account shown in Table 4-9 .

Because for a service-hosting process the privileges part of the token is the union of the 
privileges requested by all the services running inside it, this must mean that services such as 
Audiosrv and Eventlog have not requested privileges other than the ones shown by Process 
Explorer . You can verify this by running the Sc .exe tool on those other services as well .

Service Isolation
Although restricting the privileges that a service has access to helps lessen the ability of a 
 compromised service process to compromise other processes, it does nothing to isolate the service 
from resources that the account in which it is running has access to under normal conditions . As 
mentioned earlier, the local system account has complete access to critical system files, registry keys, 



316 Windows Internals, Sixth Edition, Part 1

and other securable objects on the system because the access control lists (ACLs) grant permissions to 
that account .

At times, access to some of these resources is indeed critical to a service’s operation, while other 
objects should be secured from the service . Previously, to avoid running in the local system account 
to obtain access to required resources, a service would be run under a standard user account and 
ACLs would be added on the system objects, which greatly increased the risk of malicious code at-
tacking the system. Another solution was to create dedicated service accounts and set specific ACLs 
for each account (associated to a service), but this approach easily became an administrative hassle .

Windows now combines these two approaches into a much more manageable solution: it allows 
services to run in a nonprivileged account but still have access to specific privileged resources without 
lowering the security of those objects . In a manner similar to the second pre–Windows Vista solution, 
the ACLs on an object can now set permissions directly for a service, but not by requiring a dedicated 
account . Instead, the SCM generates a service SID to represent a service, and this SID can be used 
to set permissions on resources such as registry keys and files. Service SIDs are implemented in the 
group SIDs part of the token for any process hosting a service . They are generated by the SCM during 
system startup for each service that has requested one via the ChangeServiceConfig2 API . In the case 
of service-hosting processes (a process that contains more than one service), the process’ token will 
contain the service SIDs of all services that are part of the service group associated with the process, 
including services that are not started because there is no way to add new SIDs after a token has been 
created .

The usefulness of having a SID for each service extends beyond the mere ability to add ACL entries 
and permissions for various objects on the system as a way to have fine-grained control over their 
access . Our discussion initially covered the case in which certain objects on the system, accessible 
by a given account, must be protected from a service running within that same account . As we’ve 
described to this point, service SIDs prevent that problem only by requiring that Deny entries associ-
ated with the service SID be placed on every object that needs to be secured, a clearly unmanageable 
approach .

To avoid requiring Deny access control entries (ACEs) as a way to prevent services from having 
access to resources that the user account in which they run does have access, there are two types of 
service SIDs: the restricted service SID (SERVICE_SID_TYPE_RESTRICTED) and the unrestricted service 
SID (SERVICE_SID_TYPE_UNRESTRICTED), the latter being the default and the case we’ve looked at 
until now .

Unrestricted service SIDs are created as enabled-by-default, group owner SIDs, and the process 
token is also given a new ACE providing full permission to the service logon SID, which allows the 
service to continue communicating with the SCM . (A primary use of this would be to enable or disable 
service SIDs inside the process during service startup or shutdown .)

A restricted service SID, on the other hand, turns the service-hosting process’ token into a 
 write-restricted token (see Chapter 6 for more information on tokens), which means that only objects 
granting explicit write access to the service SID will be writable by the service, regardless of the 
 account it’s running as . Because of this, all services running inside that process (part of the same 
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service group) must have the restricted SID type; otherwise, services with the restricted SID type will 
fail to start . Once the token becomes write-restricted, three more SIDs are added for compatibility 
reasons:

 ■ The world SID is added to allow write access to objects that are normally accessible by anyone 
anyway, most importantly certain DLLs in the load path .

 ■ The service logon SID is added to allow the service to communicate with the SCM .

 ■ The write-restricted SID is added to allow objects to explicitly allow any write-restricted  service 
write access to them . For example, Event Tracing for Windows (ETW) uses this SID on its 
 objects to allow any write-restricted service to generate events .

Figure 4-8 shows an example of a service-hosting process containing services that have been 
marked as having restricted service SIDs . For example, the Base Filtering Engine (BFE), which is 
responsible for applying Windows Firewall filtering rules, is part of this service because these rules 
are stored in registry keys that must be protected from malicious write access should a service be 
compromised. (This could allow a service exploit to disable the outgoing traffic firewall rules, enabling 
bidirectional communication with an attacker, for example .)

FIGURE 4-8 Service with restricted service SIDs
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By blocking write access to objects that would otherwise be writable by the service (through 
 inheriting the permissions of the account it is running as), restricted service SIDs solve the other side 
of the problem we initially presented because users do not need to do anything to prevent a service 
running in a privileged account from having write access to critical system files, registry keys, or other 
objects, limiting the attack exposure of any such service that might have been compromised .

Windows also allows for firewall rules that reference service SIDs linked to one of the three 
 behaviors described in Table 4-10 .

TABLE 4-10 Network Restriction Rules

Scenario Example Restrictions

Network access blocked The shell hardware detection service 
(ShellHWDetection) .

All network communications are blocked 
(both incoming and outgoing) .

Network access statically 
port-restricted

The RPC service (Rpcss) operates on port 
135 (TCP and UDP) .

Network communications are restricted to 
specific TCP or UDP ports.

Network access dynamically 
port-restricted

The DNS service (Dns) listens on variable 
ports (UDP) .

Network communications are restricted to 
configurable TCP or UDP ports.

Interactive Services and Session 0 Isolation
One restriction for services running under the local system, local service, and network service 
 accounts that has always been present in Windows is that these services could not display (without 
using a special flag on the MessageBox function, discussed in a moment) dialog boxes or windows on 
the interactive user’s desktop . This limitation wasn’t the direct result of running under these accounts 
but rather a consequence of the way the Windows subsystem assigns service processes to window 
stations . This restriction is further enhanced by the use of sessions, in a model called Session Zero 
Isolation, a result of which is that services cannot directly interact with a user’s desktop .

The Windows subsystem associates every Windows process with a window station . A window 
 station contains desktops, and desktops contain windows . Only one window station can be visible 
on a console and receive user mouse and keyboard input . In a Terminal Services environment, one 
 window station per session is visible, but services all run as part of the console session . Windows 
names the visible window station WinSta0, and all interactive processes access WinSta0 .

Unless otherwise directed, the Windows subsystem associates services running in the local system 
account with a nonvisible window station named Service-0x0-3e7$ that all noninteractive services 
share. The number in the name, 3e7, represents the logon session identifier that the Local Security 
 Authority process (LSASS) assigns to the logon session the SCM uses for noninteractive services 
 running in the local system account .

Services configured to run under a user account (that is, not the local system account) are run in a 
different nonvisible window station named with the LSASS logon identifier assigned for the service’s 
logon session . Figure 4-9 shows a sample display from the Sysinternals WinObj tool, viewing the 
object manager directory in which Windows places window station objects . Visible are the interactive 
window station (WinSta0) and the noninteractive system service window station (Service-0x0-3e7$) .
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FIGURE 4-9 List of window stations

Regardless of whether services are running in a user account, the local system account, or the local 
or network service accounts, services that aren’t running on the visible window station can’t receive 
input from a user or display windows on the console . In fact, if a service were to pop up a normal 
dialog box on the window station, the service would appear hung because no user would be able to 
see the dialog box, which of course would prevent the user from providing keyboard or mouse input 
to dismiss it and allow the service to continue executing .

Note In the past, it was possible to use the special MB_SERVICE_NOTIFICATION or  
MB_DEFAULT_DESKTOP_ONLY flags with the MessageBox API to display messages on the 
interactive window station even if the service was marked as noninteractive . Because of 
session isolation, any service using this flag will receive an immediate IDOK return value, 
and the message box will never be displayed .

In rare cases, a service can have a valid reason to interact with the user via dialog boxes or 
 windows. To configure a service with the right to interact with the user, the SERVICE_INTERACTIVE_
PROCESS modifier must be present in the service’s registry key’s Type parameter. (Note that services 
configured to run under a user account can’t be marked as interactive .) When the SCM starts a service 
marked as interactive, it launches the service’s process in the local system account’s security context 
but connects the service with WinSta0 instead of the noninteractive service window station .

Were user processes to run in the same session as services, this connection to WinSta0 would allow 
the service to display dialog boxes and windows on the console and enable those windows to respond 
to user input because they would share the window station with the interactive services . However, 
only processes owned by the system and Windows services run in session 0; all other logon sessions, 
including those of console users, run in different sessions . Any window displayed by processes in 
 session 0 is therefore not visible to the user .
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This additional boundary helps prevent shatter attacks, whereby a less privileged application sends 
window messages to a window visible on the same window station to exploit a bug in a more privi-
leged process that owns the window, which permits it to execute code in the more privileged process .

To remain compatible with services that depend on user input, Windows includes a service that 
notifies users when a service has displayed a window . The Interactive Services Detection (UI0Detect) 
service looks for visible windows on the main desktop of the WinSta0 window station of session 0 and 
displays a notification dialog box on the console user’s desktop, allowing the user to switch to session 
0 and view the service’s UI . (This is akin to connecting to a local Terminal Services session or switching 
users .)

Note The Interactive Services Detection mechanism is purely for application compatibility, 
and developers are strongly recommended to move away from interactive services and use 
a secondary, nonprivileged helper application to communicate visually with the user . Local 
RPC or COM can be used between this helper application and the service for configuration 
purposes after UI input has been received .

The dialog box, an example of which is shown in Figure 4-10, includes the process name, the time 
when the UI message was displayed, and the title of the window being displayed . Once the user 
 connects to session 0, a similar dialog box provides a portal back to the user’s session. In the figure, 
the service displaying a window is Microsoft Paint, which was explicitly started by the Sysinternals 
PsExec utility with options that caused PsExec to run Paint in session 0 . You can try this yourself with 
the following command:

psexec –s –i 0 –d mspaint.exe

This tells PsExec to run Microsoft Paint as a system process (–s) running on session 0 (–i 0), and to 
return immediately instead of waiting for the process to finish (–d).

FIGURE 4-10 The Interactive Services Detection service at work
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If you click View The Message, you can switch to the console for session 0 (and switch back again 
with a similar window on the console) .

The Service Control Manager
The SCM’s executable file is %SystemRoot%\System32\Services.exe, and like most service processes, it 
runs as a Windows console program . The Wininit process starts the SCM early during the system boot . 
(Refer to Chapter 13 in Part 2 for details on the boot process .) The SCM’s startup function, SvcCtrl-
Main, orchestrates the launching of services that are configured for automatic startup.

SvcCtrlMain first creates a synchronization event named SvcctrlStartEvent_A3752DX that it initial-
izes as nonsignaled . Only after the SCM completes steps necessary to prepare it to receive commands 
from SCPs does the SCM set the event to a signaled state . The function that an SCP uses to establish a 
dialog with the SCM is OpenSCManager . OpenSCManager prevents an SCP from trying to contact the 
SCM before the SCM has initialized by waiting for SvcctrlStartEvent_A3752DX to become signaled .

Next, SvcCtrlMain gets down to business and calls ScGenerateServiceDB, the function that builds 
the SCM’s internal service database . ScGenerateServiceDB reads and stores the contents of  
HKLM\SYSTEM\CurrentControlSet\Control\ServiceGroupOrder\List, a REG_MULTI_SZ value that lists 
the names and order of the defined service groups. A service’s registry key contains an optional 
Group value if that service or device driver needs to control its startup ordering with respect to 
services from other groups . For example, the Windows networking stack is built from the bottom 
up, so networking services must specify Group values that place them later in the startup sequence 
than networking device drivers . The SCM internally creates a group list that preserves the ordering of 
the groups it reads from the registry . Groups include (but are not limited to) NDIS, TDI, Primary Disk, 
Keyboard Port, and Keyboard Class. Add-on and third-party applications can even define their own 
groups and add them to the list . Microsoft Transaction Server, for example, adds a group named MS 
Transactions .

ScGenerateServiceDB then scans the contents of HKLM\SYSTEM\CurrentControlSet\Services, 
creating an entry in the service database for each key it encounters . A database entry includes all the 
service-related parameters defined for a service as well as fields that track the service’s status. The 
SCM adds entries for device drivers as well as for services because the SCM starts services and drivers 
marked as auto-start and detects startup failures for drivers marked boot-start and system-start . It 
also provides a means for applications to query the status of drivers . The I/O manager loads  drivers 
marked boot-start and system-start before any user-mode processes execute, and therefore any 
 drivers having these start types load before the SCM starts .

ScGenerateServiceDB reads a service’s Group value to determine its membership in a group 
and associates this value with the group’s entry in the group list created earlier . The function also 
reads and records in the database the service’s group and service dependencies by querying its 
 DependOnGroup and DependOnService registry values . Figure 4-11 shows how the SCM organizes 
the service entry and group order lists . Notice that the service list is alphabetically sorted . The reason 
this list is sorted alphabetically is that the SCM creates the list from the Services registry key, and 
 Windows stores registry keys alphabetically .
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Service database
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FIGURE 4-11 Organization of a service database

During service startup, the SCM calls on LSASS (for example, to log on a service in a non-local 
system account), so the SCM waits for LSASS to signal the LSA_RPC_SERVER_ACTIVE synchronization 
event, which it does when it finishes initializing. Wininit also starts the LSASS process, so the initializa-
tion of LSASS is concurrent with that of the SCM, and the order in which LSASS and the SCM complete 
initialization can vary . Then SvcCtrlMain calls ScGetBootAndSystemDriverState to scan the service 
database looking for boot-start and system-start device driver entries .

ScGetBootAndSystemDriverState determines whether or not a driver successfully started by 
 looking up its name in the object manager namespace directory named \Driver. When a device driver 
 successfully loads, the I/O manager inserts the driver’s object in the namespace under this directory, 
so if its name isn’t present, it hasn’t loaded . Figure 4-12 shows WinObj displaying the contents of the 
Driver directory . SvcCtrlMain notes the names of drivers that haven’t started and that are part of the 
current profile in a list named ScFailedDrivers.

Before starting the auto-start services, the SCM performs a few more steps . It creates its remote 
procedure call (RPC) named pipe, which is named \Pipe\Ntsvcs, and then RPC launches a thread to 
listen on the pipe for incoming messages from SCPs . The SCM then signals its initialization-complete 
event, SvcctrlStartEvent_A3752DX . Registering a console application shutdown event handler and 
 registering with the Windows subsystem process via RegisterServiceProcess prepares the SCM for 
system shutdown .
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FIGURE 4-12 List of driver objects

Network Drive Letters
In addition to its role as an interface to services, the SCM has another totally unrelated 
 responsibility: it notifies GUI applications in a system whenever the system creates or deletes a 
network drive-letter connection . The SCM waits for the Multiple Provider Router (MPR) to signal 
a named event, \BaseNamedObjects\ScNetDrvMsg, which MPR signals whenever an application 
assigns a drive letter to a remote network share or deletes a remote-share drive-letter assign-
ment . (See Chapter 7, “Networking,” for more information on MPR .) When MPR signals the 
event, the SCM calls the GetDriveType Windows function to query the list of connected network 
drive letters . If the list changes across the event signal, the SCM sends a Windows broadcast 
message of type WM_DEVICECHANGE . The SCM uses either DBT_DEVICEREMOVECOMPLETE or 
DBT_DEVICEARRIVAL as the message’s subtype . This message is primarily intended for Windows 
Explorer so that it can update any open Computer windows to show the presence or absence of 
a network drive letter .

Service Startup
SvcCtrlMain invokes the SCM function ScAutoStartServices to start all services that have a Start value 
designating auto-start (except delayed auto-start services) . ScAutoStartServices also starts auto-start 
device drivers . To avoid confusion, you should assume that the term services means services and 
drivers unless indicated otherwise . The algorithm in ScAutoStartServices for starting services in the 
correct order proceeds in phases, whereby a phase corresponds to a group and phases proceed in the 
sequence defined by the group ordering stored in the HKLM\SYSTEM\CurrentControlSet\Control 
\ServiceGroupOrder\List registry value. The List value, shown in Figure 4-13, includes the names of 
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groups in the order that the SCM should start them . Thus, assigning a service to a group has no effect 
other than to fine-tune its startup with respect to other services belonging to different groups .

FIGURE 4-13 ServiceGroupOrder registry key

When a phase starts, ScAutoStartServices marks all the service entries belonging to the phase’s 
group for startup . Then ScAutoStartServices loops through the marked services seeing whether 
it can start each one . Part of this check includes seeing whether the service is marked as delayed 
auto-start, which causes the SCM to start it at a later stage . (Delayed auto-start services must also 
be ungrouped .) Another part of the check it makes consists of determining whether the service has 
a dependency on another group, as specified by the existence of the DependOnGroup value in the 
service’s registry key . If a dependency exists, the group on which the service is dependent must 
have already initialized, and at least one service of that group must have successfully started . If the 
service depends on a group that starts later than the service’s group in the group startup sequence, 
the SCM notes a “circular dependency” error for the service . If ScAutoStartServices is considering a 
Windows service or an auto-start device driver, it next checks to see whether the service depends 
on one or more other services, and if so, if those services have already started . Service dependencies 
are indicated with the DependOnService registry value in a service’s registry key . If a service depends 
on other services that belong to groups that come later in the ServiceGroupOrder\List, the SCM also 
generates a “circular dependency” error and doesn’t start the service . If the service depends on any 
services from the same group that haven’t yet started, the service is skipped .

When the dependencies of a service have been satisfied, ScAutoStartServices makes a final check 
to see whether the service is part of the current boot configuration before starting the service. When 
the system is booted in safe mode, the SCM ensures that the service is either identified by name or by 
group in the appropriate safe boot registry key . There are two safe boot keys, Minimal and Network, 
under HKLM\SYSTEM\CurrentControlSet\Control\SafeBoot, and the one that the SCM checks de-
pends on what safe mode the user booted . If the user chose Safe Mode or Safe Mode With Command 
Prompt at the special boot menu (which you can access by pressing F8 early in the boot process), 
the SCM references the Minimal key; if the user chose Safe Mode With Networking, the SCM refers 
to Network . The existence of a string value named Option under the SafeBoot key indicates not only 
that the system booted in safe mode but also the type of safe mode the user selected . For more 
information about safe boots, see the section “Safe Mode” in Chapter 13 in Part 2 .
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Once the SCM decides to start a service, it calls ScStartService, which takes different steps for 
services than for device drivers . When ScStartService starts a Windows service, it first determines the 
name of the file that runs the service’s process by reading the ImagePath value from the service’s 
 registry key . It then examines the service’s Type value, and if that value is SERVICE_WINDOWS_SHARE_
PROCESS (0x20), the SCM ensures that the process the service runs in, if already started, is logged on 
using the same account as specified for the service being started. (This is to ensure that the service 
is not configured with the wrong account, such as a LocalService account, but with an image path 
pointing to a running Svchost, such as netsvcs, which runs as LocalSystem .) A service’s ObjectName 
registry value stores the user account in which the service should run . A service with no ObjectName 
or an ObjectName of LocalSystem runs in the local system account .

The SCM verifies that the service’s process hasn’t already been started in a different account by 
checking to see whether the service’s ImagePath value has an entry in an internal SCM database 
called the image database . If the image database doesn’t have an entry for the ImagePath value, 
the SCM creates one . When the SCM creates a new entry, it stores the logon account name used for 
the service and the data from the service’s ImagePath value . The SCM requires services to have an 
ImagePath value . If a service doesn’t have an ImagePath value, the SCM reports an error stating that it 
couldn’t find the service’s path and isn’t able to start the service. If the SCM locates an existing image 
database entry with matching ImagePath data, the SCM ensures that the user account information 
for the service it’s starting is the same as the information stored in the database entry—a process can 
be logged on as only one account, so the SCM reports an error when a service specifies a different 
 account name than another service that has already started in the same process .

The SCM calls ScLogonAndStartImage to log on a service if the service’s configuration specifies and 
to start the service’s process . The SCM logs on services that don’t run in the System account by calling 
the LSASS function LogonUserEx . LogonUserEx normally requires a password, but the SCM indicates to 
LSASS that the password is stored as a service’s LSASS “secret” under the key HKLM\SECURITY\Policy 
\Secrets in the registry. (Keep in mind that the contents of SECURITY aren’t typically visible  because 
its default security settings permit access only from the System account .) When the SCM calls 
 LogonUserEx, it specifies a service logon as the logon type, so LSASS looks up the password in the 
Secrets subkey that has a name in the form _SC_<service name>.

The SCM directs LSASS to store a logon password as a secret using the LsaStorePrivateData 
 function when an SCP configures a service’s logon information . When a logon is successful, 
 LogonUserEx returns a handle to an access token to the caller . Windows uses access tokens to rep-
resent a user’s security context, and the SCM later associates the access token with the process that 
implements the service .

After a successful logon, the SCM loads the account’s profile information, if it’s not already loaded, 
by calling the UserEnv DLL’s (%SystemRoot%\System32\Userenv.dll) LoadUserProfile function . The 
value HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProfileList\<user profile key>\
ProfileImagePath contains the location on disk of a registry hive that LoadUserProfile loads into the 
registry, making the information in the hive the HKEY_CURRENT_USER key for the service .
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An interactive service must open the WinSta0 window station, but before ScLogonAndStartImage 
allows an interactive service to access WinSta0 it checks to see whether the value HKLM\SYSTEM 
\CurrentControlSet\Control\Windows\NoInteractiveServices is set. Administrators set this value to 
prevent services marked as interactive from displaying windows on the console . This option is desir-
able in unattended server environments in which no user is present to respond to the Session 0 UI 
Discovery notification from interactive services.

As its next step, ScLogonAndStartImage proceeds to launch the service’s process, if the  process 
hasn’t already been started (for another service, for example) . The SCM starts the process in a 
 suspended state with the CreateProcessAsUser Windows function . The SCM next creates a named pipe 
through which it communicates with the service process, and it assigns the pipe the name  
\Pipe\Net\NtControlPipeX, where X is a number that increments each time the SCM creates a pipe. 
The SCM resumes the service process via the ResumeThread function and waits for the service to 
 connect to its SCM pipe. If it exists, the registry value HKLM\SYSTEM\CurrentControlSet\Control 
\ServicesPipeTimeout determines the length of time that the SCM waits for a service to call  
StartServiceCtrlDispatcher and connect before it gives up, terminates the process, and concludes that 
the service failed to start . If ServicesPipeTimeout doesn’t exist, the SCM uses a default timeout of 30 
seconds . The SCM uses the same timeout value for all its service communications .

When a service connects to the SCM through the pipe, the SCM sends the service a start 
 command . If the service fails to respond positively to the start command within the timeout 
 period, the SCM gives up and moves on to start the next service . When a service doesn’t respond 
to a start request, the SCM doesn’t terminate the process, as it does when a service doesn’t call 
 StartServiceCtrlDispatcher within the timeout; instead, it notes an error in the system Event Log that 
indicates the service failed to start in a timely manner .

If the service the SCM starts with a call to ScStartService has a Type registry value of SERVICE_ 
KERNEL_DRIVER or SERVICE_FILE_SYSTEM_DRIVER, the service is really a device driver, so 
 ScStartService calls ScLoadDeviceDriver to load the driver . ScLoadDeviceDriver enables the load driver 
security privilege for the SCM process and then invokes the kernel service NtLoadDriver, passing in 
the data in the ImagePath value of the driver’s registry key . Unlike services, drivers don’t need to 
specify an ImagePath value, and if the value is absent, the SCM builds an image path by appending 
the driver’s name to the string %SystemRoot%\System32\Drivers\.

ScAutoStartServices continues looping through the services belonging to a group until all the 
 services have either started or generated dependency errors . This looping is the SCM’s way of 
 automatically ordering services within a group according to their DependOnService  dependencies . 
The SCM will start the services that other services depend on in earlier loops, skipping the depen-
dent services until subsequent loops . Note that the SCM ignores Tag values for Windows services, 
which you might come across in subkeys under the HKLM\SYSTEM\CurrentControlSet\Services 
key; the I/O manager honors Tag values to order device driver startup within a group for boot-
start and  system-start drivers . Once the SCM completes phases for all the groups listed in the 
 ServiceGroupOrder\List value, it performs a phase for services belonging to groups not listed in the 
value and then executes a final phase for services without a group.
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After handling auto-start services, the SCM calls ScInitDelayStart, which queues a delayed 
work item associated with a worker thread responsible for processing all the services that 
 ScAutoStartServices skipped because they were marked delayed auto-start . This worker thread will 
execute after the delay . The default delay is 120 seconds, but it can be overridden by the creating 
an AutoStartDelay value in HKLM\SYSTEM\CurrentControlSet\Control. The SCM performs the same 
 actions as those used during startup of nondelayed auto-start services .

Delayed Auto-Start Services
Delayed auto-start services enable Windows to cope with the growing number of services that 
are being started when a user logs on, bogging down the boot-up process and increasing the 
time before a user is able to get responsiveness from the desktop . The design of auto-start 
services was primarily intended for services required early in the boot process because other 
services depend on them, a good example being the RPC service, on which all other services 
depend . The other use was to allow unattended startup of a service, such as the Windows 
Update service . Because many auto-start services fall in this second category, marking them as 
delayed auto-start allows critical services to start faster and for the user’s desktop to be ready 
sooner when a user logs on immediately after booting . Additionally, these services run in back-
ground mode, which lowers their thread, I/O, and memory priority. Configuring a service for 
delayed auto-start requires calling the ChangeServiceConfig2 API. You can check the state of 
the flag for a service by using the qc bits option of sc.exe instead.

Note If a nondelayed auto-start service has a delayed auto-start service as one of its 
 dependencies, the delayed auto-start flag will be ignored and the service will be started 
immediately in order to satisfy the dependency .

When it’s finished starting all auto-start services and drivers, as well as setting up the delayed 
auto-start work item, the SCM signals the event \BaseNamedObjects\SC_AutoStartComplete. This 
event is used by the Windows Setup program to gauge startup progress during installation .

Startup Errors
If a driver or a service reports an error in response to the SCM’s startup command, the  ErrorControl 
value of the service’s registry key determines how the SCM reacts . If the ErrorControl value is 
 SERVICE_ERROR_IGNORE (0) or the ErrorControl value isn’t specified, the SCM simply ignores the 
 error and continues processing service startups . If the ErrorControl value is SERVICE_ERROR_NORMAL 
(1), the SCM writes an event to the system Event Log that says, “The <service name> service failed 
to start due to the following error:” . The SCM includes the textual representation of the Windows 
error code that the service returned to the SCM as the reason for the startup failure in the Event Log 
record . Figure 4-14 shows the Event Log entry that reports a service startup error .
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FIGURE 4-14 Service startup failure Event Log entry

If a service with an ErrorControl value of SERVICE_ERROR_SEVERE (2) or SERVICE_ERROR_CRITICAL 
(3) reports a startup error, the SCM logs a record to the Event Log and then calls the internal function 
ScRevertToLastKnownGood. This function switches the system’s registry configuration to a version, 
named last known good, with which the system last booted successfully . Then it restarts the system 
using the NtShutdownSystem system service, which is implemented in the executive . If the system is 
already booting with the last known good configuration, the system just reboots.

Accepting the Boot and Last Known Good
Besides starting services, the system charges the SCM with determining when the system’s registry 
configuration, HKLM\SYSTEM\CurrentControlSet, should be saved as the last known good control 
set . The CurrentControlSet key contains the Services key as a subkey, so CurrentControlSet includes 
the registry representation of the SCM database . It also contains the Control key, which stores many 
kernel-mode and user-mode subsystem configuration settings. By default, a successful boot consists 
of a successful startup of auto-start services and a successful user logon . A boot fails if the system 
halts because a device driver crashes the system during the boot or if an auto-start service with an 
ErrorControl value of SERVICE_ERROR_SEVERE or SERVICE_ERROR_CRITICAL reports a startup error .

The SCM obviously knows when it has completed a successful startup of the auto-start 
 services, but Winlogon (%SystemRoot%\System32\Winlogon.exe) must notify it when there is a 
 successful logon . Winlogon invokes the NotifyBootConfigStatus function when a user logs on, and 
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 NotifyBootConfigStatus sends a message to the SCM . Following the successful start of the auto-start 
services or the receipt of the message from NotifyBootConfigStatus (whichever comes last), the SCM 
calls the system function NtInitializeRegistry to save the current registry startup configuration.

Third-party software developers can supersede Winlogon’s definition of a successful logon with 
their own definition. For example, a system running Microsoft SQL Server might not consider a boot 
successful until after SQL Server is able to accept and process transactions . Developers  impose their 
definition of a successful boot by writing a boot-verification program and installing the  program by 
pointing to its location on disk with the value stored in the registry key HKLM\SYSTEM 
\ CurrentControlSet\Control\BootVerificationProgram. In addition, a boot-verification program’s 
 installation must disable Winlogon’s call to NotifyBootConfigStatus by setting HKLM\SOFTWARE 
\Microsoft\Windows NT\CurrentVersion\Winlogon\ReportBootOk to 0. When a boot-verification 
 program is installed, the SCM launches it after finishing auto-start services and waits for the 
 program’s call to NotifyBootConfigStatus before saving the last known good control set .

Windows maintains several copies of CurrentControlSet, and CurrentControlSet is really a  symbolic 
registry link that points to one of the copies. The control sets have names in the form HKLM\SYSTEM 
\ControlSetnnn, where nnn is a number such as 001 or 002. The HKLM\SYSTEM\Select key con-
tains values that identify the role of each control set . For example, if CurrentControlSet points to 
 ControlSet001, the Current value under Select has a value of 1 . The LastKnownGood value under 
Select contains the number of the last known good control set, which is the control set last used to 
boot successfully . Another value that might be on your system under the Select key is Failed, which 
points to the last control set for which the boot was deemed unsuccessful and aborted in favor of an 
attempt at booting with the last known good control set . Figure 4-15 displays a system’s control sets 
and Select values .

NtInitializeRegistry takes the contents of the last known good control set and synchronizes it with 
that of the CurrentControlSet key’s tree. If this was the system’s first successful boot, the last known 
good won’t exist and the system will create a new control set for it . If the last known good tree exists, 
the system simply updates it with differences between it and CurrentControlSet .

Last known good is helpful in situations in which a change to CurrentControlSet, such as the 
 modification of a system performance-tuning value under HKLM\SYSTEM\Control or the addition 
of a service or device driver, causes the subsequent boot to fail . Users can press F8 early in the boot 
 process to bring up a menu that lets them direct the boot to use the last known good control set, 
rolling the system’s registry configuration back to the way it was the last time the system booted 
 successfully . Chapter 13 in Part 2 describes in more detail the use of last known good and other 
 recovery mechanisms for troubleshooting system startup problems .
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FIGURE 4-15 Control set selection key

Service Failures
A service can have optional FailureActions and FailureCommand values in its registry key that the SCM 
records during the service’s startup . The SCM registers with the system so that the system signals the 
SCM when a service process exits . When a service process terminates unexpectedly, the SCM deter-
mines which services ran in the process and takes the recovery steps specified by their failure-related 
registry values . Additionally, services are not only limited to requesting failure actions during crashes 
or unexpected service termination, since other problems, such as a memory leak, could also result in 
service failure .

If a service enters the SERVICE_STOPPED state and the error code returned to the SCM is not 
 ERROR_SUCCESS, the SCM will check whether the service has the FailureActionsOnNonCrashFailures 
flag set and perform the same recovery as if the service had crashed. To use this functionality, the 
service must be configured via the ChangeServiceConfig2 API or the system administrator can use the 
Sc .exe utility with the Failureflag parameter to set FailureActionsOnNonCrashFailures to 1 . The default 
value being 0, the SCM will continue to honor the same behavior as on earlier versions of Windows 
for all other services .

Actions that a service can configure for the SCM include restarting the service, running a program, 
and rebooting the computer . Furthermore, a service can specify the failure actions that take place the 
first time the service process fails, the second time, and subsequent times, and it can indicate a delay 
period that the SCM waits before restarting the service if the service asks to be restarted . The service 
failure action of the IIS Admin Service results in the SCM running the IISReset application, which 
performs cleanup work and then restarts the service . You can easily manage the recovery actions for 
a service using the Recovery tab of the service’s Properties dialog box in the Services MMC snap-in, as 
shown in Figure 4-16 .
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FIGURE 4-16 Service recovery options

Service Shutdown
When Winlogon calls the Windows ExitWindowsEx function, ExitWindowsEx sends a message to Csrss, 
the Windows subsystem process, to invoke Csrss’s shutdown routine . Csrss loops through the active 
processes and notifies them that the system is shutting down. For every system process except the 
SCM, Csrss waits up to the number of seconds specified by HKU\.DEFAULT\Control Panel\Desktop 
\WaitToKillAppTimeout (which defaults to 20 seconds) for the process to exit before moving on to the 
next process . When Csrss encounters the SCM process, it also notifies it that the system is shutting 
down but employs a timeout specific to the SCM. Csrss recognizes the SCM using the process ID Csrss 
saved when the SCM registered with Csrss using the RegisterServicesProcess function during system 
initialization . The SCM’s timeout differs from that of other processes because Csrss knows that the 
SCM communicates with services that need to perform cleanup when they shut down, so an adminis-
trator might need to tune only the SCM’s timeout . The SCM’s timeout value resides in the  
HKLM\SYSTEM\CurrentControlSet\Control\WaitToKillServiceTimeout registry value, and it defaults to 
12 seconds .

The SCM’s shutdown handler is responsible for sending shutdown notifications to all the 
 services that requested shutdown notification when they initialized with the SCM. The SCM func-
tion  ScShutdownAllServices loops through the SCM services database searching for services desiring 
shutdown notification and sends each one a shutdown command. For each service to which it sends 
a shutdown command, the SCM records the value of the service’s wait hint, a value that a service also 
specifies when it registers with the SCM. The SCM keeps track of the largest wait hint it receives. After 
sending the shutdown messages, the SCM waits either until one of the services it notified of shutdown 
exits or until the time specified by the largest wait hint passes.
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If the wait hint expires without a service exiting, the SCM determines whether one or more of the 
services it was waiting on to exit have sent a message to the SCM telling the SCM that the service is 
progressing in its shutdown process . If at least one service made progress, the SCM waits again for 
the duration of the wait hint . The SCM continues executing this wait loop until either all the services 
have exited or none of the services upon which it’s waiting has notified it of progress within the wait 
hint timeout period .

While the SCM is busy telling services to shut down and waiting for them to exit, Csrss waits for 
the SCM to exit . If Csrss’s wait ends without the SCM having exited (the WaitToKillServiceTimeout time 
expired), Csrss kills the SCM and continues the shutdown process . Thus, services that fail to shut down 
in a timely manner are killed . This logic lets the system shut down in the face of services that never 
complete a shutdown as a result of flawed design, but it also means that services that require more 
than 20 seconds will not complete their shutdown operations .

Additionally, because the shutdown order is not deterministic, services that might depend on other 
services to shut down first (called shutdown dependencies) have no way to report this to the SCM and 
might never have the chance to clean up either .

To address these needs, Windows implements preshutdown notifications and shutdown ordering 
to combat the problems caused by these two scenarios. Preshutdown notifications are sent, using the 
same mechanism as shutdown notifications, to services that have requested preshutdown notification 
via the SetServiceStatus API, and the SCM will wait for them to be acknowledged .

The idea behind these notifications is to flag services that might take a long time to clean up (such 
as database server services) and give them more time to complete their work . The SCM will send a 
progress query request and wait three minutes for a service to respond to this notification. If the 
service does not respond within this time, it will be killed during the shutdown procedure; otherwise, 
it can keep running as long as it needs, as long as it continues to respond to the SCM .

Services that participate in the preshutdown can also specify a shutdown order with respect to 
other preshutdown services. Services that depend on other services to shut down first (for example, 
the Group Policy service needs to wait for Windows Update to finish) can specify their shutdown 
 dependencies in the HKLM\SYSTEM\CurrentControlSet\Control\PreshutdownOrder registry value.

Shared Service Processes
Running every service in its own process instead of having services share a process whenever possible 
wastes system resources . However, sharing processes means that if any of the services in the process 
has a bug that causes the process to exit, all the services in that process terminate .

Of the Windows built-in services, some run in their own process and some share a process with 
other services . For example, the LSASS process contains security-related services—such as the 
 Security Accounts Manager (SamSs) service, the Net Logon (Netlogon) service, and the Crypto Next 
Generation (CNG) Key Isolation (KeyIso) service .

There is also a generic process named Service Host (SvcHost–%SystemRoot%\System32\Svchost.exe) 
to contain multiple services . Multiple instances of SvcHost can be running in different processes . 
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Services that run in SvcHost processes include Telephony (TapiSrv), Remote Procedure Call (RpcSs), 
and Remote Access Connection Manager (RasMan) . Windows implements services that run in SvcHost 
as DLLs and includes an ImagePath definition of the form “%SystemRoot%\System32\svchost.exe –k 
netsvcs” in the service’s registry key . The service’s registry key must also have a registry value named 
ServiceDll under a Parameters subkey that points to the service’s DLL file.

All services that share a common SvcHost process specify the same parameter (“–k netsvcs” in the 
example in the preceding paragraph) so that they have a single entry in the SCM’s image database . 
When the SCM encounters the first service that has a SvcHost ImagePath with a particular parameter 
during service startup, it creates a new image database entry and launches a SvcHost process with the 
parameter . The new SvcHost process takes the parameter and looks for a value having the same name 
as the parameter under HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Svchost. SvcHost 
reads the contents of the value, interpreting it as a list of service names, and notifies the SCM that it’s 
hosting those services when SvcHost registers with the SCM .

When the SCM encounters a SvcHost service (by checking the service type value) during service 
startup with an ImagePath matching an entry it already has in the image database, it doesn’t launch 
a second process but instead just sends a start command for the service to the SvcHost it already 
started for that ImagePath value . The existing SvcHost process reads the ServiceDll parameter in the 
service’s registry key and loads the DLL into its process to start the service .

Table 4-11 lists all the default service groupings on Windows and some of the services that are 
registered for each of them .

TABLE 4-11 Major Service Groupings

Service Group Services Notes

LocalService Network Store Interface, Windows 
Diagnostic Host, Windows Time, 
COM+ Event System, HTTP Auto-Proxy 
Service, Software Protection Platform UI 
Notification, Thread Order Service, LLDT 
Discovery, SSL, FDP Host, WebClient

Services that run in the local 
service account and make use 
of the network on various ports 
or have no network usage at all 
(and hence no restrictions) .

LocalServiceAndNoImpersonation UPnP and SSDP, Smart Card, TPM, Font 
Cache, Function Discovery, AppID, qWAVE, 
Windows Connect Now, Media Center 
Extender, Adaptive Brightness

Services that run in the local 
service account and make use 
of the network on a fixed set of 
ports . Services run with a write-
restricted token .

LocalServiceNetworkRestricted DHCP, Event Logger, Windows Audio, 
NetBIOS, Security Center, Parental Controls, 
HomeGroup Provider

Services that run in the local 
service account and make use 
of the network on a fixed set 
of ports .

LocalServiceNoNetwork Diagnostic Policy Engine, Base Filtering 
Engine, Performance Logging and Alerts, 
Windows Firewall, WWAN AutoConfig

Services that run in the  local 
service account but make 
no use of the network at all . 
Services run with a write- 
restricted token .
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Service Group Services Notes

LocalSystemNetworkRestricted DWM, WDI System Host, Network 
Connections, Distributed Link Tracking, 
Windows Audio Endpoint, Wired/
WLAN AutoConfig, Pnp-X, HID Access, 
User-Mode Driver Framework Service, 
Superfetch, Portable Device Enumerator, 
HomeGroup Listener, Tablet Input, Program 
Compatibility, Offline Files

Services that run in the local 
system account and make use 
of the network on a fixed set 
of ports .

NetworkService Cryptographic Services, DHCP Client, 
Terminal Services, WorkStation, Network 
Access Protection, NLA, DNS Client, 
Telephony, Windows Event Collector, 
WinRM

Services that run in the network 
service  account and make use 
of the network on various ports 
(or have no enforced network 
restrictions) .

NetworkServiceAndNoImpersonation KTM for DTC Services that run in the network 
service account and make use 
of the network on a fixed set of 
ports . Services run with a write-
restricted token .

NetworkServiceNetworkRestricted IPSec Policy Agent Services that run in the network 
service  account and make use 
of the network on a fixed set 
of ports .

EXPERIMENT: Viewing Services Running Inside Processes
The Process Explorer utility shows detailed information about the services running within 
 processes . Run Process Explorer, and view the Services tab in the Process Properties dialog 
box for the following processes: Services .exe, Lsass .exe, and Svchost .exe . Several instances of 
SvcHost will be running on your system, and you can see the account in which each is running 
by adding the Username column to the Process Explorer display or by looking at the Username 
field on the Image tab of a process’ Process Properties dialog box. The following screen shows 
the list of services running within a SvcHost executing in the local service account:
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The information displayed includes the service’s name, display name, and description, if 
it has one, which Process Explorer shows beneath the service list when you select a service . 
 Additionally, the path of the DLL containing the service is shown . This information is useful for 
mapping thread start addresses (shown on the Threads tab) to their respective services, which 
can help in cases of service-related problems such as troubleshooting high CPU usage .

You can also use the tlist .exe tool from the Debugging Tools for Windows or Tasklist, which 
ships with Windows, to view the list of services running within processes from a command 
prompt . The syntax to see services with Tlist is:

tlist /s

The syntax for tasklist is:

tasklist /svc

Note that these utilities do not show service display names or descriptions, only service names .

Service Tags
One of the disadvantages of using service-hosting processes is that accounting for CPU time and 
 usage, as well as for the usage of resources, by a specific service is much harder because each service 
is sharing the memory address space, handle table, and per-process CPU accounting numbers with 
the other services that are part of the same service group . Although there is always a thread inside 
the service-hosting process that belongs to a certain service, this association might not always be 
easy to make . For example, the service might be using worker threads to perform its operation, or 
perhaps the start address and stack of the thread do not reveal the service’s DLL name, making it hard 
to figure out what kind of work a thread might exactly be doing and to which service it might belong.

Windows implements a service attribute called the service tag, which the SCM generates by calling 
ScGenerateServiceTag when a service is created or when the service database is generated during 
system boot . The attribute is simply an index identifying the service . The service tag is stored in the 
SubProcessTag field of the thread environment block (TEB) of each thread (see Chapter 5, “Processes 
and Threads,” for more information on the TEB) and is propagated across all threads that a main 
 service thread creates (except threads created indirectly by thread-pool APIs) .

Although the service tag is kept internal to the SCM, several Windows utilities, like Netstat .exe 
(a utility you can use for displaying which programs have opened which ports on the network), use 
undocumented APIs to query service tags and map them to service names . Because the TCP/IP stack 
saves the service tag of the threads that create TCP/IP end points, when you run Netstat with the 
–b parameter, Netstat can report the service name for end points created by services . Another tool 
you can use to look at service tags is ScTagQuery from Winsider Seminars & Solutions Inc .  
(www.winsiderss.com/tools/sctagquery/sctagquery.htm) . It can query the SCM for the mappings of 
every service tag and display them either systemwide or per-process . It can also show you to which 
services all the threads inside a service-hosting process belong . (This is conditional on those threads 
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having a proper service tag associated with them .) This way, if you have a runaway service consuming 
lots of CPU time, you can identify the culprit service in case the thread start address or stack does not 
have an obvious service DLL associated with it .

Unified Background Process Manager

Various Windows components have traditionally been in charge of managing hosted or background 
tasks as the operating system has increased in complexity in features, from the Service Control 
 Manager described earlier to the Task Scheduler, the DCOM Server Launcher, and the WMI Provider—
all of which are also responsible for the execution of out-of-process, hosted code . Today, Windows 
implements a Unified Background Process Manager (UBPM), which handles (at least, for now) two 
of these mechanisms—the SCM and Task Scheduler—providing the ability for these components to 
 access UBPM functionality .

UBPM is implemented in Services .exe, in the same location as the SCM, but as a separate  library 
providing its own interface over RPC (similarly to how the Plug and Play Manager also runs in 
 Services .exe but is a separate component) . It provides access to that interface through a public export 
DLL, Ubpm .dll, which is exposed to third-party service developers through new Trigger APIs that have 
been added to the SCM . The SCM then loads a custom SCM Extension DLL (Scext .dll), which calls into 
Ubpm .dll . This layer of indirection is needed for MinWin support, where Scext .dll is not loaded and 
the SCM provides only minimal functionality . Figure 4-17 describes this architecture .

SCM
(services.exe)

Task Scheduler
(Schedsvc.dll)

SCM Extension DLL

UBPM API DLL (Ubpm.dll)

Unified Background
Process Manager (UBPM)

(Services.exe)

Services... Tasks...

Public API

FIGURE 4-17 Overall UBPM architecture
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Initialization
UBPM is initialized by the SCM when its UbpmInitialize export is called by ScExtInitializeTerminateUbpm 
in the SCM Extension DLL . As such, it is implemented as a DLL running within the context of the SCM, 
not as its own separate process .

UBPM first begins initialization by setting up its internal utility library. By leveraging many of the 
improvements in newer versions of Windows, UBPM uses a thread pool to process the many incoming 
events we will later see, which allows it to scale from having a single worker thread to having up to 
1000 (based on a maximum processing of 10,000 consumers) .

Next, UBPM initializes its internal tracing support, which can be configured in the HKLM\Software 
\Microsoft\Windows NT\CurrentVersion\Tracing\UBPM\Regular key using the Flags value. This is 
useful for debugging and monitoring the behavior of the UBPM using the WPP tracing mechanism 
described in the Windows Driver Kit .

Following that, the event manager is set up, which will be used by later components of UBPM to 
report internal event states . The event manager registers a TASKSCHED GUID on which ETW events 
can be consumed, and it logs its state to a TaskScheduler.log file.

The next step, critical to UBPM, is to initialize its own real-time ETW consumer, which is the central 
mechanism used by UBPM to perform its job, as almost all the data it receives comes over as ETW 
events . UBPM starts an ETW real-time session in secure mode, meaning that it will be the only process 
capable of receiving its events, and it names its session UBPM. It also enables the first built-in provider 
(owned by the kernel) in order to receive notifications related to time changes.

It then associates an event callback—UbpmpEventCallback—with incoming events and creates a 
consumer thread, UbpmpConsumeEvents, that waits for the SCM’s event used to signify that auto-
start events have completed (which was named previously) . Once this happens, the consumer thread 
calls ProcessTrace, which calls into ETW and blocks the thread until the ETW trace is completed 
 (normally, only once UBPM exists) . The event callback, on the other hand, consumes each ETW event 
as it arrives and processes it according to the algorithm we’ll see in the next section .

ETW automatically replays any events that were missed before ProcessTrace was called, which 
means that kernel events during the boot will all be incoming at once and processed appropriately . 
UBPM also waits on the SCM’s auto-start event, which makes sure that when these events do come in, 
there will at least have been a couple of services that registered for them; otherwise, starting the trace 
too early will result in events with no registered consumers, which will cause them to be lost .

Finally, UBPM sets up a local RPC interface to TaskHost—the second component of UBPM, which 
we’ll describe later—and it also sets up its own local RPC interface, which exposes the APIs that al-
lows services to use UBPM functionality (such as registering trigger providers, generating triggers 
and notifications, and so forth). These APIs are implemented in the Ubpm.dll library and use RPC to 
 communicate to the RPC interface in the UBPM code of Services .exe .

When UBPM exits, the opposite actions in the reverse order are performed to reset the system to 
its previous state .
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UBPM API
UBPM enables the following mechanisms to be used by having services use the UBPM API:

 ■ Registering and unregistering a trigger provider, as well as opening and closing a handle to 
one

 ■ Generating a notification or a trigger

 ■ Setting and querying the configuration of a trigger provider

 ■ Sending a control command to a trigger provider

Provider Registration
Providers are registered through the SCM Extension DLL, which uses the ScExtpRegisterProvider 
 function that is used by ScExtGenerateNotification . This opens a handle to UBPM and calls the 
 UbpmRegisterTriggerProvider API. When a service registers a provider, it must define a unique name 
and GUID for the provider, as well as the necessary flags to define the provider (for example, by using 
the ETW provider flag). Additionally, providers can also have a friendly name as well as a description. 
Once registration is completed, the provider is inserted into UBPM’s provider list, the total count of 
providers is incremented, and, if this is an ETW provider that’s not being started with the disabled 
flag, the provider’s GUID is enabled in the real-time ETW trace that UBPM activated upon initializa-
tion . A provider block is created containing all the provider’s information that was captured from the 
registration .

Now that a provider is registered, the open and close API can be used to increment the reference 
count to the provider and return its provider block . Furthermore, if the provider was not registered in 
a disabled state, and this is the first reference to it, its GUID is enabled in the real-time ETW trace.

Similarly, unregistering a provider will disable its GUID and unlink it from the provider list, and as 
soon as all references are closed, the provider block will be deleted .

EXPERIMENT: Viewing UBPM Trigger Providers
You can use the Performance Monitor to see UBPM actively monitoring all the ETW providers 
that have registered with it . Follow these instructions to do so:

1. Open the Performance Monitor by clicking on the Start button, and then choosing 
Run .

2. Type perfmon, and click OK .

3. When Performance Monitor launches, expand Data Collector Sets on the left sidebar 
by clicking the arrow .

4. Choose Event Trace Sessions from the list, and then double click on the UBPM entry .
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The following screen shot displays the UBPM trigger providers on the author’s machine . You 
should see a similar display .

As you can see from the large list, dozens of providers are registered, each of them capable 
of generating individual events . For example, the BfeTriggerProvider handles Firewall events . In 
a later experiment, you will see a consumer of such an event .

Consumer Registration
Service consumer registration is initially exposed by the ScExtRegisterTriggerConsumer callback that 
the SCM Extension DLL provides . Its job is to receive all the SCM-formatted trigger information (which 
service developers provide according to the MSDN API documentation, “Service Trigger Events” avail-
able on MSDN) and convert that information into the raw data structures that UBPM internally uses . 
Once all the processing is finished, the SCM Extension DLL packages the trigger and associates it with 
two actions: UBPM Start Service and UBPM Stop Service .

The Scheduled Tasks service, which also leverages UBPM, provides similar functionality through an 
internal UBPM Singleton Class, which calls into Ubpm .dll . It allows its internal RegisterTask API to also 
register for trigger consumption, and it does similar processing of its input data, with the difference 
being that it uses the UBPM Start EXE action . Next, to actually perform the registration, both open a 
handle to UBPM, check if the consumer is already registered (changes to existing consumers are not 
allowed), and finally register the provider through the UbpmRegisterTriggerConsumer API .
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Trigger consumer registration is done by UbpmTriggerProviderRegister, which validates the request, 
adds the provider’s GUID into the list of providers, and toggles it to enable the ETW trace to now 
receive events about this provider as well .

EXPERIMENT: Viewing Which Services React to Which Triggers
Certain Windows services are already preconfigured to consume the appropriate triggers to 
prevent them from staying resident even when they’re not needed, such as the Windows Time 
Service, the Tablet Input Service, and the Computer Browser service . The sc command lets you 
query information about a service’s triggers with the qtriggerinfo option .

1. Open a command prompt .

2. Type the following to see the triggers for the Windows Time Service:

sc qtriggerinfo w32time 
 
[SC] QueryServiceConfig2 SUCCESS 
SERVICE_NAME: w32time 
 
        START SERVICE 
          DOMAIN JOINED STATUS         : 1ce20aba-9851-4421-9430-1ddeb766e809 
[DOMAIN JOINED] 
        STOP SERVICE 
          DOMAIN JOINED STATUS         : ddaf516e-58c2-4866-9574-c3b615d42ea1 
[NOT DOMAIN JOINED] 

3. Now look at the Tablet Input Service:

sc qtriggerinfo tabletinputservice 
[SC] QueryServiceConfig2 SUCCESS 
SERVICE_NAME: tabletinputservice 
 
        START SERVICE 
          DEVICE INTERFACE ARRIVAL     : 4d1e55b2-f16f-11cf-88cb-001111000030 
[INTERFACE CLASS GUID] 
            DATA                       : HID_DEVICE_UP:000D_U:0001 
            DATA                       : HID_DEVICE_UP:000D_U:0002 
            DATA                       : HID_DEVICE_UP:000D_U:0003 
            DATA                       : HID_DEVICE_UP:000D_U:0004

4. Finally, here is the Computer Browser Service:

sc qtriggerinfo browser 
[SC] QueryServiceConfig2 SUCCESS 
 
SERVICE_NAME: browser 
 
        START SERVICE 
          FIREWALL PORT EVENT          : b7569e07-8421-4ee0-ad10-86915afdad09 



 CHAPTER 4 Management Mechanisms 341

[PORT OPEN] 
            DATA                       : 139;TCP;System; 
            DATA                       : 137;UDP;System; 
            DATA                       : 138;UDP;System; 
        STOP SERVICE 
          FIREWALL PORT EVENT          : a144ed38-8e12-4de4-9d96-e64740b1a524 
[PORT CLOSE] 
            DATA                       : 139;TCP;System; 
            DATA                       : 137;UDP;System; 
            DATA                       : 138;UDP;System;

In these three cases, note how the Windows Time Service is waiting for domain join/exit 
in order to decide whether or not it should run, while the Tablet Input Service is waiting for a 
device with the HID Class ID matching Tablet Device . Finally, the Computer Browser Service will 
run only if the firewall policy allows access on ports 137, 138, and 139, which are SMB network 
ports that the browser needs .

Task Host
TaskHost receives commands from UBPM living in the SCM . At initialization time, it opens the local 
RPC interface that was created by UBPM during its initialization and loops forever, waiting for com-
mands to come through the channel . Four commands are currently supported, which are sent over 
the TaskHostSendResponseReceiveCommand RPC API:

 ■ Stopping the host

 ■ Starting a task

 ■ Stopping a task

 ■ Terminating a task

Additionally, hosted tasks are supplied with a TaskHostReportTaskStatus RPC API, which enables 
them to notify UBPM of their current execution state whenever they call UbpmReportTaskStatus .

All task-based commands are actually internally implemented by a generic COM Task library, and 
they essentially result in the creation and destruction of COM components .

Service Control Programs
Service control programs are standard Windows applications that use SCM service management 
 functions, including CreateService, OpenService, StartService, ControlService, QueryServiceStatus, 
and DeleteService. To use the SCM functions, an SCP must first open a communications channel to 
the SCM by calling the OpenSCManager function . At the time of the open call, the SCP must specify 
what types of actions it wants to perform . For example, if an SCP simply wants to enumerate and 
display the services present in the SCM’s database, it requests enumerate-service access in its call to 
 OpenSCManager . During its initialization, the SCM creates an internal object that represents the SCM 
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database and uses the Windows security functions to protect the object with a security  descriptor 
that specifies what accounts can open the object with what access permissions. For example, the 
security descriptor indicates that the Authenticated Users group can open the SCM object with 
enumerate-service access . However, only administrators can open the object with the access required 
to create or delete a service .

As it does for the SCM database, the SCM implements security for services themselves . When an 
SCP creates a service by using the CreateService function, it specifies a security descriptor that the 
SCM associates internally with the service’s entry in the service database . The SCM stores the security 
descriptor in the service’s registry key as the Security value, and it reads that value when it scans the 
registry’s Services key during initialization so that the security settings persist across reboots . In the 
same way that an SCP must specify what types of access it wants to the SCM database in its call to 
OpenSCManager, an SCP must tell the SCM what access it wants to a service in a call to OpenService . 
Accesses that an SCP can request include the ability to query a service’s status and to configure, stop, 
and start a service .

The SCP you’re probably most familiar with is the Services MMC snap-in that’s included in 
 Windows, which resides in %SystemRoot%\System32\Filemgmt.dll. Windows also includes Sc.exe 
 (Service Controller tool), a command-line service control program that we’ve mentioned multiple 
times .

SCPs sometimes layer service policy on top of what the SCM implements . A good example is the 
timeout that the Services MMC snap-in implements when a service is started manually . The snap-in 
presents a progress bar that represents the progress of a service’s startup . Services indirectly interact 
with SCPs by setting their configuration status to reflect their progress as they respond to SCM com-
mands such as the start command . SCPs query the status with the QueryServiceStatus function . They 
can tell when a service actively updates the status versus when a service appears to be hung, and the 
SCM can take appropriate actions in notifying a user about what the service is doing .

Windows Management Instrumentation

Windows Management Instrumentation (WMI) is an implementation of Web-Based Enterprise 
Management (WBEM), a standard that the Distributed Management Task Force (DMTF—an industry 
consortium) defines. The WBEM standard encompasses the design of an extensible enterprise data-
collection and data-management facility that has the flexibility and extensibility required to manage 
local and remote systems that comprise arbitrary components .

WMI Architecture
WMI consists of four main components, as shown in Figure 4-18: management applications, WMI 
infrastructure, providers, and managed objects . Management applications are Windows applications 
that access and display or process data about managed objects . A simple example of a management 
application is a performance tool replacement that relies on WMI rather than the Performance API 
to obtain performance information . A more complex example is an enterprise-management tool that 
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lets administrators perform automated inventories of the software and hardware configuration of 
every computer in their enterprise .

 

Database
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SNMP objects Windows objects Registry
objects Managed objects

FIGURE 4-18 WMI architecture

Developers typically must target management applications to collect data from and manage 
 specific objects . An object might represent one component, such as a network adapter device, or 
a collection of components, such as a computer . (The computer object might contain the network 
adapter object.) Providers need to define and export the representation of the objects that manage-
ment applications are interested in . For example, the vendor of a network adapter might want to add 
adapter-specific properties to the network adapter WMI support that Windows includes, querying 
and setting the adapter’s state and behavior as the management applications direct . In some cases 
(for example, for device drivers), Microsoft supplies a provider that has its own API to help developers 
leverage the provider’s implementation for their own managed objects with minimal coding effort .

The WMI infrastructure, the heart of which is the Common Information Model (CIM) Object 
 Manager (CIMOM), is the glue that binds management applications and providers . (CIM is described 
later in this chapter .) The infrastructure also serves as the object-class store and, in many cases, as 
the storage manager for persistent object properties . WMI implements the store, or repository, as an 
on-disk database named the CIMOM Object Repository . As part of its infrastructure, WMI supports 
several APIs through which management applications access object data and providers supply data 
and class definitions.
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Windows programs and scripts (such as Windows PowerShell) use the WMI COM API, the primary 
management API, to directly interact with WMI . Other APIs layer on top of the COM API and include 
an Open Database Connectivity (ODBC) adapter for the Microsoft Access database application . A 
 database developer uses the WMI ODBC adapter to embed references to object data in the devel-
oper’s database . Then the developer can easily generate reports with database queries that contain 
WMI-based data . WMI ActiveX controls support another layered API . Web developers use the ActiveX 
controls to construct web-based interfaces to WMI data . Another management API is the WMI 
 scripting API, for use in script-based applications and Microsoft Visual Basic programs . WMI scripting 
support exists for all Microsoft programming language technologies .

As they are for management applications, WMI COM interfaces constitute the primary API for 
providers . However, unlike management applications, which are COM clients, providers are COM or 
Distributed COM (DCOM) servers (that is, the providers implement COM objects that WMI interacts 
with) . Possible embodiments of a WMI provider include DLLs that load into WMI’s manager process 
or stand-alone Windows applications or Windows services . Microsoft includes a number of built-in 
providers that present data from well-known sources, such as the Performance API, the registry, the 
Event Manager, Active Directory, SNMP, and modern device drivers . The WMI SDK lets developers 
develop third-party WMI providers .

Providers
At the core of WBEM is the DMTF-designed CIM specification. The CIM specifies how  management 
systems represent, from a systems management perspective, anything from a computer to an 
 application or device on a computer . Provider developers use the CIM to represent the components 
that make up the parts of an application for which the developers want to enable management . 
 Developers use the Managed Object Format (MOF) language to implement a CIM representation .

In addition to defining classes that represent objects, a provider must interface WMI to the objects . 
WMI classifies providers according to the interface features the providers supply . Table 4-12 lists 
WMI provider classifications. Note that a provider can implement one or more features; therefore, a 
provider can be, for example, both a class and an event provider. To clarify the feature definitions in 
Table 4-12, let’s look at a provider that implements several of those features . The Event Log provider 
supports several objects, including an Event Log Computer, an Event Log Record, and an Event Log 
File. The Event Log is an Instance provider because it can define multiple instances for several of its 
classes. One class for which the Event Log provider defines multiple instances is the Event Log File 
class (Win32_NTEventlogFile); the Event Log provider defines an instance of this class for each of the 
system’s event logs (that is, System Event Log, Application Event Log, and Security Event Log) .

TABLE 4-12 Provider Classifications

Classification Description

Class Can supply, modify, delete, and enumerate a provider-specific class. It can also support query 
processing . Active Directory is a rare example of a service that is a class provider .

Instance Can supply, modify, delete, and enumerate instances of system and provider-specific classes. An 
instance represents a managed object . It can also support query processing .
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Classification Description

Property Can supply and modify individual object property values .

Method Supplies methods for a provider-specific class.

Event Generates event notifications.

Event consumer Maps a physical consumer to a logical consumer to support event notification.

The Event Log provider defines the instance data and lets management applications enumerate 
the records. To let management applications use WMI to back up and restore the Event Log files, 
the Event Log provider implements backup and restore methods for Event Log File objects . Doing 
so makes the Event Log provider a Method provider . Finally, a management application can register 
to receive notification whenever a new record writes to one of the Event Logs. Thus, the Event Log 
provider serves as an Event provider when it uses WMI event notification to tell WMI that Event Log 
records have arrived .

The Common Information Model and the Managed Object 
Format Language
The CIM follows in the steps of object-oriented languages such as C++ and C#, in which a modeler 
designs representations as classes . Working with classes lets developers use the powerful modeling 
techniques of inheritance and composition . Subclasses can inherit the attributes of a parent class, and 
they can add their own characteristics and override the characteristics they inherit from the parent 
class . A class that inherits properties from another class derives from that class . Classes also compose: 
a developer can build a class that includes other classes .

The DMTF provides multiple classes as part of the WBEM standard . These classes are CIM’s basic 
language and represent objects that apply to all areas of management . The classes are part of the 
CIM core model . An example of a core class is CIM_ManagedSystemElement . This class contains a 
few basic properties that identify physical components such as hardware devices and logical compo-
nents such as processes and files. The properties include a caption, description, installation date, and 
status . Thus, the CIM_LogicalElement and CIM_PhysicalElement classes inherit the attributes of the 
CIM_ManagedSystemElement class . These two classes are also part of the CIM core model . The WBEM 
standard calls these classes abstract classes because they exist solely as classes that other classes in-
herit (that is, no object instances of an abstract class exist) . You can therefore think of abstract classes 
as templates that define properties for use in other classes.

A second category of classes represents objects that are specific to management areas but 
 independent of a particular implementation . These classes constitute the common model and are 
considered an extension of the core model . An example of a common-model class is the  
CIM_ FileSystem class, which inherits the attributes of CIM_LogicalElement . Because virtually every 
operating system—including Windows, Linux, and other varieties of UNIX—rely on file-system-based 
structured storage, the CIM_FileSystem class is an appropriate constituent of the common model .

The final class category, the extended model, comprises technology-specific additions to the 
 common model. Windows defines a large set of these classes to represent objects specific to the 
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 Windows environment. Because all operating systems store data in files, the CIM common model 
includes the CIM_LogicalFile class . The CIM_DataFile class inherits the CIM_LogicalFile class, and 
 Windows adds the Win32_PageFile and Win32_ShortcutFile file classes for those Windows file types.

The Event Log provider makes extensive use of inheritance . Figure 4-19 shows a view of the WMI 
CIM Studio, a class browser that ships with the WMI Administrative Tools that you can obtain from 
the Microsoft download center at the Microsoft website . You can see where the Event Log provider 
relies on inheritance in the provider’s Win32_NTEventlogFile class, which derives from CIM_DataFile . 
Event Log files are data files that have additional Event Log–specific attributes such as a log file name 
( LogfileName) and a count of the number of records that the file contains (NumberOfRecords). The 
tree that the class browser shows reveals that Win32_NTEventlogFile is based on several levels of 
inheritance, in which CIM_DataFile derives from CIM_LogicalFile, which derives from    
CIM_LogicalElement, and CIM_LogicalElement derives from CIM_ManagedSystemElement .

 
FIGURE 4-19 WMI CIM Studio
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As stated earlier, WMI provider developers write their classes in the MOF language . The  following 
output shows the definition of the Event Log provider’s Win32_NTEventlogFile, which is selected 
in Figure 4-19 . Notice the correlation between the properties that the right panel in Figure 4-19 
lists and those properties’ definitions in the MOF file that follows. CIM Studio uses yellow arrows to 
tag the properties that a class inherits. Thus, you don’t see those properties specified in   
Win32_NTEventlogFile’s definition.

dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"), Locale(1033), UUID("{8502C57B-5FBB-
11D2-AAC1-006008C78BC7}")]  
class Win32_NTEventlogFile : CIM_DataFile  
{  
[read] string LogfileName;  
[read, write] uint32 MaxFileSize;  
[read] uint32 NumberOfRecords;  
[read, volatile, ValueMap{"0", "1..365", "4294967295"}] string OverWritePolicy;  
[read, write, Units("Days"), Range("0-365 | 4294967295")] uint32 OverwriteOutDated;  
[read] string Sources[];  
[implemented, Privileges{"SeSecurityPrivilege", "SeBackupPrivilege"}] uint32 ClearEventlog([in] 
string ArchiveFileName);  
[implemented, Privileges{"SeSecurityPrivilege", "SeBackupPrivilege"}] uint32 BackupEventlog([in] 
string ArchiveFileName);  
};

One term worth reviewing is dynamic, which is a descriptive designator for the  
Win32_NTEventlogFile class that the MOF file in the preceding output shows. “Dynamic” means that 
the WMI infrastructure asks the WMI provider for the values of properties associated with an object 
of that class whenever a management application queries the object’s properties . A static class is one 
in the WMI repository; the WMI infrastructure refers to the repository to obtain the values instead of 
asking a provider for the values . Because updating the repository is a relatively expensive operation, 
dynamic providers are more efficient for objects that have properties that change frequently.

EXPERIMENT: Viewing the MOF Definitions of WMI Classes
You can view the MOF definition for any WMI class by using the WbemTest tool that comes with 
Windows. In this experiment, we’ll look at the MOF definition for the Win32_NTEventLogFile 
class:

1. Run Wbemtest from the Start menu’s Run dialog box .

2. Click the Connect button, change the Namespace to root\cimv2, and connect.

3. Click the Enum Classes button, select the Recursive option button, and then click OK .

4. Find Win32_NTEventLogFile in the list of classes, and then double-click it to see its 
class properties .

5. Click the Show MOF button to open a window that displays the MOF text .
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After constructing classes in MOF, WMI developers can supply the class definitions to WMI in 
several ways. WDM driver developers compile a MOF file into a binary MOF (BMF) file—a more 
compact binary representation than a MOF file—and can choose to dynamically give the BMF files 
to the WDM infrastructure or to statically include it in their binary . Another way is for the provider to 
compile the MOF and use WMI COM APIs to give the definitions to the WMI infrastructure. Finally, 
a provider can use the MOF Compiler (Mofcomp .exe) tool to give the WMI infrastructure a classes-
compiled representation directly .

The WMI Namespace
Classes define the properties of objects, and objects are class instances on a system. WMI uses a 
namespace that contains several subnamespaces that WMI arranges hierarchically to organize objects . 
A management application must connect to a namespace before the application can access objects 
within the namespace .

WMI names the namespace root directory root. All WMI installations have four predefined 
namespaces that reside beneath root: CIMV2, Default, Security, and WMI . Some of these namespaces 
have other namespaces within them . For example, CIMV2 includes the Applications and ms_409 
namespaces as subnamespaces. Providers sometimes define their own namespaces; you can see the 
WMI namespace (which the Windows device driver WMI provider defines) beneath root in Windows.

EXPERIMENT: Viewing WMI Namespaces
You can see what namespaces are defined on a system with WMI CIM Studio. WMI CIM Studio 
presents a connection dialog box when you run it that includes a namespace browsing  button 
to the right of the namespace edit box . Opening the browser and selecting a namespace has 
WMI CIM Studio connect to that namespace. Windows defines over a dozen namespaces 
 beneath root, some of which are visible here:
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Unlike a file system namespace, which comprises a hierarchy of directories and files, a WMI 
namespace is only one level deep. Instead of using names as a file system does, WMI uses object 
properties that it defines as keys to identify the objects. Management applications specify class names 
with key names to locate specific objects within a namespace . Thus, each instance of a class must 
be uniquely identifiable by its key values. For example, the Event Log provider uses the   
Win32_NTLogEvent class to represent records in an Event Log. This class has two keys: Logfile, a string; 
and RecordNumber, an unsigned integer . A management application that queries WMI for instances 
of Event Log records obtains them from the provider key pairs that identify records . The  application 
refers to a record using the syntax that you see in this sample object path name:

\\DARYL\root\CIMV2:Win32_NTLogEvent.Logfile="Application",  
                                         RecordNumber="1"

The first component in the name (\\DARYL) identifies the computer on which the object is  located, 
and the second component (\root\CIMV2) is the namespace in which the object resides. The class 
name follows the colon, and key names and their associated values follow the period . A comma 
 separates the key values .

WMI provides interfaces that let applications enumerate all the objects in a particular class or to 
make queries that return instances of a class that match a query criterion .

Class Association
Many object types are related to one another in some way . For example, a computer object has a 
processor, software, an operating system, active processes, and so on . WMI lets providers construct 
an association class to represent a logical connection between two different classes . Association 
classes associate one class with another, so the classes have only two properties: a class name and 
the Ref modifier. The following output shows an association in which the Event Log provider’s MOF 
file associates the Win32_NTLogEvent class with the Win32_ComputerSystem class. Given an object, a 
management application can query associated objects. In this way, a provider defines a hierarchy of 
objects .

[dynamic: ToInstance, provider("MS_NT_EVENTLOG_PROVIDER"): ToInstance, EnumPrivileges{"Se 
SecurityPrivilege"}: 
ToSubClass, Locale(1033): ToInstance, UUID("{8502C57F-5FBB-11D2-AAC1-006008C78BC7}"): 
ToInstance, Association: DisableOverride ToInstance ToSubClass]  
class Win32_NTLogEventComputer  
{  
    [key, read: ToSubClass] Win32_ComputerSystem ref Computer;  
    [key, read: ToSubClass] Win32_NTLogEvent ref Record;  
};
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Figure 4-20 shows the WMI Object Browser (another tool that the WMI Administrative Tools 
includes) displaying the contents of the CIMV2 namespace . Windows system components  typically 
place their objects within the CIMV2 namespace. The Object Browser first locates the Win32_ 
ComputerSystem object instance ALEX-LAPTOP, which is the object that represents the computer . 
Then the Object Browser obtains the objects associated with Win32_ComputerSystem and displays 
them beneath ALEX-LAPTOP . The Object Browser user interface displays association objects with a 
double-arrow folder icon . The associated class type’s objects display beneath the folder .

You can see in the Object Browser that the Event Log provider’s association class  
Win32_NTLogEventComputer is beneath ALEX-LAPTOP and that numerous instances of the  
Win32_NTLogEvent class exist. Refer to the preceding output to verify that the MOF file defines 
the Win32_NTLogEventComputer class to associate the Win32_ComputerSystem class with the  
Win32_NTLogEvent class . Selecting an instance of Win32_NTLogEvent in the Object Browser  reveals 
that class’ properties under the Properties tab in the right pane . Microsoft intended the Object 
Browser to help WMI developers examine their objects, but a management application would 
 perform the same operations and display properties or collected information more intelligibly .

 
FIGURE 4-20 WMI Object Browser
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EXPERIMENT: Using WMI Scripts to Manage Systems
A powerful aspect of WMI is its support for scripting languages . Microsoft has generated 
 hundreds of scripts that perform common administrative tasks for managing user accounts, 
files, the registry, processes, and hardware devices. The Microsoft TechNet Scripting Center 
website serves as the central location for Microsoft scripts . Using a script from the scripting 
center is as easy as copying its text from your Internet browser, storing it in a file with a .vbs 
 extension, and running it with the command cscript script .vbs, where script is the name you 
gave the script . Cscript is the command-line interface to Windows Script Host (WSH) .

Here’s a sample TechNet script that registers to receive events when Win32_Process object 
instances are created, which occurs whenever a process starts, and prints a line with the name 
of the process that the object represents:

strComputer = "."  
Set objWMIService = GetObject("winmgmts:" _  
    & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")  
Set colMonitoredProcesses = objWMIService. _          
    ExecNotificationQuery("select * from __instancecreationevent " _   
        & " within 1 where TargetInstance isa ‘Win32_Process’")  
i = 0  
Do While i = 0  
    Set objLatestProcess = colMonitoredProcesses.NextEvent  
    Wscript.Echo objLatestProcess.TargetInstance.Name  
Loop

The line that invokes ExecNotificationQuery does so with a parameter that includes a “select” 
statement, which highlights WMI’s support for a read-only subset of the ANSI standard Struc-
tured Query Language (SQL), known as WQL, to provide a flexible way for WMI consumers to 
specify the information they want to extract from WMI providers . Running the sample script 
with Cscript and then starting Notepad results in the following output:

C:\>cscript monproc.vbs  
Microsoft (R) Windows Script Host Version 5.7 
Copyright (C) Microsoft Corporation. All rights reserved.  
  
NOTEPAD.EXE

WMI Implementation
The WMI service runs in a shared Svchost process that executes in the local system account . It loads 
providers into the Wmiprvse .exe provider-hosting process, which launches as a child of the RPC 
service process . WMI executes Wmiprvse in the local system, local service, or network service account, 
depending on the value of the HostingModel property of the WMI Win32Provider object instance 
that represents the provider implementation . A Wmiprvse process exits after the provider is removed 
from the cache, one minute following the last provider request it receives .
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EXPERIMENT: Viewing Wmiprvse Creation
You can see Wmiprvse being created by running Process Explorer and executing Wmic . A 
Wmiprvse process will appear beneath the Svchost process that hosts the RPC service . If Process 
Explorer job highlighting is enabled, it will appear with the job highlight color because, to pre-
vent a runaway provider from consuming all virtual memory resources on a system, Wmiprvse 
executes in a job object that limits the number of child processes it can create and the amount 
of virtual memory each process and all the processes of the job can allocate . (See Chapter 5 for 
more information on job objects .)

Most WMI components reside by default in %SystemRoot%\System32 and  
%SystemRoot%\System32\Wbem, including Windows MOF files, built-in provider DLLs, and 
 management application WMI DLLs. Look in the %SystemRoot%\System32\Wbem directory, and 
you’ll find Ntevt.mof, the Event Log provider MOF file. You’ll also find Ntevt.dll, the Event Log 
 provider’s DLL, which the WMI service uses .

Directories beneath %SystemRoot%\System32\Wbem store the repository, log files, and third-
party MOF files. WMI implements the repository—named the CIMOM object repository—using a 
proprietary version of the Microsoft JET database engine. The database file, by default, resides in 
%SystemRoot%\System32\Wbem\Repository\.

WMI honors numerous registry settings that the service’s HKLM\SOFTWARE\Microsoft\WBEM 
\CIMOM registry key stores, such as thresholds and maximum values for certain parameters.

Device drivers use special interfaces to provide data to and accept commands—called the WMI 
System Control commands—from WMI . These interfaces are part of the WDM, which is explained in 
Chapter 8, “I/O System,” in Part 2. Because the interfaces are cross-platform, they fall under the \root 
\WMI namespace.
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WMIC
Windows also includes Wmic .exe, a utility that allows you to interact with WMI from a 
 WMI-aware command-line shell . All WMI objects and their properties, including their  methods, 
are accessible through the shell, which makes WMIC an advanced systems management 
 console .

WMI Security
WMI implements security at the namespace level . If a management application successfully  connects 
to a namespace, the application can view and access the properties of all the objects in that 
namespace . An administrator can use the WMI Control application to control which users can access 
a namespace . Internally, this security model is implemented by using ACLs and Security Descriptors, 
part of the standard Windows security model that implements Access Checks . (See Chapter 6 for 
more information on access checks .)

To start the WMI Control application, from the Start menu, select Control Panel . From there, select 
System And Maintenance, Administrative Tools, Computer Management . Next, open the Services 
And Applications branch . Right-click WMI Control, and select Properties to launch the WMI Control 
 Properties dialog box, which Figure 4-21 shows. To configure security for namespaces, click on the 
Security tab, select the namespace, and click Security . The other tabs in the WMI Control Properties 
dialog box let you modify the performance and backup settings that the registry stores .

FIGURE 4-21 WMI security properties
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 Windows Diagnostic Infrastructure

The Windows Diagnostic Infrastructure (WDI) helps to detect, diagnose, and resolve common 
 problem scenarios with minimal user intervention . Windows components implement triggers that 
cause WDI to launch scenario-specific troubleshooting modules to detect the occurrence of a prob-
lem scenario . A trigger can indicate that the system is approaching or has reached a problematic 
state. Once a troubleshooting module has identified a root cause, it can invoke a problem resolver 
to address it . A resolution might be as simple as changing a registry setting or interacting with the 
user to perform recovery steps or configuration changes. Ultimately, WDI’s main role is to provide a 
unified framework for Windows components to perform the tasks involved in automated problem 
detection, diagnosis, and resolution .

WDI Instrumentation
Windows or application components must add instrumentation to notify WDI when a problem 
 scenario is occurring . Components can wait for the results of diagnosis synchronously or can con-
tinue operating and let diagnosis proceed asynchronously . WDI implements two different types of 
 instrumentation APIs to support these models:

 ■ Event-based diagnosis, which can be used for minimally invasive diagnostics  instrumentation, 
can be added to a component without requiring any changes to its implementation . WDI 
supports two kinds of event-based diagnosis: simple scenarios and start-stop scenarios . In a 
simple scenario, a single point in code is responsible for the failure and an event is raised to 
trigger diagnostics . In a start-stop scenario, an entire code path is deemed risky and is instru-
mented for diagnosis . One event is raised at the beginning of the scenario to a real-time Event 
Tracing for Windows (ETW) session named the DiagLog . At the same time, a kernel facility 
called the Scenario Event Mapper (SEM) enables a collection of additional ETW traces to the 
WDI context loggers . A second event is raised to signal the end of the diagnostic scenario, 
at which time the SEM disables the verbose tracing . This “just-in-time tracing” mechanism 
keeps the performance overhead of detailed tracing low while maintaining enough contextual 
information for WDI to find the root cause without a reproduction of the problem, if a failure 
should occur .

 ■ On-demand diagnosis, which allows applications to request diagnoses on their own, interact 
with the diagnostic, receive notifications when the diagnostic has completed, and modify its 
behavior based on the results of the diagnosis . On-demand instrumentation is particularly 
useful when diagnosis needs to be performed in a privileged security context . WDI facilitates 
the transfer of context across trust and process boundaries and also supports impersonation 
of the caller when necessary .

Diagnostic Policy Service
The Diagnostic Policy Service (DPS, %SystemRoot%\System32\Dps.dll) implements most of the 
WDI scenario back end . DPS is a multithreaded service (running in a Svchost) that accepts on- demand 
scenario requests and also monitors and watches for diagnostic events delivered via DiagLog . 
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(See Figure 4-22, which shows the relationship of DPS to the other key WDI components .) In response 
to these requests, DPS launches the appropriate troubleshooting module, which encodes domain-
specific knowledge, such as how to find the root cause of a network problem. In addition, DPS makes 
all the contextual information related to the scenario available to the modules in the form of captured 
traces . Troubleshooting modules perform an automated analysis of the data and can request DPS to 
launch a secondary module called a resolver, which is responsible for fixing the problem, silently if 
possible .

User modeInstrumented
component Kernel mode

Diagnostic Policy Service

Troubleshooting
module

Contact
sessions

Diagnostic
session 

(DiagLog)

Scenario 
Event

Mapper

On-demand request
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FIGURE 4-22 Windows Diagnostic Infrastructure architecture

DPS controls and enforces Group Policy settings for diagnostic scenarios . You can use the Group 
Policy Editor (%SystemRoot%\System32\Gpedit.msc) to configure the settings for the diagnos-
tics and automatic recovery options. You can access these settings from Computer Configuration, 
 Administrative Templates, System, Troubleshooting And Diagnostics, shown in Figure 4-23 .

FIGURE 4-23 Configuring Diagnostic Policy Service settings



356 Windows Internals, Sixth Edition, Part 1

Diagnostic Functionality
Windows implements several built-in diagnostic scenarios and utilities . Some examples include:

 ■ Disk diagnostics, which include the presence of Self-Monitoring Analysis and Reporting 
 Technology (SMART) code inside the storage class driver (%SystemRoot%\System32\Driver 
\Classspnp.sys) to monitor disk health. WDI notifies and guides the user through data back-
up after an impending disk failure is detected . In addition, Windows monitors application 
crashes caused by disk corruptions in critical system files. The diagnostic uses the Windows 
File  Protection mechanism to automatically restore such damaged system files from a backup 
cache when possible . For more information on Windows storage management, see Chapter 9, 
“Storage Management,” in Part 2 .

 ■ Network diagnostics and troubleshooting extends WDI to handle different classes of 
 networking-related problems, such as file sharing, Internet access, wireless networks, third-
party firewalls, and general network connectivity. For more information on networking, see 
Chapter 7, “Networking .”

 ■ Resource exhaustion prevention, which includes Windows memory leak diagnosis and 
 Windows resource exhaustion detection and resolution . These diagnostics can detect when 
the commit limit is approaching its maximum and alert the user of the situation, including the 
top memory and resource consumers . The user can then choose to terminate these applica-
tions to attempt to free some resources . For more information on the commit limit and virtual 
memory, see Chapter 10, “Memory Management,” in Part 2 .

 ■ Windows memory diagnostic tool, which can be manually executed by the user from the Boot 
Manager on startup or automatically recommended by Windows Error Reporting (WER) after 
a system crash that was analyzed as potentially the result of faulty RAM . For more information 
on the boot process, see Chapter 13 in Part 2 .

 ■ Windows startup repair tool, which attempts to automatically fix certain classes of errors 
 commonly responsible for users being unable to boot the system, such as incorrect BCD 
 settings, damaged disk structures such as the MBR or boot sector, and faulty drivers . When 
system boot is unsuccessful, the Boot Manager automatically launches the startup repair 
tool, if it is installed, which also includes manual recovery options and access to a command 
prompt . For more information on the startup repair tool, see Chapter 13 in Part 2 .

 ■ Windows performance diagnostics, which include Windows boot performance  diagnostics, 
Windows shutdown performance diagnostics, Windows standby/resume performance 
 diagnostics, and Windows system responsiveness performance diagnostics . Based on certain 
timing thresholds and the internal behavioral expectations of these mechanisms, Windows 
can detect problems caused by slow performance and log them to the Event Log, which in 
turn is used by WDI to provide resolutions and walkthroughs for the user to attempt to fix 
the  problem .
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 ■ Program Compatibility Assistant (PCA), which enables legacy applications to execute on newer 
Windows versions despite compatibility problems . PCA detects application installation failures 
caused by a mismatch during version checks and run-time failures caused by deprecated 
binaries and User Account Control (UAC) settings . PCA attempts to recover from these failures 
by applying the appropriate compatibility setting for the application, which takes effect during 
the next run . In addition, PCA maintains a database of programs with known compatibility 
 issues and informs the users about potential problems at program startup .

Conclusion

So far, we’ve examined the overall structure of Windows, the core system mechanisms on which 
the structure is built, and core management mechanisms . With this foundation laid, we’re ready to 
 explore the individual executive components in more detail, starting with processes and threads .
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C H A P T E R  5

Processes, Threads, and Jobs

In this chapter, we’ll explain the data structures and algorithms that deal with processes, threads, and 
jobs in the Microsoft Windows operating system. The first section focuses on the internal structures 

that make up a process . The second section outlines the steps involved in creating a process (and 
its initial thread) . The internals of threads and thread scheduling are then described . The chapter 
 concludes with a description of jobs .

Because processes and threads touch so many components in Windows, a number of terms and 
data structures (such as working sets, objects and handles, system memory heaps, and so on) are 
referred to in this chapter but are explained in detail elsewhere in the book . To fully understand this 
chapter, you need to be familiar with the terms and concepts explained in Chapter 1, “Concepts and 
Tools,” and Chapter 2, “System Architecture,” such as the difference between a process and a thread, 
the Windows virtual address space layout, and the difference between user mode and kernel mode .

Process Internals

This section describes the key Windows process data structures maintained by various parts of the 
system and describes different ways and tools to examine this data .

Data Structures
Each Windows process is represented by an executive process (EPROCESS) structure . Besides 
 containing many attributes relating to a process, an EPROCESS contains and points to a number of 
other related data structures . For example, each process has one or more threads, each represented 
by an executive thread (ETHREAD) structure . (Thread data structures are explained in the section 
“Thread Internals” later in this chapter .) 

The EPROCESS and most of its related data structures exist in system address space . One  exception 
is the process environment block (PEB), which exists in the process address space (because it  contains 
information accessed by user-mode code) . Additionally, some of the process data structures used in 
memory management, such as the working set list, are valid only within the context of the  current 
process, because they are stored in process-specific system space. (See Chapter 10, “Memory 
 Management,” in Part 2 for more information on process address space .)

For each process that is executing a Win32 program, the Win32 subsystem process (Csrss) 
 maintains a parallel structure called the CSR_PROCESS . Finally, the kernel-mode part of the Win32 
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subsystem (Win32k .sys) maintains a per-process data structure, W32PROCESS . The W32PROCESS 
structure is created the first time a thread calls a Windows USER or GDI function that is implemented 
in kernel mode . 

With the exception of the idle process, every EPROCESS structure is encapsulated as a process 
object by the executive object manager (described in Chapter 3, “System Mechanisms”) . Because pro-
cesses are not named objects, they are not visible in the WinObj tool . You can, however, see the Type 
object called “Process” in the \ObjectTypes directory. A handle to a process provides, through use of 
the process-related APIs, access to some of the data in the EPROCESS structure and also in some of its 
associated structures . 

Figure 5-1 is a simplified diagram of the process and thread data structures . Each data structure 
shown in the figure is described in detail in this chapter.

Thread
environment

block

Process
environment

block

Process
object

Win32k process structure

Thread
object

System address space

Process address space

…

FIGURE 5-1 Data structures associated with processes and threads 

Many other drivers and system components, by registering process creation notifications, can 
choose to create their own data structures to track information they store on a per-process basis . 
When one discusses the overhead of a process, the size of such data structures must often be taken 
into consideration, although it is nearly impossible to obtain an accurate number .

First let’s focus on the process object . (The thread object is covered in the section “Thread 
 Internals” later in the chapter.) Figure 5-2 shows the key fields in an EPROCESS structure . 
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FIGURE 5-2 Important fields of the executive process structure and its embedded kernel process structure 
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Similar to the way that the kernel’s APIs and components are divided into isolated and layered 
modules with their own naming conventions, the data structures for a process follow a similar design . 
As shown in Figure 5-2, the first member of the executive process structure is called Pcb, for process 
control block . It is a structure of type KPROCESS, for kernel process . Although routines in the executive 
store information in the EPROCESS, the dispatcher, scheduler, and interrupt/time accounting code—
being part of the operating system kernel—use the KPROCESS instead . This allows a layer of abstrac-
tion to exist between the executive’s high-level functionality and its underlying low-level implementa-
tion of certain functions, and it helps prevent unwanted dependencies between the layers .

EXPERIMENT: Displaying the Format of an EPROCESS Structure and Its 
Fields
For a list of the fields that make up an EPROCESS structure and their offsets in hexadecimal, 
type dt nt!_eprocess in the kernel debugger . (See Chapter 1 for more information on the 
kernel debugger and how to perform kernel debugging on the local system .) The output 
( truncated for the sake of space) on a 32-bit system looks like this:

lkd> dt nt!_eprocess  
   +0x000 Pcb              : _KPROCESS 
   +0x080 ProcessLock      : _EX_PUSH_LOCK 
   +0x088 CreateTime       : _LARGE_INTEGER 
   +0x090 ExitTime         : _LARGE_INTEGER 
   +0x098 RundownProtect   : _EX_RUNDOWN_REF 
   +0x09c UniqueProcessId  : Ptr32 Void 
...    
   +0x0dc ObjectTable      : Ptr32 _HANDLE_TABLE 
   +0x0e0 Token            : _EX_FAST_REF 
... 
   +0x108 Win32Process     : Ptr32 Void 
   +0x10c Job              : Ptr32 _EJOB 
... 
   +0x2a8 TimerResolutionLink : _LIST_ENTRY 
   +0x2b0 RequestedTimerResolution : Uint4B  
   +0x2b4 ActiveThreadsHighWatermark : Uint4B 
   +0x2b8 SmallestTimerResolution : Uint4B 
   +0x2bc TimerResolutionStackRecord : Ptr32 _PO_DIAG_STACK_RECORD

The first member of this structure (Pcb) is an imbedded structure of type KPROCESS . This is 
where scheduling and time-accounting data is stored . You can display the format of the kernel 
process structure in the same way as the EPROCESS: 

lkd> dt _kprocess  
nt!_KPROCESS  
   +0x000 Header           : _DISPATCHER_HEADER 
   +0x010 ProfileListHead  : _LIST_ENTRY 
   +0x018 DirectoryTableBase : Uint4B 
   ... 
   +0x074 StackCount       : _KSTACK_COUNT 
   +0x078 ProcessListEntry : _LIST_ENTRY 
   +0x080 CycleTime        : Uint8B 
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   +0x088 KernelTime       : Uint4B 
   +0x08c UserTime         : Uint4B 
   +0x090 VdmTrapcHandler  : Ptr32 Void

The dt command also enables you to view the specific contents of one field or  multiple 
fields by typing their names following the structure name—such as dt nt!_eprocess 
 UniqueProcessId, which displays the process ID field. In the case of a field that represents a 
structure—such as the Pcb field of EPROCESS, which contains the KPROCESS substructure—
adding a period after the field name will cause the debugger to display the substructure.

For example, an alternative way to see the KPROCESS is to type dt nt!_eprocess Pcb . You 
can continue to recurse this way by adding more field names (within KPROCESS) and so on. 
Finally, to recurse through all the substructures, the –r switch of the dt command allows you to 
do just that . Adding a number after the switch controls the depth of recursion the command 
will follow .

The dt command used as shown earlier shows the format of the selected structure, not the 
contents of any particular instance of that structure type . To show an instance of an actual pro-
cess, you can specify the address of an EPROCESS structure as an argument to the dt command . 
You can get the addresses of almost all of the EPROCESS structures in the system by using the 
!process 0 0 command (the exception being the system idle process) . Because the KPROCESS is 
the first thing in the EPROCESS, the address of an EPROCESS will also work as the address of a 
KPROCESS with dt _kprocess .

Processes and threads are such integral parts of Windows that it’s impossible to talk about them 
without referring to many other parts of the system . To keep the length of this chapter manageable, 
however, those related subjects (such as memory management, security, objects, and handles) are 
covered elsewhere . 

EXPERIMENT: Using the Kernel Debugger !process Command
The kernel debugger !process command displays a subset of the information in a process object 
and its associated structures . This output is arranged in two parts for each process . First you see 
the information about the process, as shown here . (When you don’t specify a process address 
or ID, !process lists information for the process owning the thread currently running on CPU 0, 
which will be WinDbg itself on a single-processor system .)

lkd> !process  
PROCESS 85857160  SessionId: 1  Cid: 0bcc    Peb: 7ffd9000  ParentCid: 090c 
    DirBase: b45b0820  ObjectTable: b94ffda0  HandleCount:  99. 
    Image: windbg.exe 
    VadRoot 85a1c8e8 Vads 97 Clone 0 Private 5919. Modified 153. Locked 1. 
    DeviceMap 9d32ee50 
    Token                             ebaa1938 
    ... 
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'    PageFaultCount                    37066 
    MemoryPriority                    BACKGROUND 
    BasePriority                      8 
    CommitCharge                      6242

After the basic process output comes a list of the threads in the process . That output is 
 explained in the “Experiment: Using the Kernel Debugger !thread Command” section later in 
the chapter . 

Other commands that display process information include !handle, which dumps the process 
handle table (which is described in more detail in the section “Object Handles and the Process 
Handle Table” in Chapter 3) . Process and thread security structures are described in Chapter 6, 
“Security .”

Note that the output gives you the address of the PEB, which you can use with the !peb 
 command shown in the next experiment to see the PEB of an arbitrary process . However, 
because the PEB is in the user-mode address space, it is valid only within the context of its own 
process. To look at the PEB of another process, you must first switch WinDbg to that process. 
You can do this with the  .process command, followed by the EPROCESS pointer .  

The PEB lives in the user-mode address space of the process it describes . It contains information 
needed by the image loader, the heap manager, and other Windows components that need to access 
it from user mode . The EPROCESS and KPROCESS structures are accessible only from kernel mode . 
The important fields of the PEB are illustrated in Figure 5-3 and are explained in more detail later in 
this chapter .

Image base address

Loader database

Thread-local storage data

Code page data

Process flags

Heap flags

Heap size information

Image version information

Image process affinity mask

Process heap

OS version information

GDI shared handle table

Application compatibility data

FLS/TLS data

FIGURE 5-3 Fields of the process environment block  
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EXPERIMENT: Examining the PEB
You can dump the PEB structure with the !peb command in the kernel debugger, which 
 displays the PEB of the process that owns the currently running thread on CPU 0 . By using the 
 information in the previous experiment, you can also use the PEB pointer as an argument to the 
command .

lkd> !peb 7ffd9000 
PEB at 7ffd9000 
    InheritedAddressSpace:    No 
    ReadImageFileExecOptions: No 
    BeingDebugged:            No 
    ImageBaseAddress:         002a0000 
    Ldr                       77895d00 
... 
    WindowTitle:  'C:\Users\Alex Ionescu\Desktop\WinDbg.lnk' 
    ImageFile:    'C:\Program Files\Debugging Tools for Windows\windbg.exe' 
    CommandLine:  '"C:\Program Files\Debugging Tools for Windows\windbg.exe" ' 
    DllPath:      'C:\Program Files\Debugging Tools for Windows;C:\Windows\ 
        system32;C:\Windows\system;C:\Windows 
    Environment:  001850a8 
        ALLUSERSPROFILE=C:\ProgramData 
        APPDATA=C:\Users\Alex Ionescu\AppData\Roaming 
    ...

The CSR_PROCESS structure contains information about processes that is specific to the Windows 
subsystem (Csrss) . As such, only Windows applications have a CSR_PROCESS structure associated with 
them (for example, Smss does not) . Additionally, because each session has its own instance of the 
Windows subsystem, the CSR_PROCESS structures are maintained by the Csrss process within each 
individual session . The basic structure of the CSR_PROCESS is illustrated in Figure 5-4 and is explained 
in more detail later in this chapter .
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EXPERIMENT: Examining the CSR_PROCESS
You can dump the CSR_PROCESS structure with the !dp command in the user-mode debugger 
while attached to the Csrss process of the session you want to inspect . Use the File, Attach To 
A Process option to get a list of processes, and select the Csrss process for the correct session . 
(You can see the session of the process by expanding the tree item for it .) Make sure to select 
the Noninvasive check box to avoid freezing your system .

The !dp command takes as input the PID of the process whose CSR_PROCESS structure 
should be dumped . Alternatively, the structure pointer can be given directly as an argument . 
Because !dp already performs a dt command internally, there is no need to use dt on your own .

0:000> !dp v 0x1c0aa8-8  
PCSR_PROCESS @ 001c0aa0: 
   +0x000 ClientId         : _CLIENT_ID 
   +0x008 ListLink         : _LIST_ENTRY [ 0x1d8618 - 0x1b1b10 ] 
   +0x010 ThreadList       : _LIST_ENTRY [ 0x1c0b80 - 0x1c7638 ] 
   +0x018 NtSession        : 0x001c0bb8 _CSR_NT_SESSION 
... 
   +0x054 Luid             : _LUID 
   +0x05c ServerDllPerProcessData : [1] (null)  
Threads: 
Thread 001c0b78, Process 001c0aa0, ClientId 198.19c, Flags 0, Ref Count 1 
Thread 001c0e78, Process 001c0aa0, ClientId 198.1cc, Flags 0, Ref Count 1 
...
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The W32PROCESS structure is the final system data structure associated with processes that we’ll 
look at . It contains all the information that the Windows graphics and window management code in 
the kernel (Win32k) needs to maintain state information about GUI processes (which were defined 
earlier as processes that have done at least one USER/GDI system call) . The basic structure of the 
W32PROCESS is illustrated in Figure 5-5 and is explained in more detail later in this chapter .

Process

Ref count

Flags

PID

Counts

Handle table

GDI lists

EPROCESS

DirectX process

Next process

W32PROCESS

DXGPROCESS

W32PROCESS

FIGURE 5-5 Fields of the Win32k Process structure  

EXPERIMENT: Examining the W32PROCESS
There is no command provided by the debugger extensions to dump the W32PROCESS 
 structure, but it is present in the symbols of the Win32k driver . As such, by using the dt com-
mand with the appropriate symbol name win32k!_W32PROCESS, it is possible to dump the 
fields as long as the pointer is known. Because the !process command does not actually output 
this pointer (even though it is stored in the EPROCESS object), the field must be inspected 
manually with dt nt!_EPROCESS Win32Process followed by an EPROCESS pointer .

In the following example, the W32PROCESS structure for the shell, Explorer .exe, is shown:

lkd> dt win32k!_W32PROCESS 0xff991490  
   +0x000 Process          : 0x84a2b030 _EPROCESS 
   +0x004 RefCount         : 1 
... 
   +0x020 W32Pid           : 0x590 
   +0x024 GDIHandleCount   : 383 
   +0x028 GDIHandleCountPeak : 0x239 
   +0x02c UserHandleCount  : 228 
   +0x030 UserHandleCountPeak : 0x16c 
... 
   +0x088 hSecureGdiSharedHandleTable : 0x84a24159   
   +0x08c DxProcess        : 0xa2c93980 

The DxProcess field is a pointer to yet another per-process data structure—in this case, 
maintained by the DirectX Video Card Port Driver—but its description is beyond the scope of 
this book .
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Protected Processes

In the Windows security model, any process running with a token containing the debug privilege 
(such as an administrator’s account) can request any access right that it desires to any other pro-
cess running on the machine—for example, it can read and write arbitrary process memory, inject 
code, suspend and resume threads, and query information on other processes . Tools such as Process 
 Explorer and Task Manager need and request these access rights to provide their functionality to 
 users .

This logical behavior (which helps ensure that administrators will always have full control of the 
running code on the system) clashes with the system behavior for digital rights management require-
ments imposed by the media industry on computer operating systems that need to support playback 
of advanced, high-quality digital content such as Blu-ray and HD-DVD media . To support reliable and 
protected playback of such content, Windows uses protected processes . These processes exist along-
side normal Windows processes, but they add significant constraints to the access rights that other 
processes on the system (even when running with administrative privileges) can request .

Protected processes can be created by any application; however, the operating system will allow a 
process to be protected only if the image file has been digitally signed with a special Windows Media 
Certificate. The Protected Media Path (PMP) in Windows makes use of protected processes to provide 
protection for high-value media, and developers of applications such as DVD players can make use of 
protected processes by using the Media Foundation API . 

The Audio Device Graph process (Audiodg .exe) is a protected process because protected  music 
content can be decoded through it . Similarly, the Windows Error Reporting (or WER, discussed in 
Chapter 3) client process (Werfault .exe) can also run protected because it needs to have access 
to protected processes in case one of them crashes . Finally, the System process itself is protected 
because some of the decryption information is generated by the Ksecdd .sys driver and stored in its 
user-mode memory . The System process is also protected to protect the integrity of all kernel handles 
(because the System process’ handle table contains all the kernel handles on the system) . 

At the kernel level, support for protected processes is twofold: first, the bulk of process creation 
occurs in kernel mode to avoid injection attacks. (The flow for both protected and standard process 
creation is described in detail in the next section .) Second, protected processes have a special bit set 
in their EPROCESS structure that modifies the behavior of security-related routines in the process 
manager to deny certain access rights that would normally be granted to administrators . In fact, 
the only access rights that are granted for protected processes are PROCESS_QUERY/SET_LIMITED_ 
INFORMATION, PROCESS_TERMINATE, and PROCESS_SUSPEND_RESUME . Certain access rights are 
also disabled for threads running inside protected processes; we will look at those access rights later 
in this chapter in the section “Thread Internals .” 
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Because Process Explorer uses standard user-mode Windows APIs to query information on 
process internals, it is unable to perform certain operations on such processes . On the other hand, 
a tool like WinDbg in kernel-debugging mode, which uses kernel-mode infrastructure to obtain 
this  information, will be able to display complete information . See the experiment in the “Thread 
 Internals”  section on how Process Explorer behaves when confronted with a protected process such as 
Audiodg .exe .

Note As mentioned in Chapter 1, to perform local kernel debugging, you must boot in 
debugging mode (enabled by using bcdedit /debug on or by using the Msconfig advanced 
boot options) . This protects against debugger-based attacks on protected processes 
and the Protected Media Path (PMP). When booted in debugging mode, high-definition 
 content playback will not work .

Limiting these access rights reliably allows the kernel to sandbox a protected process from user-
mode access. On the other hand, because a protected process is indicated by a flag in the EPROCESS 
structure, an administrator can still load a kernel-mode driver that disables this bit . However, this 
would be a violation of the PMP model and considered malicious, and such a driver would likely 
eventually be blocked from loading on a 64-bit system because the kernel-mode, code-signing policy 
prohibits the digital signing of malicious code . Even on 32-bit systems, the driver has to be recognized 
by PMP policy or else the playback will be halted . This policy is implemented by Microsoft and not by 
any kernel detection . This block would require manual action from Microsoft to identify the signature 
as malicious and update the kernel .

Flow of CreateProcess

So far, this chapter has shown the various data structures involved in process state manipulation and 
management, and how various tools and debugger commands can inspect this information . In this 
section, we’ll see how and when those data structures are created and filled out, as well as the overall 
creation and termination behaviors behind processes .

A Windows subsystem process is created when an application calls (or eventually ends up in) one of 
the process-creation functions, such as CreateProcess, CreateProcessAsUser, CreateProcessWithTokenW, 
or CreateProcessWithLogonW . Creating a Windows process consists of several stages carried out in 
three parts of the operating system: the Windows client-side library Kernel32 .dll (in the case of the 
CreateProcessAsUser, CreateProcessWithTokenW, and CreateProcessWithLogonW routines, part of 
the work is first done in Advapi32 .dll), the Windows executive, and the Windows subsystem process 
(Csrss) . 
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Because of the multiple-environment subsystem architecture of Windows, creating an executive 
process object (which other subsystems can use) is separated from the work involved in creating 
a Windows subsystem process. So, although the following description of the flow of the Windows 
CreateProcess function is complicated, keep in mind that part of the work is specific to the seman-
tics added by the Windows subsystem as opposed to the core work needed to create an executive 
process object .

The following list summarizes the main stages of creating a process with the Windows 
 CreateProcess function . The operations performed in each stage are described in detail in the 
 subsequent sections . Some of these operations might be performed by CreateProcess itself (or other 
helper routines in user mode), while others will be performed by NtCreateUserProcess or one of its 
helper routines in kernel mode . In our detailed analysis to follow, we will differentiate between the 
two at each step required .

Note Many steps of CreateProcess are related to the setup of the process virtual address 
space and therefore refer to many memory management terms and structures that are 
 defined in Chapter 10 in Part 2.

1. Validate parameters; convert Windows subsystem flags and options to their native 
 counterparts; parse, validate, and convert the attribute list to its native counterpart .

2. Open the image file (.exe) to be executed inside the process.

3. Create the Windows executive process object .

4. Create the initial thread (stack, context, and Windows executive thread object) .

5. Perform post-creation, Windows-subsystem-specific process initialization.

6. Start execution of the initial thread (unless the CREATE_ SUSPENDED flag was specified).

7.  In the context of the new process and thread, complete the initialization of the address space 
(such as load required DLLs) and begin execution of the program .

Figure 5-6 shows an overview of the stages Windows follows to create a process .
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FIGURE 5-6 The main stages of process creation

Stage 1: Converting and Validating Parameters and Flags
Before opening the executable image to run, CreateProcess performs the following steps .

In CreateProcess, the priority class for the new process is specified as independent bits in the 
CreationFlags parameter . Thus, you can specify more than one priority class for a single CreateProcess 
call . Windows resolves the question of which priority class to assign to the process by choosing the 
lowest-priority class set .

If no priority class is specified for the new process, the priority class defaults to Normal unless the 
priority class of the process that created it is Idle or Below Normal, in which case the priority class of 
the new process will have the same priority as the creating class .
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If a Real-time priority class is specified for the new process and the process’ caller doesn’t have 
the Increase Scheduling Priority privilege, the High priority class is used instead . In other words, 
 CreateProcess doesn’t fail just because the caller has insufficient privileges to create the process in the 
Real-time priority class; the new process just won’t have as high a priority as Real-time .

All windows are associated with desktops, the graphical representation of a workspace . If no 
 desktop is specified in CreateProcess, the process is associated with the caller’s current desktop .

If the process is part of a job object, but the creation flags requested a separate virtual DOS 
 machine (VDM), the flag is ignored.

If the caller is sending a handle to a monitor as an output handle instead of a console handle, 
 standard handle flags are ignored.

If the creation flags specify that the process will be debugged, Kernel32 initiates a connection to 
the native debugging code in Ntdll .dll by calling DbgUiConnectToDbg and gets a handle to the debug 
object from the current thread’s environment block (TEB) .

Kernel32.dll sets the default hard error mode if the creation flags specified one.

The user-specified attribute list is converted from Windows subsystem format to native format and 
internal attributes are added to it . The possible attributes that can be added to the attribute list are 
listed in Table 5-1, including their documented Windows API counterparts, if any .

Note The attribute list passed on a CreateProcess call permits passing back to the caller 
information beyond a simple status code, such as the TEB address of the initial thread or 
information on the image section . This is necessary for protected processes because the 
parent cannot query this information after the child is created .

TABLE 5-1 Process Attributes

Native Attribute Equivalent Windows 
Attribute

Type Description

PS_CP_PARENT_PROCESS PROC_THREAD_ATTRIBUTE_
PARENT_PROCESS . Also used 
when elevating

Input Handle to the parent process .

PS_CP_DEBUG_OBJECT N/A – used when using 
DEBUG_PROCESS as a flag

Input Debug object if process is being started 
debugged .

PS_CP_PRIMARY_TOKEN N/A – used when  using 
CreateProcessAsUser/
WithToken

Input Process token if CreateProcessAsUser was 
used .

PS_CP_CLIENT_ID N/A – returned by Win32 API as 
a parameter

Output Returns the TID and PID of the initial 
thread and the process .

PS_CP_TEB_ADDRESS N/A – internally used and not 
exposed

Output Returns the address of the TEB for the 
initial thread .

PS_CP_FILENAME N/A – used as a parameter in 
CreateProcess API .

Input Name of the process that should be 
 created .
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Native Attribute Equivalent Windows 
Attribute

Type Description

PS_CP_IMAGE_INFO N/A – internally used and not 
exposed

Output Returns SECTION_IMAGE_INFORMATION, 
which contains information on the version, 
flags, and subsystem of the executable, as 
well as the stack size and entry point .

PS_CP_MEM_RESERVE N/A – internally used by SMSS 
and CSRSS .

Input Array of virtual memory reservations that 
should be made during initial process ad-
dress space creation, allowing guaranteed 
availability because no other allocations 
have taken place yet .

PS_CP_PRIORITY_CLASS N/A – passed in as a parameter 
to the CreateProcess API .

Input Priority class that the process should be 
given .

PS_CP_ERROR_MODE N/A – passed in through 
CREATE_DEFAULT_ERROR_
MODE flag

Input Hard error-processing mode for the 
 process .

PS_CP_STD_HANDLE_INFO Input Specifies if standard handles should be 
duplicated, or if new handles should be 
created .

PS_CP_HANDLE_LIST PROC_THREAD_ATTRIBUTE_
HANDLE_LIST

Input List of handles belonging to the parent 
process that should be inherited by the 
new process .

PS_CP_GROUP_AFFINITY PROC_THREAD_ATTRIBUTE_
GROUP_AFFINITY

Input Processor group(s) the thread should be 
allowed to run on .

PS_CP_PREFERRED_NODE PROC_THREAD_ATTRIBUTES_
PRFERRED_NODE

Input Preferred (ideal) node that should be 
 associated with the process . It affects the 
node on which the initial process heap 
and thread stack will be created .

PS_CP_IDEAL_PROCESSOR PROC_THREAD_ATTTRIBUTE_
IDEAL_PROCESSOR

Input Preferred (ideal) processor that the thread 
should be scheduled on .

PS_CP_UMS_THREAD PROC_THREAD_ATTRIBUTE_
UMS_THREAD

Input Contains the UMS attributes, completion 
list, and context .

PS_CP_EXECUTE_OPTIONS PROC_THREAD_MITIGATION_
POLICY

Input Contains information on which mitigations 
(SEHOP, ATL Emulation, NX) should be 
enabled/disabled for the process .

Once these steps are completed, CreateProcess performs the initial call to NtCreateUserProcess to 
attempt creation of the process . Because Kernel32 .dll has no idea at this point whether the applica-
tion image name is a real Windows application or a POSIX, 16-bit, or DOS application, the call might 
fail—at which point, CreateProcess looks at the error reason and attempts to correct the situation .

Stage 2: Opening the Image to Be Executed
As illustrated in Figure 5-7, the first stage in NtCreateUserProcess is to find the appropriate  Windows 
image that will run the executable file specified by the caller and to create a section object to later map 
it into the address space of the new process . If the call failed for any reason, it returns to  CreateProcess 
with a failure state (see Table 5-2) that causes CreateProcess to attempt execution again .

If the executable file specified is a Windows .exe, NtCreateUserProcess tries to open the file and 
create a section object for it . The object isn’t mapped into memory yet, but it is opened . Just because 
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a section object has been successfully created doesn’t mean that the file is a valid Windows image, 
however; it could be a DLL or a POSIX executable. If the file is a POSIX executable, the image to be 
run changes to Posix .exe, and CreateProcess restarts from the beginning of Stage 1. If the file is a DLL, 
CreateProcess fails .

Now that NtCreateUserProcess has found a valid Windows executable image, as part of the process 
creation code described in Stage 3 it looks in the registry under HKLM\SOFTWARE\Microsoft 
\Windows NT\CurrentVersion\Image File Execution Options to see whether a subkey with the file 
name and extension of the executable image (but without the directory and path information—for 
example, Image .exe) exists there . If it does, PspAllocateProcess looks for a value named  Debugger 
for that key . If this value is present, the image to be run becomes the string in that value and 
 CreateProcess restarts at Stage 1 .

Tip You can take advantage of this process creation behavior and debug the startup code 
of Windows services processes before they start rather than attach the debugger after 
starting a service, which doesn’t allow you to debug the startup code .

On the other hand, if the image is not a Windows  .exe (for example, if it’s an MS-DOS, a Win16, or 
a POSIX application), CreateProcess goes through a series of steps to find a Windows support image 
to run it . This process is necessary because non-Windows applications aren’t run directly—Windows 
instead uses one of a few special support images that, in turn, are responsible for actually running 
the non-Windows program . For example, if you attempt to run a POSIX application, CreateProcess 
identifies it as such and changes the image to be run to the Windows executable file Posix.exe. If 
you attempt to run an MS-DOS or a Win16 executable, the image to be run becomes the Windows 
executable Ntvdm .exe . In short, you can’t directly create a process that is not a Windows process . 
If Windows can’t find a way to resolve the activated image as a Windows process (as shown in 
 Table 5-2), CreateProcess fails .

Run Cmd.exe Run Ntvdm.exe Use .exe directly

What kind of
application is it?

Win16 WindowsMS-DOS .bat
or .cmd

POSIX MS-DOS .exe,
.com, or .pif

Run Posix.exe Run Ntvdm.exe

FIGURE 5-7 Choosing a Windows image to activate 
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TABLE 5-2 Decision Tree for Stage 1 of CreateProcess

If the Image  .  .  . Create State Code This Image Will 
Run  .  .  .

 .  .  . and This Will Happen

Is a POSIX executable file PsCreateSuccess Posix .exe CreateProcess restarts 
Stage 1 .

Is an MS-DOS application with 
an  .exe,  .com, or  .pif extension

PsCreateFailOnSectionCreate Ntvdm .exe CreateProcess restarts 
Stage 1 .

Is a Win16 application PsCreateFailOnSectionCreate Ntvdm .exe CreateProcess restarts 
Stage 1 .

Is a Win64 application on a 
32-bit system (or a PPC, MIPS, 
or Alpha Binary)

PsCreateFailMachineMismatch N/A CreateProcess will fail .

Has a Debugger key with 
 another image name

PsCreateFailExeName Name specified in 
the Debugger key

CreateProcess restarts 
Stage 1 .

Is an invalid or damaged 
Windows EXE

PsCreateFailExeFormat N/A CreateProcess will fail .

Cannot be opened PsCreateFailOnFileOpen N/A CreateProcess will fail .

Is a command procedure 
( application with a  .bat or  .cmd 
extension)

PsCreateFailOnSectionCreate Cmd .exe CreateProcess restarts 
Stage 1 .

Specifically, the decision tree that CreateProcess goes through to run an image is as follows:

 ■ If the image is an MS-DOS application with an  .exe,  .com, or  .pif extension, a message is 
sent to the Windows subsystem to check whether an MS-DOS support process (Ntvdm .exe, 
specified in the registry value HKLM\SYSTEM\CurrentControlSet\Control\WOW\cmdline) has 
already been created for this session . If a support process has been created, it is used to run 
the MS-DOS application . (The Windows subsystem sends the message to the VDM [Virtual 
DOS Machine] process to run the new image .) Then CreateProcess returns . If a support process 
hasn’t been created, the image to be run changes to Ntvdm .exe and CreateProcess restarts at 
Stage 1 .

 ■ If the file to run has a .bat or .cmd extension, the image to be run becomes Cmd.exe, the 
 Windows command prompt, and CreateProcess restarts at Stage 1. (The name of the batch file 
is passed as the first parameter to Cmd.exe.)

 ■ If the image is a Win16 (Windows 3 .1) executable, CreateProcess must decide whether a 
new VDM process must be created to run it or whether it should use the default session-
wide shared VDM process (which might not yet have been created) . The CreateProcess flags 
 CREATE_ SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM control this decision . If 
these flags aren’t specified, the registry value HKLM\SYSTEM\CurrentControlSet\Control 
\WOW\DefaultSeparateVDM dictates the default behavior. If the application is to be run in 
a separate VDM, the image to be run changes to ntvdm.exe followed by some configuration 
parameters and the 16-bit process’ name and CreateProcess restarts at Stage 1 . Otherwise, the 
Windows subsystem sends a message to see whether the shared VDM process exists and can 
be used . (If the VDM process is running on a different desktop or isn’t running under the same 
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security as the caller, it can’t be used and a new VDM process must be created .) If a shared 
VDM process can be used, the Windows subsystem sends a message to it to run the new im-
age and CreateProcess returns . If the VDM process hasn’t yet been created (or if it exists but 
can’t be used), the image to be run changes to the VDM support image and CreateProcess 
restarts at Stage 1 .

Stage 3: Creating the Windows Executive Process Object 
(PspAllocateProcess)
At this point, NtCreateUserProcess has opened a valid Windows executable file and created a section 
object to map it into the new process address space . Next it creates a Windows executive process 
 object to run the image by calling the internal system function PspAllocateProcess . Creating the 
 executive process object (which is done by the creating thread) involves the following substages:

 ■ Setting up the EPROCESS object

 ■ Creating the initial process address space

 ■ Initializing the kernel process structure(KPROCESS)

 ■ Setting up the PEB

 ■ Concluding the setup of the process address space (which includes initializing the working set 
list and virtual address space descriptors and mapping the image into address space)

Note The only time there won’t be a parent process is during system initialization . After 
that point, a parent process is always required to provide a security context for the new 
process .

Stage 3A: Setting Up the EPROCESS Object
This substage involves the following steps:

1. Inherit the affinity of the parent process, unless it was explicitly set during process creation 
(through the attribute list) .

2. Choose the ideal node that was specified in the attribute list, if any.

3. Inherit the I/O and page priority from the parent process . If there is no parent process, the 
default page priority (5) and I/O priority (Normal) are used . 

4. Set the new process’ exit status to STATUS_PENDING .

5. Choose the hard error processing mode selected by the attribute list; otherwise, inherit the 
parent’s processing mode if none was given . If no parent exists, use the default processing 
mode which is to display all errors .
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6. Store the parent process’ process ID in the InheritedFromUniqueProcessId field in the new 
process object .

7.  Query the Image File Execution Options key to check if the process should be mapped with 
large pages . Also, query the key to check if NTDLL has been listed as a DLL that should be 
mapped with large pages within this process .

8. Query the Image File Execution Options key for a specific NUMA node assignment associated 
with the process . The assignment can be either based on inheritance (in which the NUMA 
node will be propagated from the parent) or an explicit NUMA assignment, as long as this 
 assignment does not override the initial NUMA node specified in the attribute list.

9. Disable stack randomization if ASLR was disabled on the executable containing the process .

10. Attempt to acquire all the privileges required for creating the process . Choosing the  Real-time 
process priority class, assigning a token to the new process, mapping the process with large 
pages, and creating the process within a new session are all operations that require the 
 appropriate privilege .

11. Create the process’ primary access token (a duplicate of its parent’s primary token) . New 
processes inherit the security profile of their parents. If the CreateProcessAsUser function is 
being used to specify a different access token for the new process, the token is then changed 
appropriately . This change might happen only if the parent token’s integrity level dominates 
the integrity level of the access token, and if the access token is a true child or sibling of the 
parent token . Note that if the parent has the SeAssignPrimaryToken privilege, this will bypass 
these checks .

12. The session ID of the new process token is now checked to determine if this is a cross-session 
create—in which case, the parent process temporarily attaches to the target session to 
 correctly process quotas and address space creation .

13. Set the new process’ quota block to the address of its parent process’ quota block, and 
 increment the reference count for the parent’s quota block . If the process was created through 
CreateProcessAsUser, this step won’t occur . Instead, the default quota is created, or a quota 
matching the user’s profile is selected.

14. The process minimum and maximum working set sizes are set to the values of 
 PspMinimumWorkingSet and PspMaximumWorkingSet, respectively . These values can be 
overridden if performance options were specified in the PerfOptions key part of Image File 
Execution Options—in which case, the maximum working set is taken from there . Note that 
the default working set limits are soft limits and are essentially hints, while the PerfOptions 
working set maximum is a hard limit (that is, the working set will not be allowed to grow past 
that number) .

15. Initialize the address space of the process . (See Stage 3B .) Then detach from the target session 
if it was different .
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16. The group affinity for the process is now chosen if group-affinity inheritance was not used. 
The default group affinity either will inherit from the parent, if NUMA node propagation was 
set earlier (the group owning the NUMA node will be used) or be assigned round-robin based 
on the PspProcessGroupAssignment seed . If the system is in forced group-awareness mode 
and group 0 was chosen by the selection algorithm, group 1 is chosen instead, as long as it 
exists .

17. Initialize the KPROCESS part of the process object . (See Stage 3C .)

18. The token for the process is now set .

19. The process’ priority class is set to normal, unless the parent was using idle or the Below 
 Normal process priority class—in which case, the parent’s priority is inherited . If a process 
priority class was set manually through the attribute lists, it is now set .

20. The process handle table is initialized. If the inherit handles flag is set for the parent  process, 
any inheritable handles are copied from the parent’s object handle table into the new pro-
cess . (For more information about object handle tables, see Chapter 3 .) A process attribute 
can also be used to specify only a subset of handles, which is useful when you are using 
 CreateProcessAsUser to restrict which objects should be inherited by the child process .

21. If performance options were specified through the PerfOptions key, these are now applied . 
The PerfOptions key includes overrides for the working set limit, I/O priority, page priority, and 
CPU priority class of the process .

22. The final process priority class and the default quantum for its threads are computed and set.

23. The second stage of address space setup is completed, including the initialization of the PEB 
(Stage 3D/3E) .

24. Mitigation options for No-Execute support are now set .

25. The process PID and creation time is set, although the PID is not yet inserted in the PID handle 
table, nor is the process inserted in the process lists (that is the job of the insertion stage) .

Stage 3B: Creating the Initial Process Address Space
The initial process address space consists of the following pages:

 ■ Page directory (and it’s possible there’ll be more than one for systems with page tables more 
than two levels, such as x86 systems in PAE mode or 64-bit systems)

 ■ Hyperspace page

 ■ VAD bitmap page

 ■ Working set list
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To create these three pages, the following steps are taken:

1. Page table entries are created in the appropriate page tables to map the initial pages .

2. The number of pages is deducted from the kernel variable MmTotalCommittedPages and 
added to MmProcessCommit .

3. The systemwide default process minimum working set size (PsMinimumWorkingSet) is 
 deducted from MmResidentAvailablePages .

4. The page table pages for the global system space (that is, other than the process-specific 
pages we just described, and except session-specific memory).

Stage 3C: Creating the Kernel Process Structure
The next stage of PspAllocateProcess is the initialization of the KPROCESS structure (the Pcb member 
of the EPROCESS) . This work is performed by KeInitializeProcess, which initializes the following:

 ■ The doubly-linked list which connects all threads part of the process (initially empty) .

 ■ The initial value (or reset value) of the process default quantum (which is described in more 
detail in the “Thread Scheduling” section later in the chapter), which is hard-coded to 6 until it 
is initialized later (by PspComputeQuantumAndPriority) .

Note The default initial quantum differs between Windows client and server 
 systems . For more information on thread quantums, turn to their discussion in 
the section “Thread Scheduling .”

 ■ The process’ base priority is set based on what was computed in Stage 3A .

 ■ The default processor affinity for the threads in the process is set, as is the group affinity. The 
group affinity was calculated earlier in Stage 3A or inherited from the parent.

 ■ The process swapping state is set to resident .

 ■ The thread seed is based on the ideal processor that the kernel has chosen for this process 
(which is based on the previously created process’ ideal processor, effectively randomizing 
this in a round-robin manner) . Creating a new process will update the seed in KeNodeBlock 
(the initial NUMA node block) so that the next new process will get a different ideal processor 
seed .

Stage 3D: Concluding the Setup of the Process Address Space
Setting up the address space for a new process is somewhat complicated, so let’s look at what’s 
involved one step at a time . To get the most out of this section, you should have some familiarity with 
the internals of the Windows memory manager, which are described in Chapter 10 in Part 2 .
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1. The virtual memory manager sets the value of the process’ last trim time to the current time . 
The working set manager (which runs in the context of the balance set manager system 
thread) uses this value to determine when to initiate working set trimming .

2. The memory manager initializes the process’ working set list—page faults can now be taken .

3. The section (created when the image file was opened) is now mapped into the new process’ 
address space, and the process section base address is set to the base address of the image .

4. Ntdll .dll is mapped into the process; if this is a Wow64 process, the 32-bit Ntdll .dll is also 
mapped .

5. A new session, if requested, is now created for the process . This special step is mostly 
 implemented for the benefit of the Session Manager (SMSS) when initializing a new session.

6. The standard handles are duplicated, and the new values are written in the process 
 parameters structure .

7.  Any memory reservations listed in the attribute list are now processed. Additionally, two flags 
allow the bulk reservation of the first 1 or 16 MB of the address space. These flags are used in-
ternally for mapping real-mode vectors and ROM code, for example (which must be in the low 
ranges of virtual address space, where normally the heap or other process structures could be 
located) .

8. The user process parameters are written into the process, copied, and fixed up (meaning 
 converted from absolute form to a relative form so that a single memory block is needed) .

9. The affinity information is written into the PEB.

10. The MinWin API redirection set is mapped into the process .

Note POSIX processes clone the address space of their parents, so they don’t have to go 
through these steps to create a new address space . In the case of POSIX applications, the 
new process’ section base address is set to that of its parent process and the parent’s PEB is 
cloned for the new process .

Stage 3E: Setting Up the PEB
NtCreateUserProcess calls MmCreatePeb, which first maps the systemwide national language 
 support (NLS) tables into the process’ address space . It next calls MiCreatePebOrTeb to allocate a 
page for the PEB and then initializes a number of fields, most of them based on internal variables 
that were configured through the registry, such as MmHeap* values, MmCriticalSectionTimeout, and 
 MmMinimumStackCommitInBytes. Some of these fields can be overridden by settings in the linked 
executable image, such as the Windows version in the PE header or the affinity mask in the load 
 configuration directory of the PE header. 
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If the image header characteristics IMAGE_FILE_UP_SYSTEM_ONLY flag is set (indicating that the 
image can run only on a uniprocessor system), a single CPU (MmRotatingUniprocessorNumber) is 
chosen for all the threads in this new process to run on . The selection process is performed by simply 
cycling through the available processors—each time this type of image is run, the next processor is 
used . In this way, these types of images are spread evenly across the processors .

Stage 3F: Completing the Setup of the Executive Process Object 
(PspInsertProcess)
Before the handle to the new process can be returned, a few final setup steps must be completed, 
which are performed by PspInsertProcess and its helper functions:

1. If systemwide auditing of processes is enabled (either as a result of local policy settings or 
group policy settings from a domain controller), the process’ creation is written to the Security 
event log .

2. If the parent process was contained in a job, the job is recovered from the job level set of the 
parent and then bound to the session of the newly created process . Finally, the new process is 
added to the job .

3. PspInsertProcess inserts the new process object at the end of the Windows list of active 
 processes (PsActiveProcessHead) . 

4. The process debug port of the parent process is copied to the new child process, unless the 
NoDebugInherit flag is set (which can be requested when creating the process). If a debug 
port was specified, it is attached to the new process at this time.

5. Because job objects can now specify restrictions on which group or groups the threads within 
the processes part of a job can run on, PspInsertProcess must make sure that the group affinity 
associated with the process would not violate the group affinity associated with the job. An 
interesting secondary issue to consider is if the job’s permissions grant access to modify the 
process’ affinity permissions, because a lesser-privileged job object might interfere with the 
affinity requirements of a more privileged process.

6. Finally, PspInsertProcess creates a handle for the new process by calling 
 ObOpenObjectByPointer, and then returns this handle to the caller . Note that no process 
creation callback is sent until the first thread within the process is created, and the code always 
sends process callbacks before sending object-managed based callbacks .

Stage 4: Creating the Initial Thread and Its Stack and Context
At this point, the Windows executive process object is completely set up . It still has no thread, 
however, so it can’t do anything yet . It’s now time to start that work . Normally, the PspCreateThread 
routine is responsible for all aspects of thread creation and is called by NtCreateThread when a 
new thread is being created . However, because the initial thread is created internally by the kernel 
without user-mode input, the two helper routines that PspCreateThread relies on are used instead: 
 PspAllocateThread and PspInsertThread . 
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PspAllocateThread handles the actual creation and initialization of the executive thread object 
itself, while PspInsertThread handles the creation of the thread handle and security attributes and the 
call to KeStartThread to turn the executive object into a schedulable thread on the system . However, 
the thread won’t do anything yet—it is created in a suspended state and isn’t resumed until the 
 process is completely initialized (as described in Stage 5) . 

Note The thread parameter (which can’t be specified in CreateProcess but can be specified 
in CreateThread) is the address of the PEB . This parameter will be used by the initialization 
code that runs in the context of this new thread (as described in Stage 6) .

PspAllocateThread performs the following steps:

1. It prevents user-mode scheduling (UMS) threads from being created in Wow64 processes, as 
well as preventing user-mode callers from creating threads in the system process .

2. An executive thread object is created and initialized .

3. If CPU rate limiting is enabled, the CPU quota block is initialized .

4. The various lists used by LPC, I/O Management, and the Executive are initialized . 

5. The thread’s create time is set, and its thread ID (TID) is created .

6. Before the thread can execute, it needs a stack and a context in which to run, so these are 
set up . The stack size for the initial thread is taken from the image—there’s no way to specify 
another size . If this is a Wow64 process, the Wow64 thread context will also be initialized .

7.  The thread environment block (TEB) is allocated for the new thread .

8. The user-mode thread start address is stored in the ETHREAD . This is the system-supplied 
thread startup function in Ntdll .dll (RtlUserThreadStart). The user’s specified Windows start ad-
dress is stored in the ETHREAD in a different location so that debugging tools such as Process 
Explorer can query the information .

9. KeInitThread is called to set up the KTHREAD structure . The thread’s initial and current base 
priorities are set to the process’ base priority, and its affinity and quantum are set to that of 
the process . This function also sets the initial thread ideal processor . (See the section “Ideal 
and Last Processor” for a description of how this is chosen .) KeInitThread next allocates a 
kernel stack for the thread and initializes the machine-dependent hardware context for the 
thread, including the context, trap, and exception frames . The thread’s context is set up so that 
the thread will start in kernel mode in KiThreadStartup . Finally, KeInitThread sets the thread’s 
state to Initialized and returns to PspAllocateThread .

10. If this is a UMS thread, PspUmsInitThread is called to initialize the UMS state .
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Once that work is finished, NtCreateUserProcess calls PspInsertThread to perform the following 
steps:

1. A check is made to ensure that the thread’s group affinity does not violate job limitations 
(which we already described earlier) . In the process create path, this check is skipped because 
it was already done at the earlier stage .

2. Checks are made to ensure that the process hasn’t already been terminated, that the thread 
hasn’t already been terminated, or that the thread hasn’t even been able to start running . If 
any of these cases are true, thread creation will fail .

3. The KTHREAD part of the thread object is initialized by calling KeStartThread . This involves 
 inheriting scheduler settings from the owner process, setting the ideal node and proces-
sor, updating the group affinity, and inserting the thread in the process list maintained by 
 KPROCESS (a separate list from the one in EPROCESS) . Additionally, on x64 systems, another 
systemwide list of processes, KiProcessListHead, is used by PatchGuard to maintain the 
 integrity of the executive’s PsActiveProcessHead . Finally, the stack count of the process is 
 incremented .

4. The thread count in the process object is incremented, and the owner process’ I/O priority 
and page priority are inherited . If this is the highest number of threads the process has ever 
had, the thread count high watermark is updated as well . If this was the second thread in the 
process, the primary token is frozen (that is, it can no longer be changed, unless the process is 
a POSIX subsystem process) .

5. If the thread is a UMS thread, the count of UMS threads is incremented .

6. The thread is inserted in the process’ thread list, and the thread is suspended if the creating 
process requested it .

7.  If CPU rate limiting is enabled, the rate control APC is initialized and the CpuThrottled bit is set 
in the KTHREAD .

8. The object is inserted, and any registered thread callbacks are called. If this was the first 
thread in the process (and therefore, the operation happened as part of the CreateProcess 
path), the registered kernel process callbacks are also called .

9. The handle is created with ObOpenObjectByPointer .

10. The thread is readied for execution by calling KeReadyThread . It enters the deferred ready 
queue, the process is paged out, and a page in is requested .

Stage 5: Performing Windows Subsystem–Specific  Post-
Initialization
Once NtCreateUserProcess returns with a success code, all the necessary executive process and 
thread objects have been created . Kernel32 .dll then performs various operations related to Windows 
subsystem–specific operations to finish initializing the process. 
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First of all, various checks are made for whether Windows should allow the executable to run . 
These checks include validating the image version in the header and checking whether Windows 
application certification has blocked the process (through a group policy). On specialized editions of 
Windows Server 2008 R2, such as Windows Web Server 2008 R2 and Windows HPC Server 2008 R2, 
additional checks are made to see whether the application imports any disallowed APIs .

If software restriction policies dictate, a restricted token is created for the new process . Afterward, 
the application-compatibility database is queried to see whether an entry exists in either the registry 
or system application database for the process . Compatibility shims will not be applied at this point—
the information will be stored in the PEB once the initial thread starts executing (Stage 6) .

At this point, Kernel32 .dll sends a message to the Windows subsystem so that it can set up SxS 
information (see the end of this section for more information on side-by-side assemblies) such as 
manifest files, DLL redirection paths, and out-of-process execution for the new process. It also initial-
izes the Windows subsystem structures for the process and initial thread . The message includes the 
following information:

 ■ Process and thread handles

 ■ Entries in the creation flags

 ■ ID of the process’ creator

 ■ Flag indicating whether the process belongs to a Windows application (so that Csrss can 
 determine whether or not to show the startup cursor)

 ■ UI language information

 ■ DLL redirection and .local flags

 ■ Manifest file information

The Windows subsystem performs the following steps when it receives this message:

1. CsrCreateProcess duplicates a handle for the process and thread . In this step, the usage count 
of the process and the thread is incremented from 1 (which was set at creation time) to 2 .

2. If a process priority class isn’t specified, CsrCreateProcess sets it according to the algorithm 
described earlier in this section .

3. The Csrss process structure (CSR_PROCESS) is allocated .

4. The new process’ exception port is set to be the general function port for the Windows 
 subsystem so that the Windows subsystem will receive a message when a second-chance 
 exception occurs in the process . (For further information on exception handling, see 
 Chapter 3 .)

5. The Csrss thread structure (CSR_THREAD) is allocated and initialized .

6. CsrCreateThread inserts the thread in the list of threads for the process .
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7.  The count of processes in this session is incremented .

8. The process shutdown level is set to 0x280 (the default process shutdown level—see 
 SetProcessShutdownParameters in the MSDN Library documentation for more information) .

9. The new Csrss process structure is inserted into the list of Windows subsystem-wide processes .

10. The per-process data structure used by the kernel-mode part of the Windows subsystem 
(W32PROCESS) is allocated and initialized .

11. The application start cursor is displayed . This cursor is the familiar rolling doughnut shape—
the way that Windows says to the user, “I’m starting something, but you can use the cursor in 
the meantime .” If the process doesn’t make a GUI call after two seconds, the cursor reverts to 
the standard pointer . If the process does make a GUI call in the allotted time, CsrCreateProcess 
waits five seconds for the application to show a window. After that time, CsrCreateProcess 
resets the cursor again .

After Csrss has performed these steps, CreateProcess checks whether the process was run  elevated 
(which means it was executed through ShellExecute and elevated by the AppInfo service after the 
consent dialog box was shown to the user) . This includes checking whether the process was a setup 
program. If it was, the process’ token is opened, and the virtualization flag is turned on so that 
the  application is virtualized . (See the information on UAC and virtualization in Chapter 6 .) If the 
 application contained elevation shims or had a requested elevation level in its manifest, the pro-
cess is destroyed and an elevation request is sent to the AppInfo service . (See Chapter 6 for more 
 information on elevation .)

Note that most of these checks are not performed for protected processes; because these 
 processes must have been designed for Windows Vista or later, there’s no reason why they should 
require elevation, virtualization, or application-compatibility checks and processing . Additionally, 
 allowing mechanisms such as the shim engine to use its usual hooking and memory-patching tech-
niques on a protected process would result in a security hole if someone could figure how to insert 
arbitrary shims that modify the behavior of the protected process . Additionally, because the Shim 
Engine is installed by the parent process, which might not have access to its child protected process, 
even legitimate shimming cannot work .

Stage 6: Starting Execution of the Initial Thread
At this point, the process environment has been determined, resources for its threads to use have 
been allocated, the process has a thread, and the Windows subsystem knows about the new process . 
Unless the caller specified the CREATE_ SUSPENDED flag, the initial thread is now resumed so that 
it can start running and perform the remainder of the process initialization work that occurs in the 
context of the new process (Stage 7) .
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Stage 7: Performing Process Initialization in the Context of the 
New Process
The new thread begins life running the kernel-mode thread startup routine KiThreadStartup . 
KiThreadStartup lowers the thread’s IRQL level from deferred procedure call (DPC)/dispatch level to 
APC level and then calls the system initial thread routine, PspUserThreadStartup. The user-specified 
thread start address is passed as a parameter to this routine .

First, this function disables the ability to swap the primary process token at runtime, which is 
reserved for POSIX support only (to emulate setuid behavior) . It then sets the Locale ID and the ideal 
processor in the TEB, based on the information present in kernel-mode data structures, and then it 
checks whether thread creation actually failed . Next it calls DbgkCreateThread, which checks whether 
image notifications were sent for the new process. If they weren’t, and notifications are enabled, an 
image notification is sent first for the process and then for the image load of Ntdll.dll. Note that this 
is done in this stage rather than when the images were first mapped because the process ID (which is 
required for the kernel callouts) is not yet allocated at that time .

Once those checks are completed, another check is performed to see whether the process is a 
debuggee . If it is, PspUserThreadStartup checks whether the debugger notifications have already 
been sent for this process . If not, a create process message is sent through the debug object (if one 
is present) so that the process startup debug event (CREATE_PROCESS_DEBUG_INFO) can be sent to 
the appropriate debugger process . This is followed by a similar thread startup debug event and by 
another debug event for the image load of Ntdll .dll . DbgkCreateThread then waits for a reply from the 
debugger (via the ContinueDebugEvent function) . 

Now that the debugger has been notified, PspUserThreadStartup looks at the result of the initial 
check on the thread’s life . If it was killed on startup, the thread is terminated . This check is done after 
the debugger and image notifications to be sure that the kernel-mode and user-mode debuggers 
don’t miss information on the thread, even if the thread never got a chance to run .

Otherwise, the routine checks whether application prefetching is enabled on the system and, 
if so, calls the prefetcher (and Superfetch) to process the prefetch instruction file (if it exists) and 
prefetch pages referenced during the first 10 seconds the last time the process ran. (For details on the 
prefetcher and Superfetch, see Chapter 10 in Part 2 .)

PspUserThreadStartup then checks whether the systemwide cookie in the SharedUserData  structure 
has been set up yet . If it hasn’t, it generates it based on a hash of system information such as the 
number of interrupts processed, DPC deliveries, and page faults . This systemwide cookie is used in the 
internal decoding and encoding of pointers, such as in the heap manager to protect against certain 
classes of exploitation . (For more information on heap manager security, see Chapter 10 in Part 2 .) 

Finally, PspUserThreadStartup sets up the initial thunk context to run the image-loader 
 initialization routine (LdrInitializeThunk in Ntdll .dll), as well as the systemwide thread startup stub 
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(RtlUserThreadStart in Ntdll .dll) . These steps are done by editing the context of the thread in place and 
then issuing an exit from system service operation, which loads the specially crafted user context . The 
LdrInitializeThunk routine initializes the loader, the heap manager, NLS tables, thread-local storage 
(TLS) and fiber-local storage (FLS) arrays, and critical section structures. It then loads any required 
DLLs and calls the DLL entry points with the DLL_PROCESS_ ATTACH function code . 

Once the function returns, NtContinue restores the new user context and returns to user mode—
thread execution now truly starts .

RtlUserThreadStart uses the address of the actual image entry point and the start parameter and 
calls the application’s entrypoint . These two parameters have also already been pushed onto the stack 
by the kernel . This complicated series of events has two purposes . First, it allows the image loader 
inside Ntdll .dll to set up the process internally and behind the scenes so that other user-mode code 
can run properly . (Otherwise, it would have no heap, no thread-local storage, and so on .) 

Second, having all threads begin in a common routine allows them to be wrapped in exception 
handling so that when they crash, Ntdll.dll is aware of that and can call the unhandled exception filter 
inside Kernel32 .dll . It is also able to coordinate thread exit on return from the thread’s start routine 
and to perform various cleanup work . Application developers can also call SetUnhandledExceptionFilter 
to add their own unhandled exception-handling code .

EXPERIMENT: Tracing Process Startup
Now that we’ve looked in detail at how a process starts up and the different operations 
 required to begin executing an application, we’re going to use Process Monitor to look at some 
of the file I/O and registry keys that are accessed during this process. 

Although this experiment will not provide a complete picture of all the internal steps we’ve 
described, you’ll be able to see several parts of the system in action, notably prefetch and 
Superfetch, image-file execution options and other compatibility checks, and the image loader’s 
DLL mapping .

We’ll look at a very simple executable—Notepad .exe—and launch it from a Command 
Prompt window (Cmd .exe) . It’s important that we look both at the operations inside Cmd .
exe and those inside Notepad .exe . Recall that a lot of the user-mode work is performed by 
 CreateProcess, which is called by the parent process before the kernel has created a new 
 process object .

To set things up correctly, add two filters to Process Monitor: one for Cmd.exe, and one for 
Notepad .exe—these are the only two processes you should include . Be sure that you don’t have 
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any currently running instances of these two processes so that you know you’re looking at the 
right events. The filter window should look like this:

 

Next, make sure that event logging is currently disabled (clear File, Capture Events), and 
then start up the command prompt . Enable event logging (using the File menu again, or simply 
press CTRL+E or click the magnifying glass icon on the toolbar), and then type Notepad .exe 
and press Enter . On a typical Windows system, you should see anywhere between 500 and 
1500 events appear . Hide the Sequence and Time Of Day columns so that you can focus your 
 attention on the columns of interest . Your window should look similar to the one shown next .

 

Just as described in Stage 1 of the CreateProcess flow, one of the first things to notice is that 
just before the process is started and the first thread is created, Cmd.exe does a registry read 
at HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution Options. 
Because there were no image-execution options associated with Notepad .exe, the process was 
created as is .

As with this and any other event in Process Monitor’s log, you have the ability to see whether 
each part of the process creation flow was performed in user mode or kernel mode, and by 
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which routines, by looking at the stack of the event . To do this, double-click on the RegOpenKey 
event and switch to the Stack tab . The following screen shows the standard stack on a 32-bit 
Windows machine .

This stack shows that you already reached the part of process creation performed in 
 kernel mode (through NtCreateUserProcess) and that the helper routine PspAllocateProcess is 
 responsible for this check .

Going down the list of events after the thread and process have been created, you will notice 
three groups of events. The first is a simple check for application-compatibility flags, which will 
let the user-mode process creation code know if checks inside the application-compatibility 
database are required through the shim engine .

This check is followed by multiple reads to Side-By-Side, Manifest, and MUI/Language keys, 
which are part of the assembly framework mentioned earlier. Finally, you might see file I/O to 
one or more .sdb files, which are the application-compatibility databases on the system. This 
I/O is where additional checks are done to see if the shim engine needs to be invoked for this 
application . Because Notepad is a well-behaved Microsoft program, it doesn’t require any 
shims .

The following screen shows the next series of events, which happen inside the Notepad 
 process itself . These are actions initiated by the user-mode thread startup wrapper in kernel 
mode, which performs the actions described earlier. The first two are the Notepad.exe and 
Ntdll.dll image load debug notification messages, which can be generated only now that code 
is running inside Notepad’s process context and not the context for the command prompt . 
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Next, the prefetcher kicks in, looking for a prefetch database file that has already been 
generated for Notepad . (For more information on the prefetcher, see Chapter 10 in Part 2 .) On 
a system where Notepad has already been run at least once, this database will exist, and the 
prefetcher will begin executing the commands specified inside it. If this is the case, scrolling 
down you will see multiple DLLs being read and queried . Unlike typical DLL loading, which is 
done by the user-mode image loader by looking at the import tables or when an application 
manually loads a DLL, these events are being generated by the prefetcher, which is already 
aware of the libraries that Notepad will require . Typical image loading of the DLLs required 
 happens next, and you will see events similar to the ones shown here:

These events are now being generated from code running inside user mode, which was 
called once the kernel-mode wrapper function finished its work. Therefore, these are the first 
events coming from LdrpInitializeProcess, which we mentioned is the internal system wrapper 
function for any new process, before the start address wrapper is called. You can confirm this 
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on your own by looking at the stack of these events—for example, the kernel32 .dll image load 
event, which is shown in the next screen:

Further events are generated by this routine and its associated helper functions until you 
finally reach events generated by the WinMain function inside Notepad, which is where code 
under the developer’s control is now being executed . Describing in detail all the events and 
user-mode components that come into play during process execution would fill up this entire 
chapter, so exploration of any further events is left as an exercise for the reader .

Thread Internals

Now that we’ve dissected processes, let’s turn our attention to the structure of a thread . Unless 
 explicitly stated otherwise, you can assume that anything in this section applies to both user-mode 
threads and kernel-mode system threads (which are described in Chapter 2) .

Data Structures
At the operating-system level, a Windows thread is represented by an executive thread object . The 
executive thread object encapsulates an ETHREAD structure, which in turn contains a KTHREAD 
structure as its first member. These are illustrated in Figure 5-8. The ETHREAD structure and the other 
structures it points to exist in the system address space, with the exception of the thread environment 
block (TEB), which exists in the process address space (again, because user-mode components need 
to access it) .
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The Windows subsystem process (Csrss) maintains a parallel structure for each thread created in 
a Windows subsystem application, called the CSR_THREAD . For threads that have called a Windows 
subsystem USER or GDI function, the kernel-mode portion of the Windows subsystem (Win32k .sys) 
maintains a per-thread data structure (called the W32THREAD) that the KTHREAD structure points to .

Note The fact that the executive, high-level, graphics-related, Win32k thread structure 
is pointed to by the KTHREAD, instead of the ETHREAD, appears to be a layer violation 
or oversight in the standard kernel’s abstraction architecture—the scheduler and other 
 low-level components do not use this field.

 

Thread control block (KTHREAD)
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List of pending APCs
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FIGURE 5-8 Important fields of the executive thread structure and its embedded kernel thread structure  
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Most of the fields illustrated in Figure 5-8 are self-explanatory. The first member of the ETHREAD 
is called the Tcb, for “Thread control block”; this is a structure of type KTHREAD . Following that are 
the thread identification information, the process identification information (including a pointer to 
the owning process so that its environment information can be accessed), security information in the 
form of a pointer to the access token and impersonation information, and finally, fields relating to 
Asynchronous Local Procedure Call (ALPC) messages and pending I/O requests . Some of these key 
fields are covered in more detail elsewhere in this book. For more details on the internal structure of 
an ETHREAD structure, you can use the kernel debugger dt command to display its format .

Let’s take a closer look at two of the key thread data structures referred to in the preceding text: 
the KTHREAD and the TEB . The KTHREAD structure (which is the Tcb member of the ETHREAD) con-
tains information that the Windows kernel needs to perform thread scheduling, synchronization, and 
timekeeping functions . 

EXPERIMENT: Displaying ETHREAD and KTHREAD Structures
The ETHREAD and KTHREAD structures can be displayed with the dt command in the kernel 
debugger . The following output shows the format of an ETHREAD on a 32-bit system:

lkd> dt nt!_ethread  
nt!_ETHREAD  
   +0x000 Tcb              : _KTHREAD 
   +0x1e0 CreateTime       : _LARGE_INTEGER 
   +0x1e8 ExitTime         : _LARGE_INTEGER 
   +0x1e8 KeyedWaitChain   : _LIST_ENTRY 
   +0x1f0 ExitStatus       : Int4B 
... 
   +0x270 AlpcMessageId    : Uint4B 
   +0x274 AlpcMessage      : Ptr32 Void 
   +0x274 AlpcReceiveAttributeSet : Uint4B 
   +0x278 AlpcWaitListEntry : _LIST_ENTRY 
   +0x280 CacheManagerCount : Uint4B

The KTHREAD can be displayed with a similar command or by typing dt nt!_ETHREAD Tcb, 
as was shown in the EPROCESS/KPROCESS experiment earlier:

lkd> dt nt!_kthread  
nt!_KTHREAD  
   +0x000 Header           : _DISPATCHER_HEADER 
   +0x010 CycleTime        : Uint8B 
   +0x018 HighCycleTime    : Uint4B 
   +0x020 QuantumTarget    : Uint8B 
... 
   +0x05e WaitIrql         : UChar 
   +0x05f WaitMode         : Char 
   +0x060 WaitStatus       : Int4B
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EXPERIMENT: Using the Kernel Debugger !thread Command
The kernel debugger !thread command dumps a subset of the information in the thread data 
structures . Some key elements of the information the kernel debugger displays can’t be dis-
played by any utility, including the following information: internal structure addresses; priority 
details; stack information; the pending I/O request list; and, for threads in a wait state, the list of 
objects the thread is waiting for .

To display thread information, use either the !process command (which displays all the 
threads of a process after displaying the process information) or the !thread command with the 
address of a thread object to display a specific thread. 

EXPERIMENT: Viewing Thread Information
The following output is the detailed display of a process produced by using the Tlist utility in 
the Debugging Tools for Windows . Notice that the thread list shows Win32StartAddr . This is the 
address passed to the CreateThread function by the application . All the other utilities, except 
Process Explorer, that show the thread start address show the actual start address (a function in 
Ntdll.dll), not the application-specified start address.

C:\Program Files\Windows Kits\8.0\Debuggers\x86>tlist winword 
3232 WINWORD.EXE       648739_Chap05.docx - Microsoft Word 
   CWD:     C:\Users\Alex Ionescu\Documents\ 
   CmdLine: "C:\Program Files\Microsoft Office\Office14\WINWORD.EXE" /n "C:\Users\Alex 
Ionescu\Documents\Chapter5.docx 
   VirtualSize:   531024 KB   PeakVirtualSize:   585248 KB 
   WorkingSetSize:122484 KB   PeakWorkingSetSize:181532 KB 
   NumberOfThreads: 12 
   2104 Win32StartAddr:0x2fde10ec LastErr:0x00000000 State:Waiting 
   2992 Win32StartAddr:0x7778fd0d LastErr:0x00000000 State:Waiting 
   3556 Win32StartAddr:0x3877e970 LastErr:0x00000000 State:Waiting 
   2436 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting 
   3136 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting 
   3412 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting 
   1096 Win32StartAddr:0x3877e875 LastErr:0x00000000 State:Waiting 
    912 Win32StartAddr:0x74497832 LastErr:0x00000000 State:Waiting 
   1044 Win32StartAddr:0x389b0926 LastErr:0x00000583 State:Waiting 
   1972 Win32StartAddr:0x694532fb LastErr:0x00000000 State:Waiting 
   4056 Win32StartAddr:0x75f9c83e LastErr:0x00000000 State:Waiting 
   1124 Win32StartAddr:0x777903e9 LastErr:0x00000000 State:Waiting 
 14.0.5123.5000 shp  0x2FDE0000  C:\Program Files\Microsoft Office\Office14\WINWORD.EXE 
 6.1.7601.17725 shp  0x77760000  C:\Windows\SYSTEM32\ntdll.dll 
 6.1.7601.17651 shp  0x75CE0000  C:\Windows\system32\kernel32.dll

The TEB, illustrated in Figure 5-9, is one of the data structures explained in this section that exists 
in the process address space (as opposed to the system space) . Internally, it is made up of a header 
called the TIB (Thread Information Block), which mainly existed for compatibility with OS/2 and Win9x 
applications . It also allows exception and stack information to be kept into a smaller structure when 
creating new threads by using an Initial TIB .
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The TEB stores context information for the image loader and various Windows DLLs . Because these 
components run in user mode, they need a data structure writable from user mode . That’s why this 
structure exists in the process address space instead of in the system space, where it would be writ-
able only from kernel mode. You can find the address of the TEB with the kernel debugger !thread 
command .
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FIGURE 5-9 Fields of the thread environment block 

EXPERIMENT: Examining the TEB
You can dump the TEB structure with the !teb command in the kernel debugger . The output 
looks like this:

kd> !teb  
TEB at 7ffde000 
    ExceptionList:        019e8e44 
    StackBase:            019f0000 
    StackLimit:           019db000 
    SubSystemTib:         00000000 
    FiberData:            00001e00 
... 
    PEB Address:          7ffd9000 
    LastErrorValue:       0 
    LastStatusValue:      c0000139 
    Count Owned Locks:    0 
    HardErrorMode:        0
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The CSR_THREAD, illustrated in Figure 5-10 is analogous to the data structure of CSR_PROCESS, but 
it’s applied to threads . As you might recall, this is maintained by each Csrss process within a session 
and identifies the Windows subsystem threads running within it. The CSR_THREAD stores a handle 
that Csrss keeps for the thread, various flags, and a pointer to the CSR_PROCESS for the thread . It also 
stores another copy of the thread’s creation time .

Reference count

Create time

Thread links

Hash links

Client ID

Wait block

Thread handle

CSR_WAITBLOCK

Flags

Impersonation count

CSR_THREAD

CSR_THREAD

FIGURE 5-10 Fields of the CSR thread

EXPERIMENT: Examining the CSR_THREAD
You can dump the CSR_THREAD structure with the !dt command in the user-mode debugger 
while attached to a Csrss process . Follow the instructions in the CSR_PROCESS experiment from 
earlier to safely perform this operation . The output looks like this:

0:000> !dt v 001c7630 
PCSR_THREAD @ 001c7630: 
   +0x000 CreateTime       : _LARGE_INTEGER 0x1cb9fb6'00f90498 
   +0x008 Link             : _LIST_ENTRY [ 0x1c0ab0 - 0x1c0f00 ] 
   +0x010 HashLinks        : _LIST_ENTRY [ 0x75f19b38 - 0x75f19b38 ] 
   +0x018 ClientId         : _CLIENT_ID 
   +0x020 Process          : 0x001c0aa0 _CSR_PROCESS 
   +0x024 ThreadHandle     : 0x000005c4  
   +0x028 Flags            : 0 
   +0x02c ReferenceCount   : 1 
   +0x030 ImpersonateCount : 0

Finally, the W32THREAD structure, illustrated in Figure 5-11, is analogous to the data structure 
of WIN32PROCESS, but it’s applied to threads This structure mainly contains information useful for 
the GDI subsystem (brushes and DC attributes) as well as for the User Mode Print Driver framework 
(UMPD) that vendors use to write user-mode printer drivers . Finally, it contains a rendering state 
 useful for desktop compositing and anti-aliasing .
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FIGURE 5-11 Fields of the Win32k thread 

EXPERIMENT: Examining the W32THREAD
You can dump the W32THREAD structure by looking at the output of the !thread command, 
which gives a pointer to it in the Win32Thread output field. Alternatively, if you use the dt 
command, the KTHREAD block has a field called Win32Thread that contains the pointer to 
this structure . Recall that only a GUI thread will have a W32THREAD structure, so it’s pos-
sible that certain threads, such as background or worker threads, will not have an associated 
W32THREAD . Because there is no extension to view a W32THREAD, you need to use the dt 
command, as shown here:

dt win32k!_w32thread ffb79dd8 
   +0x000 pEThread         : 0x83ad4b60 _ETHREAD 
   +0x004 RefCount         : 1 
   +0x008 ptlW32           : (null)  
   +0x00c pgdiDcattr       : 0x00130740  
   +0x010 pgdiBrushAttr    : (null)  
   +0x014 pUMPDObjs        : (null)  
   +0x018 pUMPDHeap        : (null)  
   +0x01c pUMPDObj         : (null)  
... 
   +0x0a8 bEnableEngUpdateDeviceSurface : 0 '' 
   +0x0a9 bIncludeSprites  : 0 '' 
   +0x0ac ulWindowSystemRendering : 0
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Birth of a Thread
A thread’s life cycle starts when a program creates a new thread. The request filters down to the 
 Windows executive, where the process manager allocates space for a thread object and calls the 
 kernel to initialize the thread control block (KTHREAD) . The steps in the following list are taken inside 
the Windows CreateThread function in Kernel32 .dll to create a Windows thread:

1. CreateThread converts the Windows API parameters to native flags and builds a native 
structure describing object parameters (OBJECT_ATTRIBUTES) . See Chapter 3 for more 
information .

2. CreateThread builds an attribute list with two entries: client ID and TEB address . This 
allows CreateThread to receive those values once the thread has been created . (For 
more information on attribute lists, see the section “Flow of CreateProcess” earlier in 
this chapter .)

3. NtCreateThreadEx is called to create the user-mode context and probe and capture 
the attribute list . It then calls PspCreateThread to create a suspended executive thread 
object . For a description of the steps performed by this function, see the descriptions 
of Stage 3 and Stage 5 in the section “Flow of CreateProcess .”

4. CreateThread allocates an activation context for the thread used by side-by-side 
 assembly support . It then queries the activation stack to see if it requires activation, 
and it does so if needed . The activation stack pointer is saved in the new thread’s TEB .

5. CreateThread notifies the Windows subsystem about the new thread, and the 
 subsystem does some setup work for the new thread .

6. The thread handle and the thread ID (generated during step 3) are returned to the 
caller .

7. Unless the caller created the thread with the CREATE_SUSPENDED flag set, the thread 
is now resumed so that it can be scheduled for execution . When the thread starts 
 running, it executes the steps described in the earlier section “Stage 7: Performing 
Process Initialization in the Context of the New Process” before calling the actual user’s 
specified start address.

Examining Thread Activity

Examining thread activity is especially important if you are trying to determine why a process that is 
hosting multiple services is running (such as Svchost .exe, Dllhost .exe, or Lsass .exe) or why a process 
is hung .
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There are several tools that expose various elements of the state of Windows threads: WinDbg (in 
user-process attach and kernel-debugging mode), Performance Monitor, and Process Explorer . (The 
tools that show thread-scheduling information are listed in the section “Thread Scheduling .”) 

To view the threads in a process with Process Explorer, select a process and open the process 
 properties (by double-clicking on the process or clicking on the Process, Properties menu item) . 
Then click on the Threads tab . This tab shows a list of the threads in the process and four columns of 
information . For each thread, it shows its ID, the percentage of CPU consumed (based on the refresh 
interval configured), the number of cycles charged to the thread, and the thread start address. You 
can sort by any of these four columns .

New threads that are created are highlighted in green, and threads that exit are highlighted in 
red. (The highlight duration can be configured with the Options, Difference Highlight Duration 
menu item .) This might be helpful to discover unnecessary thread creation occurring in a process . (In 
general, threads should be created at process startup, not every time a request is processed inside a 
process .)

As you select each thread in the list, Process Explorer displays the thread ID, start time, state, CPU 
time counters, number of cycles charged, number of context switches, the ideal processor and its 
group, and the base and current priority . There is a Kill button, which will terminate an individual 
thread, but this should be used with extreme care . Another option is the Suspend button, which will 
prevent the thread from forward execution and thus prevent a runaway thread from consuming 
CPU time . However, this can also lead to deadlocks and should be used with the same care as the 
Kill  button . Finally, the Permissions button allows you to view the security descriptor . (See Chapter 6, 
“Security,” for more information on security descriptors) of the thread .

Unlike Task Manager and all other process/processor monitoring tools, Process Explorer uses 
the clock cycle counter designed for thread run-time accounting (as described later in this chapter), 
instead of the clock interval timer, so you will see a significantly different view of CPU consumption 
using Process Explorer . This is because many threads run for such a short amount of time that they are 
seldom (if ever) the currently running thread when the clock interval timer interrupt occurs, so they 
are not charged for much of their CPU time, leading clock-based tools to perceive a CPU usage of 0% . 
On the other hand, the total number of clock cycles represents the actual number of processor cycles 
that each thread in the process accrued . It is independent of the clock interval timer’s resolution 
because the count is maintained internally by the processor at each cycle and updated by Windows at 
each interrupt entry. (A final accumulation is done before a context switch.)

The thread start address is displayed in the form “module!function”, where module is the name of 
the .exe or .dll. The function name relies on access to symbol files for the module. (See “Experiment: 
Viewing Process Details with Process Explorer” in Chapter 1 .) If you are unsure what the module is, 
click the Module button. This opens an Explorer file properties window for the module containing the 
thread’s start address (for example, the  .exe or  .dll) .
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Note For threads created by the Windows CreateThread function, Process Explorer 
 displays the function passed to CreateThread, not the actual thread start function . That 
is because all Windows threads start at a common thread startup wrapper function 
(RtlUserThreadStart in Ntdll .dll) . If Process Explorer showed the actual start address, most 
threads in processes would appear to have started at the same address, which would 
not be helpful in trying to understand what code the thread was executing . However, if 
Process Explorer can’t query the user-defined startup address (such as in the case of a 
protected process), it will show the wrapper function, so you will see all threads starting at 
RtlUserThreadStart .

However, the thread start address displayed might not be enough information to pinpoint what 
the thread is doing and which component within the process is responsible for the CPU consumed by 
the thread . This is especially true if the thread start address is a generic startup function (for example, 
if the function name does not indicate what the thread is actually doing) . In this case, examining the 
thread stack might answer the question . To view the stack for a thread, double-click on the thread of 
interest (or select it and click the Stack button) . Process Explorer displays the thread’s stack (both user 
and kernel, if the thread was in kernel mode) .

Note While the user mode debuggers (WinDbg, Ntsd, and Cdb) permit you to attach to a 
process and display the user stack for a thread, Process Explorer shows both the user and 
kernel stack in one easy click of a button . You can also examine user and kernel thread 
stacks using WinDbg in local kernel debugging mode .

Viewing the thread stack can also help you determine why a process is hung . As an example, on 
one system, Microsoft Office PowerPoint was hanging for one minute on startup. To determine why it 
was hung, after PowerPoint was started, Process Explorer was used to examine the thread stack of the 
one thread in the process . The result is shown in Figure 5-12 .

FIGURE 5-12 Hung thread stack in PowerPoint

This thread stack shows that PowerPoint (line 10) called a function in Mso .dll (the central  Microsoft 
Office DLL), which called the OpenPrinterW function in Winspool .drv (a DLL used to connect to 
 printers) . Winspool .drv then dispatched to a function OpenPrinterRPC, which then called a function 
in the RPC runtime DLL, indicating it was sending the request to a remote printer . So, without having 
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to understand the internals of PowerPoint, the module and function names displayed on the thread 
stack indicate that the thread was waiting to connect to a network printer . On this particular system, 
there was a network printer that was not responding, which explained the delay starting PowerPoint . 
(Microsoft Office applications connect to all configured printers at process startup.) The connection to 
that printer was deleted from the user’s system, and the problem went away .

Finally, when looking at 32-bit applications running on 64-bit systems as a Wow64 process (see 
Chapter 3 for more information on Wow64), Process Explorer shows both the 32-bit and 64-bit stack 
for threads . Because at the time of the system call proper, the thread has been switched to a 64-bit 
stack and context, simply looking at the thread’s 64-bit stack would reveal only half the story—the 
64-bit part of the thread, with Wow64’s thunking code . So, when examining Wow64 processes, be 
sure to take into account both the 32-bit and 64-bit stacks . An example of a Wow64 thread inside 
Microsoft Office Word 2007 is shown in Figure 5-13. The highlighted stack frame and all stack frames 
below it are the 32-bit stack frames from the 32-bit stack . The stack frames above the highlighted 
frame are on the 64-bit stack .

FIGURE 5-13 Example Wow64 stack

Limitations on Protected Process Threads
As we discussed in the process internals section, protected processes have several limitations in terms 
of which access rights will be granted, even to the users with the highest privileges on the system . 
These limitations also apply to threads inside such a process . This ensures that the actual code 
 running inside the protected process cannot be hijacked or otherwise affected through standard 
 Windows functions, which require access rights that are not granted for protected process threads . 
In fact, the only permissions granted are THREAD_SUSPEND_RESUME and THREAD_SET/QUERY_ 
LIMITED_ INFORMATION .
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EXPERIMENT: Viewing Protected Process Thread Information
In the previous section, we took a look at how Process Explorer can be helpful in examining 
thread activity to determine the cause of potential system or application issues . This time, we’ll 
use Process Explorer to look at a protected process and see how the different access rights 
 being denied affect its ability and usefulness on such a process .

Find the Audiodg .exe service inside the process list . This is a process responsible for much 
of the core work behind the user-mode audio stack in Windows, and it requires protection to 
ensure that high-definition decrypted audio content does not leak out to untrusted sources. 
Bring up the process properties view, and take a look at the Performance tab . Notice how the 
numbers for WS Private, WS Shareable, and WS Shared are 0, although the total Working Set is 
still displayed . This is an example of the THREAD_QUERY_INFORMATION versus    
THREAD_QUERY_LIMITED_INFORMATION rights .

More importantly, take a look at the Threads tab . As you can see here, Process Explorer is 
unable to show the Win32 thread start address and instead displays the standard thread start 
wrapper inside Ntdll .dll . If you try clicking the Stack button, you’ll get an error, because Process 
Explorer needs to read the virtual memory inside the protected process, which it can’t do . 

Finally, note that although the Base and Dynamic priorities are shown, the I/O and Memory 
priorities are not, which is another example of the limited versus full query information access 
right . As you try to kill a thread inside Audiodg .exe, notice yet another access denied error: 
recall the lack of THREAD_TERMINATE access .
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Worker Factories (Thread Pools)

Worker factories refer to the internal mechanism used to implement user-mode thread pools . The 
legacy thread pool routines were completely implemented in user mode inside the Ntdll .dll library, 
and the Windows API provided various routines to call into the relevant routines, which provided 
waitable timers, wait callbacks, and automatic thread creation and deletion, depending on the 
amount of work being done .

Because the kernel can have direct control over thread scheduling, creation, and termination 
 without the typical costs associated with doing these operations from user mode, most of the func-
tionality required to support the user-mode thread pool implementation in Windows is now located 
in the kernel instead, which also simplifies the code that developers need to write. For example, 
creating a worker pool in a remote process can be done with a single API call, instead of the complex 
series of virtual memory calls this normally requires . Under this model, Ntdll .dll merely provides the 
interfaces and high-level APIs required for interfacing with the worker factory code .

This kernel-managed thread pool functionality in Windows is managed by an object manager 
type called TpWorkerFactory, as well as four native system calls for managing the factory and its 
workers (NtCreateWorkerFactory, NtWorkerFactoryWorkerReady, NtReleaseWorkerFactoryWorker, 
 NtShutdownWorkerFactory), two query/set native calls (NtQueryInformationWorkerFactory and 
 NtSetInformationWorkerFactory), and a wait call (NtWaitForWorkViaWorkerFactory) . 

Just like other native system calls, these calls provide user mode with a handle to the 
 TpWorkerFactory object, which contains information such as the name and object attributes, the 
 desired access mask, and a security descriptor . Unlike other system calls wrapped by the Windows API, 
however, thread-pool management is handled by Ntdll .dll’s native code, which means that developers 
work with an opaque descriptor (a TP_WORK pointer) owned by Ntdll .dll, in which the actual handle is 
stored .

As its name suggests, the worker factory implementation is responsible for allocating worker 
threads (and calling the given user-mode worker thread entry point), maintaining a minimum and 
maximum thread count (allowing for either permanent worker pools or totally dynamic pools), as 
well as other accounting information . This enables operations such as shutting down the thread pool 
to be performed with a single call to the kernel, because the kernel has been the only component 
 responsible for thread creation and termination . 

Because the kernel dynamically creates new threads as needed, based on minimum and maximum 
numbers provided, this also increases the scalability of applications using the new thread-pool imple-
mentation . A worker factory will create a new thread whenever all of the following conditions are met:

 ■ The number of available workers is lower than the maximum number of workers configured 
for the factory (default of 500) .

 ■ The worker factory has bound objects (a bound object can be, for example, an ALPC port that 
this worker thread is waiting on) or a thread has been activated into the pool .
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 ■ There are pending I/O request packets (IRPs; see Chapter 8, “I/O System,” in Part 2, for more 
information) associated with a worker thread .

 ■ Dynamic thread creation is enabled .

And it will terminate threads whenever they’ve become idle for more than 10 seconds (by default) .

Furthermore, while developers have always been able to take advantage of as many threads as 
possible (based on the number of processors on the system) through the old implementation, but 
through support for dynamic processors in Windows Server (see the section on this topic later in this 
chapter), it’s now possible for applications using thread pools to automatically take advantage of new 
processors added at run time .

Note that the worker factory support is merely a wrapper to manage mundane tasks that would 
otherwise have to be performed in user mode (at a loss of performance), and much of the logic of 
the new thread-pool code remains in the Ntdll .dll side of this architecture . (Theoretically, by using 
undocumented functions, a different thread-pool implementation can be built around worker facto-
ries .) Also, it is not the worker factory code that provides the scalability, wait internals, and efficiency 
of work processing . Instead, it is a much older component of Windows that we already discussed—
I/O completion ports, or more correctly, kernel queues (KQUEUE; see Chapter 8 in Part 2 for more 
information) .

In fact, when creating a worker factory, an I/O completion port must have already been created 
by user mode, and the handle needs to be passed on . It is through this I/O completion port that the 
user-mode implementation will queue work and also wait for work—but by calling the worker factory 
system calls instead of the I/O completion port APIs . Internally, however, the “release” worker factory 
call (which queues work) is a wrapper around IoSetIoCompletionEx, which increases pending work, 
while the “wait” call is a wrapper around IoRemoveIoCompletion . Both these routines call into the 
kernel queue implementation .

Therefore, the job of the worker factory code is to manage either a persistent, static, or dynamic 
thread pool; wrap the I/O completion port model into interfaces that try to prevent stalled worker 
queues by automatically creating dynamic threads; and to simplify global cleanup and termination 
operations during a factory shutdown request (as well as to easily block new requests against the 
 factory in such a scenario) .

Unfortunately, the data structures used by the worker factory implementation are not in the 
public symbols, but it is still possible to look at some worker pools, as we’ll show in the next experi-
ment .  Additionally, the NtQueryInformationWorkerFactory API dumps almost every field in the worker 
 factory structure . 
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EXPERIMENT: Looking at Thread Pools
Because of the advantages of using the thread-pool mechanism, many core system  components 
and applications make use of it, especially when dealing with resources such as ALPC ports (to 
dynamically process incoming requests at an appropriate and scalable level) . One of the ways 
to identify which processes are using a worker factory is to look at the handle list in Process 
Explorer . Follow these steps to look at some details behind them:

1. Run Process Explorer, and select Show Unnamed Handles And Mappings from the 
View menu . Unfortunately, worker factories aren’t named by Ntdll .dll, so you need to 
take this step in order to see the handles .

2. Select Lsm .exe from the list of processes, and look at the handle table . Make sure that 
the lower pane is shown (View, Show Lower Pane) and is displaying handle table mode 
(View, Lower Pane View, Handles) .

3. Right-click on the lower pane columns, and then click on Select Columns . Make sure 
that the Type column is selected to be shown, and click it to sort by type . 

4. Now scroll down the handles, looking at the Type column, until you find a handle of 
type TpWorkerFactory . You should see something like this: 

Notice how the TpWorkerFactory handle is immediately preceded by an IoCompletion 
handle (numerically; sort by “Handle” to see this) . As was described previously, this oc-
curs because before creating a worker factory, a handle to an I/O completion port on 
which work will be sent must be created .
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5. Now double-click Lsm .exe in the list of processes, and click on the Threads tab . You 
should see something similar to the image here:

On this system (with two processors), the worker factory has created six worker 
threads at the request of Lsm.exe (processes can define a minimum and maximum 
number of threads) and based on its usage and the count of processors on the 
machine. These threads are identified as TppWorkerThread, which is Ntdll .dll’s worker 
entry point when calling the worker factory system calls . 

6. Ntdll .dll is responsible for its own internal accounting inside the worker thread 
 wrapper (TppWorkerThread) before calling the worker callback that the application has 
registered . By looking at the Wait reason in the State information for each thread, you 
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can get a rough idea of what each worker thread might be doing . Double-click on one 
of the threads inside an LPC wait to look at its stack . Here’s an example:

This specific worker thread is being used by Lsm.exe for LPC communication.  Because 
the local session manager needs to communicate with other components such 
as Smss and Csrss through LPC, it makes sense that it would want a number of its 
threads to be busy replying and waiting for LPC messages . (The more threads doing 
this, the less stalling there is on the LPC pipeline .)

If you look at other worker threads, you’ll see some are waiting for objects such as events . 
A process can have multiple thread pools, and each thread pool can have a variety of threads 
doing completely unrelated tasks . It’s up to the developer to assign work and to call the thread 
pool APIs to register this work through Ntdll .dll .
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Thread Scheduling

This section describes the Windows scheduling policies and algorithms . The first subsection provides 
a condensed description of how scheduling works on Windows and a definition of key terms. Then 
Windows priority levels are described from both the Windows API and the Windows kernel points of 
view . After a review of the relevant Windows utilities and tools that relate to scheduling, the detailed 
data structures and algorithms that make up the Windows scheduling system are presented, includ-
ing a description of common scheduling scenarios and how thread selection, as well as processor 
 selection, occurs .

Overview of Windows Scheduling
Windows implements a priority-driven, preemptive scheduling system—at least one of the highest-
priority runnable (ready) threads always runs, with the caveat that certain high-priority threads ready 
to run might be limited by the processors on which they might be allowed or preferred to run on, a 
phenomenon called processor affinity. Processor affinity is defined based on a given processor group, 
which collects up to 64 processors . By default, threads can run only on any available processors within 
the processor group associated with the process (to maintain compatibility with older versions of 
Windows which supported only 64 processors), but developers can alter processor affinity by using 
the appropriate APIs or by setting an affinity mask in the image header, while users can use tools to 
change affinity at runtime or at process creation. However, although multiple threads in a process 
can be associated with different groups, a thread on its own can run only on the processors available 
within its assigned group . Additionally, developers can choose to create group-aware applications, 
which use extended scheduling APIs to associate logical processors on different groups with the affin-
ity of their threads . Doing so converts the process into a multigroup process that can theoretically run 
its threads on any available processor within the machine .

EXPERIMENT: Viewing Ready Threads
You can view the list of ready threads with the kernel debugger !ready command . This com-
mand displays the thread or list of threads that are ready to run at each priority level . In the 
following example, generated on a 32-bit machine with a dual-core processor, two threads 
are ready to run at priority 8 on the first logical processor, and one thread at priority 10, two 
threads at priority 9, and three threads at priority 8 are ready to run on the second logical pro-
cessor . Determining which of these threads get to run on their respective processor is a simple 
matter of picking the first thread on top of the highest priority queue (thread 857d9030 for 
logical processor 0, and thread 857c0030 for logical processor 1), but why the queues contain 
the threads they do is a complex result at the end of several algorithms that the scheduler uses . 
We will cover this topic later in this section .
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kd> !ready 
Processor 0: Ready Threads at priority 8 
    THREAD 857d9030  Cid 0ec8.0e30  Teb: 7ffdd000 Win32Thread: 00000000 READY 
    THREAD 855c8300  Cid 0ec8.0eb0  Teb: 7ff9c000 Win32Thread: 00000000 READY  
Processor 1: Ready Threads at priority 10 
    THREAD 857c0030  Cid 04c8.0378  Teb: 7ffdf000 Win32Thread: fef7f8c0 READY  
Processor 1: Ready Threads at priority 9 
    THREAD 87fc86f0  Cid 0ec8.04c0  Teb: 7ffd3000 Win32Thread: 00000000 READY 
    THREAD 88696700  Cid 0ec8.0ce8  Teb: 7ffa0000 Win32Thread: 00000000 READY 
Processor 1: Ready Threads at priority 8 
    THREAD 856e5520  Cid 0ec8.0228  Teb: 7ff98000 Win32Thread: 00000000 READY 
    THREAD 85609d78  Cid 0ec8.09b0  Teb: 7ffd9000 Win32Thread: 00000000 READY 
    THREAD 85fdeb78  Cid 0ec8.0218  Teb: 7ff72000 Win32Thread: 00000000 READY

After a thread is selected to run, it runs for an amount of time called a quantum . A quantum is the 
length of time a thread is allowed to run before another thread at the same priority level is given a 
turn to run . Quantum values can vary from system to system and process to process for any of three 
reasons: 

 ■ System configuration settings (long or short quantums, variable or fixed quantums, and 
 priority separation)

 ■ Foreground or background status of the process

 ■ Use of the job object to alter the quantum

These details are explained in more details in the “Quantum” section later in the chapter, as well as 
in the “Job Objects” section) .

A thread might not get to complete its quantum, however, because Windows implements a 
preemptive scheduler: if another thread with a higher priority becomes ready to run, the currently 
running thread might be preempted before finishing its time slice. In fact, a thread can be selected to 
run next and be preempted before even beginning its quantum!

The Windows scheduling code is implemented in the kernel . There’s no single “scheduler” module 
or routine, however—the code is spread throughout the kernel in which scheduling-related events 
occur . The routines that perform these duties are collectively called the kernel’s dispatcher . The 
 following events might require thread dispatching:

 ■ A thread becomes ready to execute—for example, a thread has been newly created or has just 
been released from the wait state .

 ■ A thread leaves the running state because its time quantum ends, it terminates, it yields 
 execution, or it enters a wait state .

 ■ A thread’s priority changes, either because of a system service call or because Windows itself 
changes the priority value .

 ■ A thread’s processor affinity changes so that it will no longer run on the processor on which it 
was running .
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At each of these junctions, Windows must determine which thread should run next on the logical 
processor that was running the thread, if applicable, or on which logical processor the thread should 
now run on . After a logical processor has selected a new thread to run, it eventually performs a 
context switch to it . A context switch is the procedure of saving the volatile processor state associated 
with a running thread, loading another thread’s volatile state, and starting the new thread’s execution .

As already noted, Windows schedules at the thread granularity . This approach makes sense when 
you consider that processes don’t run but only provide resources and a context in which their threads 
run . Because scheduling decisions are made strictly on a thread basis, no consideration is given to 
what process the thread belongs to . For example, if process A has 10 runnable threads, process B 
has 2 runnable threads, and all 12 threads are at the same priority, each thread would theoretically 
receive one-twelfth of the CPU time—Windows wouldn’t give 50 percent of the CPU to process A and 
50 percent to process B .

Priority Levels
To understand the thread-scheduling algorithms, one must first understand the priority levels that 
Windows uses . As illustrated in Figure 5-14, internally Windows uses 32 priority levels, ranging from 0 
through 31 . These values divide up as follows:

 ■ Sixteen real-time levels (16 through 31)

 ■ Sixteen variable levels (0 through 15), out of which level 0 is reserved for the zero page thread

16 real-time levels

16 variable levels

System level
(Zero page thread, one per system)

31

16
15

1
0

FIGURE 5-14 Thread priority levels 

Thread priority levels are assigned from two different perspectives: those of the Windows API and 
those of the Windows kernel . The Windows API first organizes processes by the priority class to which 
they are assigned at creation (the numbers represent the internal PROCESS_PRIORITY_CLASS_ index 
recognized by the kernel): Real-time (4), High (3), Above Normal (7), Normal (2), Below Normal (5), 
and Idle (1) .
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It then assigns a relative priority of the individual threads within those processes . Here, the 
 numbers represent a priority delta that is applied to the process base priority: Time-critical (15), 
 Highest (2), Above-normal (1), Normal (0), Below-normal (–1), Lowest (–2), and Idle (–15) .

Therefore, in the Windows API, each thread has a base priority that is a function of its process 
 priority class and its relative thread priority . In the kernel, the process priority class is converted to a 
base priority by using the PspPriorityTable and the PROCESS_PRIORITY_CLASS indices shown earlier, 
which sets priorities of 4, 8, 13, 14, 6, and 10, respectively. (This is a fixed mapping that cannot be 
changed .) The relative thread priority is then applied as a differential to this base priority . For ex-
ample, a “Highest” thread will receive a thread base priority of two levels higher than the base priority 
of its process .

This mapping from Windows priority to internal Windows numeric priority is shown in Table 5-3 .

TABLE 5-3 Mapping of Windows Kernel Priorities to the Windows API

Priority Class Relative Priority Realtime High Above Normal Normal Below Normal Idle

Time Critical (+ SATURATION) 31 15 15 15 15 15

Highest (+2) 26 15 12 10 8 6

Above Normal (+1) 25 14 11 9 7 5

Normal (0) 24 13 10 8 6 4

Below Normal (-1) 23 12 9 7 5 3

Lowest (-2) 22 11 8 6 4 2

Idle (- SATURATION) 16 1 1 1 1 1

You’ll note that the Time-Critical and Idle relative thread priorities maintain their respective values 
regardless of the process priority class (unless it is Realtime) . This is because the Windows API requests 
saturation of the priority from the kernel, by actually passing in 16 or -16 as the requested relative 
priority (instead of 15 or -15) . This is then recognized by the kernel as a request for saturation, and 
the Saturation field in KTHREAD is set. This causes, for positive saturation, the thread to receive the 
highest possible priority within its priority class (dynamic or real-time), or for negative saturation, 
the lowest possible one . Additionally, future requests to change the base priority of the process will 
no longer affect the base priority of these threads, because saturated threads are skipped in the 
 processing code .

Whereas a process has only a single base priority value, each thread has two priority values: 
current and base . Scheduling decisions are made based on the current priority . As explained in the 
following section on priority boosting, the system under certain circumstances increases the priority 
of threads in the dynamic range (0 through 15) for brief periods . Windows never adjusts the prior-
ity of threads in the real-time range (16 through 31), so they always have the same base and current 
priority .
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A thread’s initial base priority is inherited from the process base priority . A process, by default, 
inherits its base priority from the process that created it . This behavior can be overridden on the 
CreateProcess function or by using the command-line start command . A process priority can also be 
changed after being created by using the SetPriorityClass function or various tools that expose that 
function, such as Task Manager and Process Explorer (by right-clicking on the process and choosing a 
new priority class) . For example, you can lower the priority of a CPU-intensive process so that it does 
not interfere with normal system activities . Changing the priority of a process changes the thread 
priorities up or down, but their relative settings remain the same .

Normally, user applications and services start with a normal base priority, so their initial thread 
typically executes at priority level 8 . However, some Windows system processes (such as the session 
manager, service control manager, and local security authentication process) have a base process 
priority slightly higher than the default for the Normal class (8) . This higher default value ensures that 
the threads in these processes will all start at a higher priority than the default value of 8 . 

Real-Time Priorities
You can raise or lower thread priorities within the dynamic range in any application; however, you 
must have the increase scheduling priority privilege to enter the real-time range . Be aware that many 
important Windows kernel-mode system threads run in the real-time priority range, so if threads 
spend excessive time running in this range, they might block critical system functions (such as in the 
memory manager, cache manager, or other device drivers) .

Using the standard Windows APIs, once a process has entered the real-time range, all of its threads 
(even Idle ones) must run at one of the real-time priority levels . It is thus impossible to mix real-
time and dynamic threads within the same process through standard interfaces . This is because the 
SetThreadPriority API calls the native NtSetInformationThread API with the ThreadBasePriority infor-
mation class, which allows priorities to remain only in the same range . Furthermore, this information 
class allows priority changes only in the recognized Windows API deltas of –2 to 2 (or real-time/idle), 
unless the request comes from CSRSS or a real-time process . In other words, this means that a real-
time process does have the ability to pick thread priorities anywhere between 16 and 31, even though 
the standard Windows API relative thread priorities would seem to limit its choices based on the table 
that was shown earlier .

However, by calling this API with the ThreadActualBasePriority information class, the kernel base 
priority for the thread can be directly set, including in the dynamic range for a real-time process .

Note As illustrated in Figure 5-15, which shows the interrupt request levels (IRQLs), 
 although Windows has a set of priorities called real-time, they are not real-time in the 
common definition of the term. This is because Windows doesn’t provide true, real-time 
operating system facilities, such as guaranteed interrupt latency or a way for threads to 
 obtain a guaranteed execution time . 
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Interrupt Levels vs. Priority Levels
As illustrated in Figure 5-15 of the interrupt request levels (IRQLs) for a 32-bit system, threads 
normally run at IRQL 0 (called passive level, because no interrupts are in process and none are 
blocked) or IRQL 1 (APC level) . (For a description of how Windows uses interrupt levels, see 
Chapter 3 .) User-mode code always runs at passive level . Because of this, no user-mode thread, 
regardless of its priority, can ever block hardware interrupts (although high-priority, real-time 
threads can block the execution of important system threads) . 

Threads running in kernel mode, although initially scheduled at passive level or APC level, 
can raise IRQL to higher levels—for example, while executing a system call that involves thread 
dispatching, memory management, or input/output . If a thread does raise IRQL to dispatch 
level or above, no further thread-scheduling behavior will occur on its processor until it lowers 
IRQL below dispatch level . A thread executing at dispatch level or above blocks the activity of 
the thread scheduler and prevents thread context switches on its processor . 

A thread running in kernel mode can be running at APC level if it is running a special kernel 
APC; or it can temporarily raise IRQL to APC level to block the delivery of special kernel APCs . 
(For more information on APCs, see Chapter 3 .) However, executing at APC level does not alter 
the scheduling behavior of the thread vs . other threads; it affects only the delivery of kernel 
APCs to that thread . In fact, a thread executing in kernel mode at APC level can be preempted 
in favor of a higher priority thread running in user mode at passive level . 
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FIGURE 5-15 Thread priorities vs . IRQLs on an x86 system
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Using Tools to Interact with Priority
You can change (and view) the base-process priority with Task Manager and Process Explorer . You 
can kill individual threads in a process with Process Explorer (which should be done, of course, with 
extreme care) .

You can view individual thread priorities with the Performance Monitor, Process Explorer, or 
WinDbg . Although it might be useful to increase or lower the priority of a process, it typically does 
not make sense to adjust individual thread priorities within a process, because only a person who 
thoroughly understands the program (in other words, typically only the developer himself) would 
understand the relative importance of the threads within the process .

The only way to specify a starting priority class for a process is with the start command in the 
 Windows command prompt. If you want to have a program start every time with a specific  priority, 
you can define a shortcut to use the start command by beginning the command with cmd /c . 
This runs the command prompt, executes the command on the command line, and terminates the 
 command prompt . For example, to run Notepad in the low-process priority, the shortcut is  
cmd /c start /low Notepad .exe .

EXPERIMENT: Examining and Specifying Process and Thread Priorities
Try the following experiment:

1. From an elevated command prompt, type start /realtime notepad . Notepad should 
open .

2. Run Process Explorer, and select Notepad .exe from the list of processes . Double-click 
on Notepad .exe to show the process properties window, and then click on the Threads 
tab, as shown here . Notice that the dynamic priority of the thread in Notepad is 24 . 
This matches the real-time value shown in the following image .
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3. Task Manager can show you similar information . Press Ctrl+Shift+Esc to start Task 
Manager, and click on the Processes tab . Right-click on the Notepad .exe process, 
and select the Set Priority option . You can see that Notepad’s process priority class is 
 Realtime, as shown in the following dialog box:
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Windows System Resource Manager
Windows Server 2008 R2 Enterprise Edition and Windows Server 2008 R2 Datacenter  Edition 
 include an optionally installable component called Windows System Resource Manager 
(WSRM). It permits the administrator to configure policies that specify CPU utilization, affin-
ity settings, and memory limits (both physical and virtual) for processes . In addition, WSRM 
can generate resource utilization reports that can be used for accounting and verification of 
service-level agreements with users .

Policies can be applied for specific applications (by matching the name of the image with or 
without specific command-line arguments), users, or groups. The policies can be scheduled to 
take effect at certain periods or can be enabled all the time .

After you set a resource-allocation policy to manage specific processes, the WSRM service 
monitors CPU consumption of managed processes and adjusts process base priorities when 
those processes do not meet their target CPU allocations .

The physical memory limitation uses the function SetProcessWorkingSetSizeEx to set a 
 hard-working set maximum . The virtual memory limit is implemented by the service checking 
the private virtual memory consumed by the processes . (See Chapter 10 in Part 2 for an expla-
nation of these memory limits.) If this limit is exceeded, WSRM can be configured to either kill 
the processes or write an entry to the Event Log . This behavior can be used to detect a process 
with a memory leak before it consumes all the available committed memory on the system . 
Note that WSRM memory limits do not apply to Address Windowing Extensions (AWE) memory, 
large page memory, or kernel memory (nonpaged or paged pool) .

Thread States
Before you can comprehend the thread-scheduling algorithms, you need to understand the various 
execution states that a thread can be in . The thread states are as follows:

 ■ Ready A thread in the ready state is waiting to execute (or ready to be in-swapped after 
completing a wait) . When looking for a thread to execute, the dispatcher considers only the 
pool of threads in the ready state .

 ■ Deferred ready This state is used for threads that have been selected to run on a specific 
processor but have not actually started running there . This state exists so that the kernel can 
minimize the amount of time the per-processor lock on the scheduling database is held .

 ■ Standby A thread in the standby state has been selected to run next on a particular proces-
sor . When the correct conditions exist, the dispatcher performs a context switch to this thread . 
Only one thread can be in the standby state for each processor on the system . Note that a 
thread can be preempted out of the standby state before it ever executes (if, for example, a 
higher priority thread becomes runnable before the standby thread begins execution) .
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 ■ Running Once the dispatcher performs a context switch to a thread, the thread enters the 
running state and executes . The thread’s execution continues until its quantum ends (and 
 another thread at the same priority is ready to run), it is preempted by a higher priority thread, 
it terminates, it yields execution, or it voluntarily enters the waiting state .

 ■ Waiting A thread can enter the waiting state in several ways: a thread can voluntarily wait 
for an object to synchronize its execution, the operating system can wait on the thread’s 
behalf (such as to resolve a paging I/O), or an environment subsystem can direct the thread 
to suspend itself . When the thread’s wait ends, depending on the priority, the thread either 
begins running immediately or is moved back to the ready state .

 ■ Transition A thread enters the transition state if it is ready for execution but its kernel stack 
is paged out of memory . Once its kernel stack is brought back into memory, the thread enters 
the ready state .

 ■ Terminated When a thread finishes executing, it enters the terminated state . Once the 
thread is terminated, the executive thread object (the data structure in a nonpaged pool that 
describes the thread) might or might not be deallocated . (The object manager sets the policy 
regarding when to delete the object .)

 ■ Initialized This state is used internally while a thread is being created .

Table 5-4 describes the state transitions for threads, and Figure 5-16 illustrates a simplified  version. 
(The numeric values shown represent the value of the thread-state performance counter .) In the 
simplified version, the Ready, Standby, and Deferred Ready states are represented as one. This reflects 
the fact that the Standby and Deferred Ready states act as temporary placeholders for the schedul-
ing routines . These states are almost always very short-lived; threads in these states always transition 
quickly to Ready, Running, or Waiting . More details on what happens at each transition are included 
later in this section . 

TABLE 5-4 Thread States and Transitions

 Init Ready Running Standby Terminated Waiting Transition Deferred 
Ready

 

Init         A thread becomes 
Initialized during the 
first few moments of its 
 creation (KeStartThread).

Ready        A thread is 
added in the 
dispatcher-
ready 
database 
of its ideal 
processor.

 

Running  Selected by 
KiSearch-
ForNew-
Thread

 Picked up 
for  
execution 
by local 
CPU

 Preemption 
after wait 
satisfaction
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 Init Ready Running Standby Terminated Waiting Transition Deferred 
Ready

 

Standby  Selected by 
KiSelect-
NextThread

     Selected by 
KiDeferred-
ReadyThread 
for remote 
CPU

 

Terminated Killed 
before 
PspInsert-
Thread 
finished

 Killed      A thread can kill 
only itself. It must 
be in the Running 
state before  entering 
KeTerminateThread.

Waiting   Thread 
enters a 
wait

     Only running threads 
can wait.

Transition      Kernel stack 
no longer 
resident

  Only waiting threads can 
transition.

Deferred 
Ready

Last 
step in 
PspInsert-
Thread

Affinity 
change

Thread 
becomes 
preempted 
(if old 
processor 
is no longer 
available)

Affinity 
change

 Wait 
 satisfaction 
(but no 
preemp-
tion)

Kernel stack 
swap-in 
completed

  

Ready (1),
Standby (3),

Deferred ready
(7)

Running (2)

voluntary
switch

preemption or
quantum end

Init (0)

Terminate (4)

Transition (6)

Waiting (5)

dispatched

kernel stack
outswapped wait

resolved

kernel stack
inswapped

FIGURE 5-16 Simplified version of thread states and transitions
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EXPERIMENT: Thread-Scheduling State Changes
You can watch thread-scheduling state changes with the Performance tool in Windows . This 
utility can be useful when you’re debugging a multithreaded application and you’re unsure 
about the state of the threads running in the process . To watch thread-scheduling state changes 
by using the Performance tool, follow these steps:

1. Run Notepad (Notepad .exe) .

2. Start the Performance tool by selecting All Programs from the Start menu and then 
selecting Performance Monitor from the Administrative Tools menu . Click on the 
 Performance Monitor entry under Monitoring Tools .

3. Select the chart view if you’re in some other view .

4. Right-click on the graph, and choose Properties .

5. Click on the Graph tab, and change the chart vertical scale maximum to 7 . (As 
you’ll see from the explanation text for the performance counter, thread states are 
 numbered from 0 through 7 .) Click OK .

6. Click the Add button on the toolbar to bring up the Add Counters dialog box .

7. Select the Thread performance object, and then select the Thread State counter . Select 
the Show Description check box to see the definition of the values:

8. In the Instances box, select <All instances> and type Notepad before clicking Search. 
Scroll down until you see the Notepad process (notepad/0); select it, and click the Add 
button .

9. Scroll back up in the Instances box to the Mmc process (the Microsoft Management 
Console process running the System Monitor), select all the threads (mmc/0, mmc/1, 
and so on), and add them to the chart by clicking the Add button . Before you click 
Add, you should see something like the dialog box that follows .
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10. Now close the Add Counters dialog box by clicking OK .

11. You should see the state of the Notepad thread (the very top line in the following 
figure) as a 5. As shown in the explanation text you saw under step 7, this number 
 represents the waiting state (because the thread is waiting for GUI input):
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12. Notice that one thread in the Mmc process (running the Performance tool snap-in) is 
in the running state (number 2) . This is the thread that’s querying the thread states, so 
it’s always displayed in the running state .

13. You’ll never see Notepad in the running state (unless you’re on a multiprocessor 
system) because Mmc is always in the running state when it gathers the state of the 
threads you’re monitoring .

Dispatcher Database
To make thread-scheduling decisions, the kernel maintains a set of data structures known collectively 
as the dispatcher database, illustrated in Figure 5-17 . The dispatcher database keeps track of which 
threads are waiting to execute and which processors are executing which threads .

To improve scalability, including thread-dispatching concurrency, Windows multiprocessor systems 
have per-processor dispatcher ready queues, as illustrated in Figure 5-17 . In this way, each CPU can 
check its own ready queues for the next thread to run without having to lock the systemwide ready 
queues .

The per-processor ready queues, as well as the per-processor ready summary, are part of the 
 processor control block (PRCB) structure. (To see the fields in the PRCB, type dt nt!_kprcb in the 
kernel debugger.) The names of each component that we will talk about (in italics) are field members 
of the PRCB structure .

The dispatcher ready queues (DispatcherReadyListHead) contain the threads that are in the ready 
state, waiting to be scheduled for execution . There is one queue for each of the 32 priority levels . To 
speed up the selection of which thread to run or preempt, Windows maintains a 32-bit bit mask called 
the ready summary (ReadySummary) . Each bit set indicates one or more threads in the ready queue 
for that priority level . (Bit 0 represents priority 0, and so on .) 

Instead of scanning each ready list to see whether it is empty or not (which would make  scheduling 
decisions dependent on the number of different priority threads), a single bit scan is performed as 
a native processor command to find the highest bit set. Regardless of the number of threads in the 
ready queue, this operation takes a constant amount of time, which is why you might sometimes see 
the Windows scheduling algorithm referred to as an O(1), or constant time, algorithm .
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Process

Thread 1 Thread 2

Ready summary

Deferred
ready queue

CPU 0
ready queues

31

0

31 0

Process

Thread 3 Thread 4

Ready summary

31 0
Deferred

ready queue

CPU 1
ready queues

31

0

FIGURE 5-17 Windows multiprocessor dispatcher database

The dispatcher database is synchronized by raising IRQL to DISPATCH_LEVEL . (For an explanation 
of interrupt priority levels, see the “Trap Dispatching” section in Chapter 3 .) Raising IRQL in this way 
prevents other threads from interrupting thread dispatching on the processor because threads nor-
mally run at IRQL 0 or 1 . However, more is required than just raising IRQL, because other processors 
can simultaneously raise to the same IRQL and attempt to operate on their dispatcher database . How 
Windows synchronizes access to the dispatcher database is explained in the “Multiprocessor Systems” 
section later in the chapter .

Quantum
As mentioned earlier in the chapter, a quantum is the amount of time a thread gets to run before 
Windows checks to see whether another thread at the same priority is waiting to run . If a thread 
completes its quantum and there are no other threads at its priority, Windows permits the thread to 
run for another quantum .

On client versions of Windows, threads run by default for 2 clock intervals; on server systems, by 
default, a thread runs for 12 clock intervals . (We’ll explain how you can change these values later .) The 
rationale for the longer default value on server systems is to minimize context switching . By having 
a longer quantum, server applications that wake up as the result of a client request have a better 
chance of completing the request and going back into a wait state before their quantum ends .
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The length of the clock interval varies according to the hardware platform . The frequency of the 
clock interrupts is up to the HAL, not the kernel . For example, the clock interval for most x86 unipro-
cessors is about 10 milliseconds (note that these machines are no longer supported by Windows and 
are only used here for example purposes), and for most x86 and x64 multiprocessors it is about 15 
milliseconds . This clock interval is stored in the kernel variable KeMaximumIncrement as hundreds of 
nanoseconds .

Because thread run-time accounting is based on processor cycles, although threads still run in 
units of clock intervals, the system does not use the count of clock ticks as the deciding factor for 
how long a thread has run and whether its quantum has expired . Instead, when the system starts up, 
a  calculation is made whose result is the number of clock cycles that each quantum is equivalent to . 
(This value is stored in the kernel variable KiCyclesPerClockQuantum .) This calculation is made by mul-
tiplying the processor speed in Hz (CPU clock cycles per second) with the number of seconds it takes 
for one clock tick to fire (based on the KeMaximumIncrement value described earlier) .

The result of this accounting method is that threads do not actually run for a quantum number 
based on clock ticks; they instead run for a quantum target, which represents an estimate of what the 
number of CPU clock cycles the thread has consumed should be when its turn would be given up . 
This target should be equal to an equivalent number of clock interval timer ticks because, as you just 
saw, the calculation of clock cycles per quantum is based on the clock interval timer frequency, which 
you can check using the following experiment . On the other hand, because interrupt cycles are not 
charged to the thread, the actual clock time might be longer .

EXPERIMENT: Determining the Clock Interval Frequency
The Windows GetSystemTimeAdjustment function returns the clock interval . To determine the 
clock interval, download and run the Clockres program from Windows Sysinternals  
(www .microsoft .com/technet/sysinternals) . Here’s the output from a dual-core 64-bit 
 Windows 7 system:

C:\>clockres 
 
ClockRes v2.0 - View the system clock resolution 
Copyright (C) 2009 Mark Russinovich 
SysInternals - www.sysinternals.com 
 
Maximum timer interval: 15.600 ms 
Minimum timer interval: 0.500 ms 
Current timer interval: 15.600 ms

Quantum Accounting
Each process has a quantum reset value in the process control block (KPROCESS) . This value is 
used when creating new threads inside the process and is duplicated in the thread control block 
(KTHREAD), which is then used when giving a thread a new quantum target . The quantum reset 
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value is stored in terms of actual quantum units (we’ll discuss what these mean soon), which are then 
 multiplied by the number of clock cycles per quantum, resulting in the quantum target .

As a thread runs, CPU clock cycles are charged at different events (context switches, interrupts, 
and certain scheduling decisions) . If at a clock interval timer interrupt, the number of CPU clock cycles 
charged has reached (or passed) the quantum target, quantum end processing is triggered . If there is 
another thread at the same priority waiting to run, a context switch occurs to the next thread in the 
ready queue . 

Internally, a quantum unit is represented as one third of a clock tick . (So one clock tick equals three 
quantums .) This means that on client Windows systems, threads, by default, have a quantum reset 
 value of 6 (2 * 3), and that server systems have a quantum reset value of 36 (12 * 3) . For this reason, 
the KiCyclesPerClockQuantum value is divided by three at the end of the calculation previously de-
scribed, because the original value describes only CPU clock cycles per clock interval timer tick .

The reason a quantum was stored internally as a fraction of a clock tick rather than as an entire tick 
was to allow for partial quantum decay-on-wait completion on versions of Windows prior to Windows 
Vista . Prior versions used the clock interval timer for quantum expiration . If this adjustment were not 
made, it would have been possible for threads never to have their quantums reduced . For example, 
if a thread ran, entered a wait state, ran again, and entered another wait state but was never the cur-
rently running thread when the clock interval timer fired, it would never have its quantum charged 
for the time it was running . Because threads now have CPU clock cycles charged instead of quantums, 
and because this no longer depends on the clock interval timer, these adjustments are not required .

EXPERIMENT: Determining the Clock Cycles per Quantum
Windows doesn’t expose the number of clock cycles per quantum through any function, but 
with the calculation and description we’ve given, you should be able to determine this on your 
own using the following steps and a kernel debugger such as WinDbg in local debugging 
mode:

1. Obtain your processor frequency as Windows has detected it . You can use the value 
stored in the PRCB’s MHz field, which can be displayed with the !cpuinfo command . 
Here is a sample output of a dual-core Intel system running at 2829 MHz:

lkd> !cpuinfo 
CP  F/M/S Manufacturer  MHz PRCB Signature    MSR 8B Signature Features 
 0  6,15,6 GenuineIntel 2829 000000c700000000 >000000c700000000<a00f3fff 
 1  6,15,6 GenuineIntel 2829 000000c700000000                   a00f3fff 
                      Cached Update Signature 000000c700000000 
                     Initial Update Signature 000000c700000000

2. Convert the number to Hertz (Hz) . This is the number of CPU clock cycles that occur 
each second on your system . In this case, 2,829,000,000 cycles per second .
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3. Obtain the clock interval on your system by using clockres . This measures how long 
it takes before the clock fires. On the sample system used here, this interval was 
15 .600100 ms .

4. Convert this number to the number of times the clock interval timer fires each second. 
One second is 1000 ms, so divide the number derived in step 3 by 1000 . In this case, 
the timer fires every 0.0156001 seconds.

5. Multiply this count by the number of cycles each second that you obtained in step 2 . 
In our case, 44,132,682 .9 cycles have elapsed after each clock interval .

6. Remember that each quantum unit is one-third of a clock interval, so divide the 
 number of cycles by three . In our example, this gives us 14,710,894, or 0xE0786E in 
hexadecimal . This is the number of clock cycles each quantum unit should take on a 
system running at 2829 MHz with a clock interval of around 15 ms .

7. To verify your calculation, dump the value of KiCyclesPerClockQuantum on your 
 system—it should match .

lkd> dd nt!KiCyclesPerClockQuantum L1 
81d31ae8  00e0786e

Controlling the Quantum
You can change the thread quantum for all processes, but you can choose only one of two settings: 
short (2 clock ticks, which is the default for client machines) or long (12 clock ticks, which is the default 
for server systems) .

Note By using the job object on a system running with long quantums, you can select 
other quantum values for the processes in the job . For more information on the job object, 
see the “Job Objects” section later in the chapter .

To change this setting, right-click on your Computer icon on the desktop, or in Windows Explorer, 
choose Properties, click the Advanced System Settings label, click on the Advanced tab, click the 
Settings button in the Performance section, and finally click on the Advanced tab. The dialog box 
displayed is shown in Figure 5-18 .
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FIGURE 5-18 Quantum configuration in the Performance Options dialog box

The Programs setting designates the use of short, variable quantums—the default for client 
 versions of Windows. If you install Terminal Services on a server system and configure the server as 
an application server, this setting is selected so that the users on the terminal server have the same 
quantum settings that would normally be set on a desktop or client system . You might also select this 
manually if you were running Windows Server as your desktop operating system .

The Background Services option designates the use of long, fixed quantums—the default for  server 
systems . The only reason you might select this option on a workstation system is if you were using 
the workstation as a server system . However, because changes in this option take effect immediately, 
it might make sense to use it if the machine is about to run a background/server-style workload . For 
example, if a long-running computation, encoding or modeling simulation needs to run overnight, 
Background Services mode could be selected at night, and the system put back in Programs mode in 
the morning .

Finally, because Programs mode enables variable quantums, let us now explain what controls their 
variability .
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Variable Quantums
When variable quantums are enabled, the variable quantum table (PspVariableQuantums) is loaded 
into the PspForegroundQuantum table that is used by the PspComputeQuantum function . Its algo-
rithm will pick the appropriate quantum index based on whether or not the process is a foreground 
process (that is, whether it contains the thread that owns the foreground window on the desktop) . If 
this is not the case, an index of zero is chosen, which corresponds to the default thread quantum de-
scribed earlier . If it is a foreground process, the quantum index corresponds to the priority separation . 

This priority separation value determines the priority boost (described in a later section of this 
chapter) that the scheduler will apply to foreground threads, and it is thus paired with an appropri-
ate extension of the quantum: for each extra priority level (up to 2), another quantum is given to the 
thread . For example, if the thread receives a boost of one priority level, it receives an extra quantum 
as well . By default, Windows sets the maximum possible priority boost to foreground threads, mean-
ing that the priority separation will be 2, therefore selecting quantum index 2 in the variable quantum 
table, leading to the thread receiving two extra quantums, for a total of 3 quantums .

Table 5-5 describes the exact quantum value (recall that this is stored in a unit representing 1/3rd 
of a clock tick) that will be selected based on the quantum index and which quantum configuration is 
in use .

TABLE 5-5 Quantum Values

Short Quantum Index Long Quantum Index

Variable  6 12 18 12 24 36

Fixed 18 18 18 36 36 36

Thus, when a window is brought into the foreground on a client system, all the threads in the 
 process containing the thread that owns the foreground window have their quantums tripled: threads 
in the foreground process run with a quantum of 6 clock ticks, whereas threads in other processes 
have the default client quantum of 2 clock ticks . In this way, when you switch away from a CPU- 
intensive process, the new foreground process will get proportionally more of the CPU, because when 
its threads run they will have a longer turn than background threads (again, assuming the thread 
priorities are the same in both the foreground and background processes) .

Quantum Settings Registry Value
The user interface to control quantum settings described earlier modifies the registry value  
HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation. In addition to 
specifying the relative length of thread quantums (short or long), this registry value also defines 
whether or not variable quantums should be used, as well as the priority separation (which, as you’ve 
seen, will determine the quantum index used when variable quantums are enabled) . This value 
 consists of 6 bits divided into the three 2-bit fields shown in Figure 5-19.
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FIGURE 5-19 Fields of the Win32PrioritySeparation registry value 

The fields shown in Figure 5-19 can be defined as follows:

 ■ Short vs . Long A value of 1 specifies long quantums, and 2 specifies short ones. A setting 
of 0 or 3 indicates that the default appropriate for the system will be used (short for client 
systems, long for server systems) .

 ■ Variable vs . Fixed A setting of 1 means to enable the variable quantum table based on 
the algorithm shown in the “Variable Quantums” section . A setting of 0 or 3 means that the 
default appropriate for the system will be used (variable for client systems, fixed for server 
systems) .

 ■ Priority Separation This field (stored in the kernel variable PsPrioritySeparation) defines the 
priority separation (up to 2) as explained in the “Variable Quantums” section .  

Note that when you’re using the Performance Options dialog box (which was shown in 
 Figure 5-18), you can choose from only two combinations: short quantums with foreground quantums 
tripled, or long quantums with no quantum changes for foreground threads . However, you can select 
other combinations by modifying the Win32PrioritySeparation registry value directly . 

Note that the threads part of a process running in the idle process priority class always receive a 
single thread quantum (2 clock ticks), ignoring any sort of quantum configuration settings, whether 
set by default or set through the registry .

On Windows Server systems configured as applications servers, the initial value of the 
 Win32PrioritySeparation registry value will be hex 26, which is identical to the value set by the 
 Optimize Performance For Programs option in the Performance Options dialog box . This selects 
quantum and priority boost behavior like that on Windows client systems, which is appropriate for a 
server primarily used to host users’ applications . 

On Windows client systems and on servers not configured as application servers, the initial value 
of the Win32PrioritySeparation registry value will be 2 . This provides values of 0 for the Short vs . Long 
and Variable vs. Fixed bit fields, relying on the default behavior of the system (depending on whether 
it is a client system or a server system) for these options, but it provides a value of 2 for the Priority 
Separation field. Once the registry value has been changed by use of the Performance Options dialog 
box, it cannot be restored to this original value other than by modifying the registry directly .  
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EXPERIMENT: Effects of Changing the Quantum Configuration
Using a local debugger (Kd or WinDbg), you can see how the two quantum  configuration 
settings, Programs and Background Services, affect the PsPrioritySeparation and 
 PspForegroundQuantum tables, as well as modify the QuantumReset value of threads on the 
system . Take the following steps:

1. Open the System utility in Control Panel (or right-click on your computer name’s icon 
on the desktop, and choose Properties) . Click the Advanced System Settings label, click 
on the Advanced tab, click the Settings button in the Performance section, and finally 
click on the Advanced tab . Select the Programs option, and click Apply . Keep this 
 window open for the duration of the experiment .

2. Dump the values of PsPrioritySeparation and PspForegroundQuantum, as shown here . 
The values shown are what you should see on a Windows system after making the 
change in step 1 . Notice how the variable, short quantum table is being used, and that 
a priority boost of 2 will apply to foreground applications:

lkd> dd PsPrioritySeparation L1 
81d3101c  00000002 
lkd> db PspForegroundQuantum L3 
81d0946c  06 0c 12 
...

3. Now take a look at the QuantumReset value of any process on the system . As 
 described earlier, this is the default, full quantum of each thread on the system when it 
is replenished . This value is cached into each thread of the process, but the  KPROCESS 
structure is easier to look at . Notice in this case it is 6, because WinDbg, like most 
other applications, gets the quantum set in the first entry of the PspForegroundQuantum 
table:

lkd> .process 
Implicit process is now 85b32d90 
lkd> dt nt!_KPROCESS 85b32d90 QuantumReset 
nt!_KPROCESS 
   +0x061 QuantumReset     : 6 ''

4. Now change the Performance option to Background Services in the dialog box you 
opened in step 1 .

5. Repeat the commands shown in steps 2 and 3 . You should see the values change in a 
manner consistent with our discussion in this section:

lkd> dd nt!PsPrioritySeparation L1 
81d3101c  00000000 
lkd> db nt!PspForegroundQuantum L3 
81d0946c  24 24 24                                         $$$ 
lkd> dt nt!_KPROCESS 85b32d90 QuantumReset 
nt!_KPROCESS 
   +0x061 QuantumReset     : 36 '$'
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Priority Boosts
The Windows scheduler periodically adjusts the current priority of threads through an internal 
 priority-boosting mechanism . In many cases, it does so for decreasing various latencies (that is, to 
make threads respond faster to the events they are waiting on) and increasing responsiveness . In 
 others, it applies these boosts to prevent inversion and starvation scenarios . Here are some of the 
boost scenarios that will be described in this section (and their purpose):

 ■ Boosts due to scheduler/dispatcher events (latency reduction)

 ■ Boosts due to I/O completion (latency reduction)

 ■ Boosts due to UI input (latency reduction/responsiveness)

 ■ Boosts due to a thread waiting on an executive resource for too long (starvation avoidance)

 ■ Boosts when a thread that’s ready to run hasn’t been running for some time (starvation and 
priority-inversion avoidance)

Like any scheduling algorithms, however, these adjustments aren’t perfect, and they might not 
benefit all applications.

Note Windows never boosts the priority of threads in the real-time range (16 through 31) . 
Therefore, scheduling is always predictable with respect to other threads in the real-time 
range . Windows assumes that if you’re using the real-time thread priorities, you know what 
you’re doing .

Client versions of Windows also include another pseudo-boosting mechanism that occurs  during 
multimedia playback . Unlike the other priority boosts, which are applied directly by kernel code, 
multimedia playback boosts are actually managed by a user-mode service called the MultiMedia 
Class Scheduler Service (MMCSS), but they are not really boosts—the service merely sets new base 
priorities for the threads as needed (by calling the user-mode native API to change thread priorities) . 
Therefore, none of the rules regarding boosts apply. We’ll first cover the typical kernel-managed 
priority boosts and then talk about MMCSS and the kind of “boosting” it performs .

Boosts Due to Scheduler/Dispatcher Events
Whenever a dispatch event occurs, the KiExitDispatcher routine is called, whose job it is to process 
the deferred ready list by calling KiProcessThreadWaitList and then call KiCheckForThreadDispatch to 
check whether any threads on the local processor should not be scheduled . Whenever such an event 
occurs, the caller can also specify which type of boost should be applied to the thread, as well as what 
priority increment the boost should be associated with . The following scenarios are considered as 
 AdjustUnwait dispatch events because they deal with a dispatcher object entering a signaled state, 
which might cause one or more threads to wake up:

 ■ An APC is queued to a thread .

 ■ An event is set or pulsed .
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 ■ A timer was set, or the system time was changed, and timers had to be reset .

 ■ A mutex was released or abandoned .

 ■ A process exited .

 ■ An entry was inserted in a queue, or the queue was flushed.

 ■ A semaphore was released .

 ■ A thread was alerted, suspended, resumed, frozen, or thawed .

 ■ A primary UMS thread is waiting to switch to a scheduled UMS thread .

For scheduling events associated with a public API (such as SetEvent), the boost increment applied 
is specified by the caller. Windows recommends certain values to be used by developers, which will 
be described later . For alerts, a boost of 2 is applied, because the alert API does not have a parameter 
allowing a caller to set a custom increment .

The scheduler also has two special AdjustBoost dispatch events, which are part of the lock 
 ownership priority mechanism. These boosts attempt to fix situations in which a caller that owns the 
lock at priority X ends up releasing the lock to a waiting thread at priority <= X. In this situation, the 
new owner thread must wait for its turn (if running at priority X), or worse, it might not even get to 
run at all if its priority is lower than X . This entails the releasing thread continuing its execution, even 
though it should have caused the new owner thread to wake up and take control of the processor . 
The following two dispatcher events cause an AdjustBoost dispatcher exit:

 ■ An event is set through the KeSetEventBoostPriority interface, which is used by the ERESOURCE 
reader-writer kernel lock

 ■ A gate is set through the KeSignalGateBoostPriority interface, which is used by various internal 
mechanisms when releasing a gate lock .

Unwait Boosts
Unwait boosts attempt to decrease the latency between a thread waking up due to an object being 
signaled (thus entering the Ready state) and the thread actually beginning its execution to process 
the unwait (thus entering the Running state) . Because the event that the thread is waiting on could 
give some sort of information about, say, the state of available memory at the moment, it is impor-
tant for this state not to change behind the scenes while the thread is still stuck in the Ready state—
otherwise, it might become irrelevant or incorrect once the thread does start running .

The various Windows header files specify recommended values that kernel-mode callers of APIs 
such as KeSetEvent and KeReleaseSemaphore should use, which correspond to definitions such as MU-
TANT_INCREMENT and EVENT_INCREMENT. These definitions have always been set to 1 in the head-
ers, so it is safe to assume that most unwaits on these objects result in a boost of 1 . In the  user-mode 
API, an increment cannot be specified, nor do the native system calls such as NtSetEvent have 
parameters to specify such a boost . Instead, when these APIs call the underlying Ke interface, they use 
the default _INCREMENT definition automatically. This is also the case when mutexes are abandoned 
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or timers are reset due to a system time change: the system uses the default boost that normally 
would’ve been applied when the mutex would have been released . Finally, the APC boost is com-
pletely up to the caller. Soon, you’ll see a specific usage of the APC boost related to I/O  completion . 

Note Some dispatcher objects don’t have boosts associated with them . For example, when 
a timer is set or expires, or when a process is signaled, no boost is applied .

All these boosts of +1 attempt to solve the initial problem by making the assumption that both 
the releasing and waiting threads are running at the same priority . By boosting the waiting thread by 
one priority level, the waiting thread should preempt the releasing thread as soon as the operation 
completes . Unfortunately on uniprocessor systems, if this assumption does not hold, the boost might 
not do much: if the waiting thread is waiting at priority 4 vs . the releasing thread at priority 8, wait-
ing at priority 5 won’t do much to reduce latency and force preemption . On multiprocessor systems, 
however, due to the stealing and balancing algorithms, this higher priority thread may have a higher 
chance to get picked up by another logical processor . This reality is due to a design choice made in 
the initial NT architecture, which is not to track lock ownership (except a few locks) . That means the 
scheduler can’t be sure who really owns an event, and if it’s really being used as a lock . Even with lock 
ownership tracking, ownership is not usually passed in order to avoid convoy issues, other than in the 
ERESOURCE case which we’ll explain below .

However, for certain kinds of lock objects using events or gates as their underlying  synchronization 
object, the lock ownership boost resolves the dilemma . Also, due to the processor-distribution and 
load-balancing schemes you’ll see later, on a multiprocessor machine, the ready thread might get 
picked up on another processor, and its high priority might increase the chances of it running on that 
secondary processor instead .

Lock Ownership Boosts
Because the executive-resource (ERESOURCE) and critical-section locks use underlying dispatcher 
 objects, releasing these locks results in an unwait boost as described earlier . On the other hand, 
 because the high-level implementation of these objects does track the owner of the lock, the 
kernel can make a more informed decision as to what kind of boost should be applied, by  using 
the  AdjustBoost reason . In these kinds of boosts, AdjustIncrement is set to the current priority of 
the releasing (or  setting) thread, minus any GUI foreground separation boost, and before the 
 KiExitDispatcher function is called, KiRemoveBoostThread is called by the event and gate code to 
return the releasing thread back to its regular priority (through the KiComputeNewPriority function) . 
This step is needed to avoid a lock convoy situation, in which two threads repeatedly passing the lock 
between one another get ever-increasing boosts .

Note that pushlocks, which are unfair locks because ownership of the lock in a contended 
 acquisition path is not predictable (rather, it’s random, just like a spinlock), do not apply priority 
boosts due to lock ownership . This is because doing so only contributes to preemption and priority 
proliferation, which isn’t required because the lock becomes immediately free as soon as it is released 
(bypassing the normal wait/unwait path) .
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Other differences between the lock ownership boost and the unwait boost will be exposed in the 
way that the scheduler actually applies boosting, which is the upcoming topic after this section .

Priority Boosting After I/O Completion
Windows gives temporary priority boosts upon completion of certain I/O operations so that threads 
that were waiting for an I/O have more of a chance to run right away and process whatever was being 
waited for. Although you’ll find recommended boost values in the Windows Driver Kit (WDK) header 
files (by searching for “#define IO” in Wdm.h or Ntddk.h), the actual value for the boost is up to the 
device driver. (These values are listed in Table 5-6.) It is the device driver that specifies the boost when 
it completes an I/O request on its call to the kernel function, IoCompleteRequest . In Table 5-6, notice 
that I/O requests to devices that warrant better responsiveness have higher boost values .

TABLE 5-6 Recommended Boost Values

Device Boost

Disk, CD-ROM, parallel, video 1

Network, mailslot, named pipe, serial 2

Keyboard, mouse 6

Sound 8

Note You might intuitively expect “better responsiveness” from your video card or disk 
than a boost of 1, but in fact, the kernel is trying to optimize for latency, which some 
 devices (as well as human sensory inputs) are more sensitive to than others . To give you an 
idea, a sound card expects data around every 1 ms to play back music without perceptible 
glitches, while a video card needs to output at only 24 frames per second, or once every 
40 ms, before the human eye can notice glitches .

As hinted earlier, these I/O completion boosts rely on the unwait boosts seen in the previous 
 section . In Chapter 8 of Part 2, the mechanism of I/O completion will be shown in depth . For now, 
the important detail is that the kernel implements the signaling code in the IoCompleteRequest 
API through the use of either an APC (for asynchronous I/O) or through an event (for synchro-
nous I/O) . When a driver passes in, for example, IO_DISK_INCREMENT to IoCompleteRequest for an 
 asynchronous disk read, the kernel calls KeInsertQueueApc with the boost parameter set to IO_DISK_
INCREMENT . In turn, when the thread’s wait is broken due to the APC, it receives a boost of 1 .

Be aware that the boost values given in the previous table are merely recommendations by 
 Microsoft—driver developers are free to ignore them if they choose to do so, and certain special-
ized drivers can use their own values . For example, a driver handling ultrasound data from a medical 
device, which must notify a user-mode visualization application of new data, would probably use a 
boost value of 8 as well, to satisfy the same latency as a sound card .
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In most cases, however, due to the way Windows driver stacks are built (again, see Chapter 8, “I/O 
System,” in Part 2 for more information), driver developers often write minidrivers, which call into a 
Microsoft-owned driver that supplies its own boost to IoCompleteRequest . For example, RAID or SATA 
controller card developers would typically call StorPortCompleteRequest to complete processing their 
requests. This call does not have any parameter for a boost value, because the Storport.sys driver fills 
in the right value when calling the kernel .

Additionally, in newer versions of Windows, whenever any file system driver (identified by set-
ting its device type to FILE_DEVICE_DISK_FILE_SYSTEM or FILE_DEVICE_NETWORK_FILE_SYSTEM) 
 completes its request, a boost of IO_DISK_INCREMENT is always applied if the driver passed in 
IO_NO_INCREMENT instead . So this boost value has become less of a recommendation and more of a 
requirement enforced by the kernel .

Boosts During Waiting on Executive Resources
When a thread attempts to acquire an executive resource (ERESOURCE; see Chapter 3 for more 
information on kernel-synchronization objects) that is already owned exclusively by another thread, it 
must enter a wait state until the other thread has released the resource . To limit the risk of deadlocks, 
the executive performs this wait in intervals of five seconds instead of doing an infinite wait on the 
resource . 

At the end of these five seconds, if the resource is still owned, the executive attempts to prevent 
CPU starvation by acquiring the dispatcher lock, boosting the owning thread or threads to 14 (only if 
the original owner priority is less than the waiter’s and not already 14), resetting their quantums, and 
performing another wait . 

Because executive resources can be either shared or exclusive, the kernel first boosts the exclusive 
owner and then checks for shared owners and boosts all of them . When the waiting thread enters 
the wait state again, the hope is that the scheduler will schedule one of the owner threads, which will 
have enough time to complete its work and release the resource . Note that this boosting mechanism 
is used only if the resource doesn’t have the Disable Boost flag set, which developers can choose to 
set if the priority-inversion mechanism described here works well with their usage of the resource . 

Additionally, this mechanism isn’t perfect . For example, if the resource has multiple shared  owners, 
the executive boosts all those threads to priority 14, resulting in a sudden surge of high-priority 
threads on the system, all with full quantums. Although the initial owner thread will run first (because 
it was the first to be boosted and therefore is first on the ready list), the other shared owners will run 
next, because the waiting thread’s priority was not boosted . Only after all the shared owners have 
had a chance to run and their priority has been decreased below the waiting thread will the waiting 
thread finally get its chance to acquire the resource. Because shared owners can promote or convert 
their ownership from shared to exclusive as soon as the exclusive owner releases the resource, it’s 
possible for this mechanism not to work as intended .
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Priority Boosts for Foreground Threads After Waits
As will be shortly described, whenever a thread in the foreground process completes a wait 
 operation on a kernel object, the kernel boosts its current (not base) priority by the current 
value of  PsPrioritySeparation . (The windowing system is responsible for determining which pro-
cess is  considered to be in the foreground .) As described in the section on quantum controls, 
 PsPrioritySeparation reflects the quantum-table index used to select quantums for the threads of 
foreground applications . However, in this case, it is being used as a priority boost value .

The reason for this boost is to improve the responsiveness of interactive applications—by giving 
the foreground application a small boost when it completes a wait, it has a better chance of run-
ning right away, especially when other processes at the same base priority might be running in the 
 background .

EXPERIMENT: Watching Foreground Priority Boosts and Decays
Using the CPU Stress tool (downloadable from http://live.sysinternals.com/WindowsInternals), 
you can watch priority boosts in action . Take the following steps:

1. Open the System utility in Control Panel (or right-click on your computer name’s 
icon on the desktop, and choose Properties) . Click the Advanced System Settings 
label, click on the Advanced tab, click the Settings button in the Performance sec-
tion, and finally click on the Advanced tab. Select the Programs option. This causes 
 PsPrioritySeparation to get a value of 2 .

2. Run Cpustres .exe, and change the activity of thread 1 from Low to Busy .

3. Start the Performance tool by selecting Programs from the Start menu and then 
selecting Performance Monitor from the Administrative Tools menu . Click on the 
 Performance Monitor entry under Monitoring Tools .

4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add Counters 
dialog box .

5. Select the Thread object, and then select the % Processor Time counter .
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6. In the Instances box, select <All Instances> and click Search. Scroll down until you see 
the CPUSTRES process. Select the second thread (thread 1). (The first thread is the GUI 
thread .) You should see something like this:

7. Click the Add button, and then click OK .

8. Select Properties from the Action menu . Change the Vertical Scale Maximum to 16 on 
the Graph tab, and set the interval to 1 in Sample Every box of the Graph Elements 
area on the General tab .
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9. Now bring the CPUSTRES process to the foreground . You should see the priority of the 
CPUSTRES thread being boosted by 2 and then decaying back to the base priority as 
follows:

10. The reason CPUSTRES receives a boost of 2 periodically is because the thread you’re 
monitoring is sleeping about 25 percent of the time and then waking up . (This is the 
Busy Activity level) . The boost is applied when the thread wakes up . If you set the 
Activity level to Maximum, you won’t see any boosts because Maximum in CPUSTRES 
puts the thread into an infinite loop. Therefore, the thread doesn’t invoke any wait 
functions and, as a result, doesn’t receive any boosts .

11. When you’ve finished, exit Performance Monitor and CPU Stress.

Priority Boosts After GUI Threads Wake Up
Threads that own windows receive an additional boost of 2 when they wake up because of  windowing 
activity such as the arrival of window messages . The windowing system (Win32k .sys) applies this 
boost when it calls KeSetEvent to set an event used to wake up a GUI thread . The reason for this boost 
is similar to the previous one—to favor interactive applications .
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EXPERIMENT: Watching Priority Boosts on GUI Threads
You can also see the windowing system apply its boost of 2 for GUI threads that wake up to 
process window messages by monitoring the current priority of a GUI application and moving 
the mouse across the window . Just follow these steps:

1. Open the System utility in Control Panel (or right-click on your computer name’s icon 
on the desktop, and choose Properties) . Click the Advanced System Settings label, click 
on the Advanced tab, click the Settings button in the Performance section, and finally 
click on the Advanced tab . Be sure that the Programs option is selected . This causes 
PsPrioritySeparation to get a value of 2 .

2. Run Notepad from the Start menu by selecting All Programs/Accessories/Notepad .

3. Start the Performance tool by selecting Programs from the Start menu and then 
selecting Performance Monitor from the Administrative Tools menu . Click on the 
 Performance Monitor entry under Monitoring Tools .

4. Click the Add Counter toolbar button (or press Ctrl+N) to bring up the Add Counters 
dialog box .

5. Select the Thread object, and then select the Priority Current counter .

6. In the Instances box, type Notepad, and then click Search . Scroll down until you see 
Notepad/0 . Click it, click the Add button, and then click OK .

7. As in the previous experiment, select Properties from the Action menu . Change the 
Vertical Scale Maximum to 16 on the Graph tab, set the interval to 1 in Sample Every 
box of the Graph Elements area of the General tab, and click OK .

8. You should see the priority of thread 0 in Notepad at 8 or 10 . Because Notepad 
 entered a wait state shortly after it received the boost of 2 that threads in the 
 foreground process receive, it might not yet have decayed from 10 to 8 .

9. With Performance Monitor in the foreground, move the mouse across the Notepad 
window . (Make both windows visible on the desktop .) You’ll see that the priority 
sometimes remains at 10 and sometimes at 9, for the reasons just explained . (The 
reason you won’t likely catch Notepad at 8 is that it runs so little after receiving the 
GUI thread boost of 2 that it never experiences more than one priority level of decay 
before waking up again because of additional windowing activity and receiving the 
boost of 2 again .)

10. Now bring Notepad to the foreground . You should see the priority rise to 12 and 
 remain there (or drop to 11, because it might experience the normal priority decay 
that occurs for boosted threads on the quantum end) because the thread is  receiving 
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two boosts: the boost of 2 applied to GUI threads when they wake up to process 
 windowing input, and an additional boost of 2 because Notepad is in the foreground .

11. If you then move the mouse over Notepad (while it’s still in the foreground), you might 
see the priority drop to 11 (or maybe even 10) as it experiences the priority decay that 
normally occurs on boosted threads as they complete their turn . However, the boost 
of 2 that is applied because it’s the foreground process remains as long as Notepad 
remains in the foreground .

12. When you’ve finished, exit Performance Monitor and Notepad.

Priority Boosts for CPU Starvation
Imagine the following situation: you have a priority 7 thread that’s running, preventing a priority 4 
thread from ever receiving CPU time; however, a priority 11 thread is waiting for some resource that 
the priority 4 thread has locked . But because the priority 7 thread in the middle is eating up all the 
CPU time, the priority 4 thread will never run long enough to finish whatever it’s doing and release 
the resource blocking the priority 11 thread . What does Windows do to address this situation? 

You previously saw how the executive code responsible for executive resources manages this 
 scenario by boosting the owner threads so that they can have a chance to run and release the re-
source . However, executive resources are only one of the many synchronization constructs available 
to developers, and the boosting technique will not apply to any other primitive . Therefore, Windows 
also includes a generic CPU starvation-relief mechanism as part of a thread called the balance set 
manager (a system thread that exists primarily to perform memory-management functions and is 
described in more detail in Chapter 10 of Part 2) .

Once per second, this thread scans the ready queues for any threads that have been in the ready 
state (that is, haven’t run) for approximately 4 seconds. If it finds such a thread, the balance-set 
manager boosts the thread’s priority to 15 and sets the quantum target to an equivalent CPU clock 
cycle count of 3 quantum units . Once the quantum expires, the thread’s priority decays immediately 
to its original base priority. If the thread wasn’t finished and a higher priority thread is ready to run, 
the decayed thread returns to the ready queue, where it again becomes eligible for another boost if it 
remains there for another 4 seconds .

The balance-set manager doesn’t actually scan all of the ready threads every time it runs . To 
minimize the CPU time it uses, it scans only 16 ready threads; if there are more threads at that priority 
level, it remembers where it left off and picks up again on the next pass . Also, it will boost only 10 
threads per pass—if it finds 10 threads meriting this particular boost (which indicates an unusually 
busy system), it stops the scan at that point and picks up again on the next pass .
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Note We mentioned earlier that scheduling decisions in Windows are not affected by the 
number of threads and that they are made in constant time, or O(1) . Because the balance-
set manager needs to scan ready queues manually, this operation depends on the number 
of threads on the system, and more threads will require more scanning time . However, the 
balance-set manager is not considered part of the scheduler or its algorithms and is simply 
an extended mechanism to increase reliability . Additionally, because of the cap on threads 
and queues to scan, the performance impact is minimized and predictable in a worst-case 
scenario .

Will this algorithm always solve the priority-inversion issue? No—it’s not perfect by any means . But 
over time, CPU-starved threads should get enough CPU time to finish whatever processing they were 
doing and re-enter a wait state .

EXPERIMENT: Watching Priority Boosts for CPU Starvation
Using the CPU Stress tool, you can watch priority boosts in action . In this experiment, you’ll see 
CPU usage change when a thread’s priority is boosted . Take the following steps:

1. Run Cpustres .exe . Change the activity level of the active thread (by default, Thread 1) 
from Low to Maximum . Change the thread priority from Normal to Below Normal . The 
screen should look like this:

2. Start the Performance tool by selecting Programs from the Start menu and then 
selecting Performance Monitor from the Administrative Tools menu . Click on the 
 Performance Monitor entry under Monitoring Tools .
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3. Click the Add Counter toolbar button (or press Ctrl+N) to bring up the Add Counters 
dialog box .

4. Select the Thread object, and then select the Priority Current counter .

5. In the Instances box, type CPUSTRES, and then click Search . Scroll down until you see 
the second thread (thread 1). (The first thread is the GUI thread.) You should see some-
thing like this:

6. Click the Add button, and then click OK .

7. Raise the priority of Performance Monitor to real time by running Task Manager, 
 clicking on the Processes tab, and selecting the Mmc .exe process . Right-click the 
 process, select Set Priority, and then select Realtime . (If you receive a Task Manager 
Warning message box warning you of system instability, click the Yes button .) If you 
have a multiprocessor system, you also need to change the affinity of the process: 
right-click and select Set Affinity. Then clear all other CPUs except for CPU 0.

8. Run another copy of CPU Stress . In this copy, change the activity level of Thread 1 from 
Low to Maximum .

9. Now switch back to Performance Monitor . You should see CPU activity every six or so 
seconds because the thread is boosted to priority 15 . You can force updates to occur 
more frequently than every second by pausing the display with Ctrl+F, and then press-
ing Ctrl+U, which forces a manual update of the counters . Keep Ctrl+U pressed for 
continual refreshes .

When you’ve finished, exit Performance Monitor and the two copies of CPU Stress.
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EXPERIMENT: “Listening” to Priority Boosting
To “hear” the effect of priority boosting for CPU starvation, perform the following steps on a 
system with a sound card:

1. Because of MMCSS’ priority boosts (which we will describe in the next subsection), 
you need to stop the MultiMedia Class Scheduler Service by opening the Services 
 management interface (Start, Programs, Administrative Tools, Services) .

2. Run Windows Media Player (or some other audio-playback program), and begin 
 playing some audio content .

3. Run Cpustres, and set the activity level of Thread 1 to Maximum .

4. Use Task Manager to set the affinities of both Windows Media Player and Cpustres to a 
single CPU . 

5. Raise the priority of Thread 1 of Cpustres from Normal to Time Critical .

6. You should hear the music playback stop as the computer-bound thread begins 
 consuming all available CPU time .

7. Every so often, you should hear bits of sound as the starved thread in the audio 
playback process gets boosted to 15 and runs enough to send more data to the sound 
card .

8. Stop Cpustres and Windows Media Player, and start the MMCSS service again .

Applying Boosts
Back in KiExitDispatcher, you saw that KiProcessThreadWaitList is called to process any threads in 
the deferred ready list . It is here that the boost information passed by the caller is processed . This 
is done by looping through each DeferredReady thread, unlinking its wait blocks (only Active and 
Bypassed blocks are unlinked), and then setting two key values in the kernel’s thread control block: 
 AdjustReason and AdjustIncrement . The reason is one of the two Adjust possibilities seen earlier, and 
the increment corresponds to the boost value . KiDeferredReadyThread is then called, which makes the 
thread ready for execution, by running two algorithms: the quantum and priority selection algorithm, 
which you are about to see in two parts, and the processor selection algorithm, which is shown in its 
respective section later in this topic . 

Let’s first look at when the algorithm applies boosts, which happens only in the cases where a 
thread is not in the real-time priority range . 

For an AdjustUnwait boost, it will be applied only if the thread is not already experiencing an 
 unusual boost and only if the thread has not disabled boosting by calling SetThreadPriorityBoost, 
which sets the DisableBoost flag in the KTHREAD. Another situation that can disable boosting in 
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this case is if the kernel has realized that the thread actually exhausted its quantum (but the clock 
 interrupt did not fire to consume it) and the thread came out of a wait that lasted less than two clock 
ticks .

If these situations are not currently true, the new priority of the thread will be computed by 
 adding the AdjustIncrement to the thread’s current base priority . Additionally, if the thread is known 
to be part of a foreground process (meaning that the memory priority is set to MEMORY_PRIORITY_ 
FOREGROUND, which is configured by Win32k.sys when focus changes), this is where the priority-
separation boost (PsPrioritySeparation) is applied by adding its value on top of the new priority . This is 
also known as the Foreground Priority boost, which was explained earlier .

Finally, the kernel checks whether this newly computed priority is higher than the current  priority 
of the thread, and it limits this value to an upper bound of 15 to avoid crossing into the real-time 
range . It then sets this value as the thread’s new current priority . If any foreground separation 
boost was applied, it sets this value in the ForegroundBoost field of the KTHREAD, which results in a 
 PriorityDecrement equal to the separation boost .

For AdjustBoost boosts, the kernel checks whether the thread’s current priority is lower than the 
AdjustIncrement (recall this is the priority of the setting thread) and whether the thread’s current pri-
ority is below 13 . If so, and priority boosts have not been disabled for the thread, the AdjustIncrement 
priority is used as the new current priority, limited to a maximum of 13 . Meanwhile, the UnusualBoost 
field of the KTHREAD contains the boost value, which results in a PriorityDecrement equal to the lock 
ownership boost .

In all cases where a PriorityDecrement is present, the quantum of the thread is also recomputed 
to be the equivalent of only one clock tick, based on the value of KiLockQuantumTarget . This ensures 
that foreground and unusual boosts will be lost after one clock tick instead of the usual two (or other 
configured value), as will be shown in the next section. This also happens when an AdjustBoost is 
requested but the thread is running at priority 13 or 14 or with boosts disabled .

After this work is complete, AdjustReason is now set to AdjustNone .

Removing Boosts
Removing boosts is done in KiDeferredReadyThread just as boosts and quantum recomputations are 
being applied (as shown in the previous section). The algorithm first begins by checking the type of 
adjustment being done . 

For an AdjustNone scenario, which means the thread became ready due to perhaps a preemption, 
the thread’s quantum will be recomputed if it already hit its target but the clock interrupt has not 
yet noticed, as long as the thread was running at a dynamic priority level . Additionally, the thread’s 
priority will be recomputed . For an AdjustUnwait or AdjustBoost scenario on a non-real-time thread, 
the kernel checks whether the thread silently exhausted its quantum ( just as in the prior section) . If 
it did, or if the thread was running with a base priority of 14 or higher, or if no PriorityDecrement is 
 present and the thread has completed a wait that lasted longer than two clock ticks, the quantum of 
the thread is recomputed, as is its priority .
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Priority recomputation happens on non-real-time threads, and it’s done by taking the thread’s 
current priority, subtracting its foreground boost, subtracting is unusual boost (the combination of 
these last two items is the PriorityDecrement), and finally subtracting one. Finally, this new priority is 
bounded with the base priority as the lowest bound, and any existing priority decrement is zeroed 
out (clearing unusual and foreground boosts) . This means that in the case of a lock ownership boost, 
or any of the unusual boosts explained, the entire boost value is now lost . On the other hand, for a 
regular AdjustUnwait boost, the priority naturally trickles down by one due to the subtraction by one . 
This lowering eventually stops when the base priority is hit due to the lower bound check .

There is another instance where boosts must be removed, which goes through the 
 KiRemoveBoostThread function . This is a special-case boost removal, which occurs due to the lock-
ownership boost rule, which specifies that the setting thread must lose its boost when donating its 
current priority to the waking thread (to avoid a lock convoy) . It is also used to undo the boost due 
to targeted DPC-calls as well as the boost against ERESOURCE lock-starvation boost . The only special 
detail about this routine is that when computing the new priority, it takes special care to separate the 
ForegroundBoost vs . UnusualBoost components of the PriorityDecrement in order to maintain any GUI 
foreground-separation boost that the thread accumulated . This behavior, new to Windows 7,  ensures 
that threads relying on the lock-ownership boost do not behave erratically when running in the 
 foreground, or vice-versa .

Figure 5-20 displays an example of how normal boosts are removed from a thread as it 
 experiences quantum end .
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FIGURE 5-20 Priority boosting and decay

Priority Boosts for Multimedia Applications and Games
As you just saw in the last experiment, although Windows’ CPU-starvation priority boosts might be 
enough to get a thread out of an abnormally long wait state or potential deadlock, they simply can-
not deal with the resource requirements imposed by a CPU-intensive application such as Windows 
Media Player or a 3D computer game .
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Skipping and other audio glitches have been a common source of irritation among Windows users 
in the past, and the user-mode audio stack in Windows makes the situation worse because it offers 
even more chances for preemption . To address this, client versions of Windows incorporate a service 
(called MMCSS, described earlier in this chapter) whose purpose is to ensure glitch-free multimedia 
playback for applications that register with it .

MMCSS works by defining several tasks, including the following:

 ■ Audio

 ■ Capture

 ■ Distribution

 ■ Games

 ■ Playback

 ■ Pro Audio

 ■ Window Manager

Note You can find the settings for MMCSS, including a lists of tasks (which can be 
 modified by OEMs to include other specific tasks as appropriate) in the registry keys un-
der HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Multimedia\SystemProfile. 
Additionally, the SystemResponsiveness value allows you to fine-tune how much CPU usage 
MMCSS guarantees to low-priority threads .

In turn, each of these tasks includes information about the various properties that differentiate 
them . The most important one for scheduling is called the Scheduling Category, which is the pri-
mary factor determining the priority of threads registered with MMCSS . Table 5-7 shows the various 
 scheduling categories .

TABLE 5-7 Scheduling Categories

Category Priority Description

High 23-26 Pro Audio threads running at a higher priority than any other thread on the 
system except for critical system threads

Medium 16-22 The threads part of a foreground application such as Windows Media Player

Low 8-15 All other threads that are not part of the previous categories

Exhausted 1-7 Threads that have exhausted their share of the CPU and will continue running 
only if no other higher priority threads are ready to run

The main mechanism behind MMCSS boosts the priority of threads inside a registered process 
to the priority level matching their scheduling category and relative priority within this category for 
a guaranteed period of time . It then lowers those threads to the Exhausted category so that other, 
nonmultimedia threads on the system can also get a chance to execute . 
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By default, multimedia threads get 80 percent of the CPU time available, while other threads 
receive 20 percent (based on a sample of 10 ms; in other words, 8 ms and 2 ms, respectively) . MMCSS 
itself runs at priority 27 because it needs to preempt any Pro Audio threads in order to lower their 
priority to the Exhausted category .

Keep in mind that the kernel still does the actual boosting of the values inside the KTHREAD 
(MMCSS simply makes the same kind of system call any other application would), and the scheduler 
is still in control of these threads . It is simply their high priority that makes them run almost uninter-
rupted on a machine, because they are in the real-time range and well above threads that most user 
applications run in .

As was discussed earlier, changing the relative thread priorities within a process does not  usually 
make sense, and no tool allows this because only developers understand the importance of the vari-
ous threads in their programs . On the other hand, because applications must manually register with 
MMCSS and provide it with information about what kind of thread this is, MMCSS does have the 
necessary data to change these relative thread priorities (and developers are well aware that this will 
be happening) .

EXPERIMENT: “Listening” to MMCSS Priority Boosting
You’ll now perform the same experiment as the prior one but without disabling the MMCSS 
 service . In addition, you’ll look at the Performance tool to check the priority of the Windows 
Media Player threads .

1. Run Windows Media Player (because other playback programs might not yet take 
advantage of the API calls required to register with MMCSS), and begin playing some 
audio content .

2. If you have a multiprocessor machine, be sure to set the affinity of the Wmplayer.exe 
process so that it runs on only one CPU (because you’ll use only one CPUSTRES worker 
thread) .

3. Start the Performance tool by selecting Programs from the Start menu and then 
selecting Performance Monitor from the Administrative Tools menu . Click on the 
 Performance Monitor entry under Monitoring Tools .

4. Click the Add Counter toolbar button (or press Ctrl+N) to bring up the Add Counters 
dialog box .

5. Select the Thread object, and then select the Priority Current .

6. In the Instances box, type Wmplayer, click Search, and then select all its threads . Click 
the Add button, and then click OK .
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7. As in the previous experiment, select Properties from the Action menu . Change the 
Vertical Scale Maximum to 31 on the Graph tab, set the interval to 1 in Sample Every 
Seconds of the Graph Elements area on the General tab, and click OK .

You should see one or more priority 21 threads inside Wmplayer, which will be con-
stantly running unless there is a higher-priority thread requiring the CPU after they 
are dropped to the Exhausted category .

8. Run Cpustres, and set the activity level of Thread 1 to Maximum .

9. Raise the priority of Thread 1 from Normal to Time Critical .

10. You should notice the system slowing down considerably, but the music playback will 
continue . Every so often, you’ll be able to get back some responsiveness from the rest 
of the system . Use this time to stop Cpustres .

11. If the Performance tool was unable to capture data during the time Cpustres ran, 
run it again, but use Highest instead of Time Critical . This change will slow down the 
system less, but it still requires boosting from MMCSS . Because once the multimedia 
thread is put in the Exhausted category there will always be a higher priority thread 
requesting the CPU (CPUSTRES), you should notice Wmplayer’s priority 21 thread drop 
every so often, as shown here:
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MMCSS’ functionality does not stop at simple priority boosting, however . Because of the nature of 
network drivers on Windows and the NDIS stack, deferred procedure calls (DPCs) are quite common 
mechanisms for delaying work after an interrupt has been received from the network card . Because 
DPCs run at an IRQL level higher than user-mode code (see Chapter 3 for more information on DPCs 
and IRQLs), long-running network card driver code can still interrupt media playback during network 
transfers or when playing a game, for example .

Therefore, MMCSS also sends a special command to the network stack, telling it to throttle 
network packets during the duration of the media playback . This throttling is designed to maximize 
playback performance, at the cost of some small loss in network throughput (which would not be 
 noticeable for network operations usually performed during playback, such as playing an online 
game) . The exact mechanisms behind it do not belong to any area of the scheduler, so we’ll leave 
them out of this description .

Note The original implementation of the network throttling code had some design  issues 
that caused significant network throughput loss on machines with 1000 Mbit network 
adapters, especially if multiple adapters were present on the system (a common feature of 
midrange motherboards) . This issue was analyzed by the MMCSS and networking teams at 
Microsoft and later fixed.

Context Switching
A thread’s context and the procedure for context switching vary depending on the processor’s 
 architecture . A typical context switch requires saving and reloading the following data:

 ■ Instruction pointer

 ■ Kernel stack pointer

 ■ A pointer to the address space in which the thread runs (the process’ page table directory)

The kernel saves this information from the old thread by pushing it onto the current (old thread’s) 
kernel-mode stack, updating the stack pointer, and saving the stack pointer in the old thread’s 
KTHREAD structure . The kernel stack pointer is then set to the new thread’s kernel stack, and the 
new thread’s context is loaded . If the new thread is in a different process, it loads the address of its 
page table directory into a special processor register so that its address space is available . (See the 
 description of address translation in Chapter 10 in Part 2 .) If a kernel APC that needs to be  delivered 
is pending, an interrupt at IRQL 1 is requested . (For more information on APCs, see Chapter 3 .) 
 Otherwise, control passes to the new thread’s restored instruction pointer and the new thread 
 resumes execution .
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Scheduling Scenarios
Windows bases the question of “Who gets the CPU?” on thread priority, but how does this approach 
work in practice? The following sections illustrate just how priority-driven preemptive multitasking 
works on the thread level .

Voluntary Switch
First a thread might voluntarily relinquish use of the processor by entering a wait state on some 
 object (such as an event, a mutex, a semaphore, an I/O completion port, a process, a thread, a win-
dow message, and so on) by calling one of the Windows wait functions (such as WaitForSingleObject 
or WaitForMultipleObjects) . Waiting for objects is described in more detail in Chapter 3 .

Figure 5-21 illustrates a thread entering a wait state and Windows selecting a new thread to run . 
In Figure 5-21, the top block (thread) is voluntarily relinquishing the processor so that the next thread 
in the ready queue can run (as represented by the halo it has when in the Running column) . Although 
it might appear from this figure that the relinquishing thread’s priority is being reduced, it’s not—it’s 
just being moved to the wait queue of the objects the thread is waiting for . 

Priority
20

19

18

17

16

15

14

Running Ready

To wait state

FIGURE 5-21 Voluntary switching

Preemption
In this scheduling scenario, a lower-priority thread is preempted when a higher-priority thread 
 becomes ready to run . This situation might occur for a couple of reasons:

 ■ A higher-priority thread’s wait completes . (The event that the other thread was waiting for has 
occurred .)

 ■ A thread priority is increased or decreased .
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In either of these cases, Windows must determine whether the currently running thread should still 
continue to run or whether it should be preempted to allow a higher-priority thread to run .

Note Threads running in user mode can preempt threads running in kernel mode—the 
mode in which the thread is running doesn’t matter . The thread priority is the determining 
factor .

When a thread is preempted, it is put at the head of the ready queue for the priority it was running 
at . Figure 5-22 illustrates this situation .

Priority

18

17

16

15

14

13

Running Ready

From wait state

FIGURE 5-22 Preemptive thread scheduling

In Figure 5-22, a thread with priority 18 emerges from a wait state and repossesses the CPU, 
 causing the thread that had been running (at priority 16) to be bumped to the head of the ready 
queue . Notice that the bumped thread isn’t going to the end of the queue but to the beginning; 
when the preempting thread has finished running, the bumped thread can complete its quantum.

Quantum End
When the running thread exhausts its CPU quantum, Windows must determine whether the thread’s 
priority should be decremented and then whether another thread should be scheduled on the pro-
cessor .

If the thread priority is reduced, Windows looks for a more appropriate thread to schedule . (For 
example, a more appropriate thread would be a thread in a ready queue with a higher priority than 
the new priority for the currently running thread .) If the thread priority isn’t reduced and there are 
other threads in the ready queue at the same priority level, Windows selects the next thread in the 
ready queue at that same priority level and moves the previously running thread to the tail of that 
queue (giving it a new quantum value and changing its state from running to ready) . This case is 
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 illustrated in Figure 5-23 . If no other thread of the same priority is ready to run, the thread gets to run 
for another quantum .

Priority

14

13

15

12

11

Running Ready

FIGURE 5-23 Quantum end thread scheduling

As you saw, instead of simply relying on a clock interval timer–based quantum to schedule threads, 
Windows uses an accurate CPU clock cycle count to maintain quantum targets . One factor we haven’t 
yet mentioned is that Windows also uses this count to determine whether quantum end is currently 
appropriate for the thread—something that might have happened previously and is important to 
discuss .

Using a scheduling model that relies only on the clock interval timer, the following situation can 
occur:

 ■ Threads A and B become ready to run during the middle of an interval . (Scheduling code runs 
not just at each clock interval, so this is often the case .)

 ■ Thread A starts running but is interrupted for a while . The time spent handling the interrupt is 
charged to the thread .

 ■ Interrupt processing finishes and thread A starts running again, but it quickly hits the next 
clock interval . The scheduler can assume only that thread A had been running all this time and 
now switches to thread B .

 ■ Thread B starts running and has a chance to run for a full clock interval (barring pre-emption 
or interrupt handling) .

In this scenario, thread A was unfairly penalized in two different ways . First, the time it spent 
handling a device interrupt was accounted to its own CPU time, even though the thread probably 
had nothing to do with the interrupt . (Recall that interrupts are handled in the context of whichever 
thread was running at the time .) It was also unfairly penalized for the time the system was idling inside 
that clock interval before it was scheduled .

Figure 5-24 represents this scenario .
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Threads A and B
become ready to run

Interval 2Interval 1

Thread A

Idle Thread B

Interrupt

FIGURE 5-24 Unfair time slicing in previous versions of Windows

Because Windows keeps an accurate count of the exact number of CPU clock cycles spent doing 
work that the thread was scheduled to do (which means excluding interrupts), and because it keeps a 
quantum target of clock cycles that should have been spent by the thread at the end of its quantum, 
both of the unfair decisions that would have been made against thread A will not happen in Windows .

Instead, the following situation occurs:

 ■ Threads A and B become ready to run during the middle of an interval .

 ■ Thread A starts running but is interrupted for a while . The CPU clock cycles spent handling the 
interrupt are not charged to the thread .

 ■ Interrupt processing finishes and thread A starts running again, but it quickly hits the next 
clock interval . The scheduler looks at the number of CPU clock cycles charged to the thread 
and compares them to the expected CPU clock cycles that should have been charged at 
 quantum end . 

 ■ Because the former number is much smaller than it should be, the scheduler assumes that 
thread A started running in the middle of a clock interval and might have been additionally 
interrupted .

 ■ Thread A gets its quantum increased by another clock interval, and the quantum target is 
recalculated . Thread A now has its chance to run for a full clock interval .

 ■ At the next clock interval, thread A has finished its quantum, and thread B now gets a chance 
to run .

Figure 5-25 represents this scenario .

Threads A and B
become ready to run

Interval 2Interval 1 Interval 3

Interrupt

Idle Thread A Thread B

FIGURE 5-25 Fair time slicing in current versions of Windows
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Termination
When a thread finishes running (either because it returned from its main routine, called ExitThread, 
or was killed with TerminateThread), it moves from the running state to the terminated state . If there 
are no handles open on the thread object, the thread is removed from the process thread list and the 
associated data structures are deallocated and released .

Idle Threads
When no runnable thread exists on a CPU, Windows dispatches that CPU’s idle thread . Each CPU 
has its own dedicated idle thread, because on a multiprocessor system one CPU can be executing 
a thread while other CPUs might have no threads to execute . Each CPU’s idle thread is found via a 
pointer in that CPU’s PRCB . 

All of the idle threads belong to the idle process . The idle process and idle threads are special cases 
in many ways . They are, of course, represented by EPROCESS/KPROCESS and ETHREAD/KTHREAD 
structures, but they are not executive manager processes and thread objects . Nor is the idle process 
on the system process list . (This is why it does not appear in the output of the kernel debugger’s 
 !process 0 0 command .) However, the idle thread or threads and their process can be found in other 
ways . 

EXPERIMENT: Displaying the Structures of the Idle Threads and Idle 
Process 
The idle thread and process structures can be found in the kernel debugger via the !pcr 
 command . “PCR” is short for “processor control region .” This command displays a subset of 
 information from the PCR and also from the associated PRCB (processor control block) . !pcr 
takes a single numeric argument, which is the number of the CPU whose PCR is to be displayed . 
The boot processor is processor number 0, and it is always present, so !pcr 0 should always 
work . The following output shows the results of this command from a memory dump taken 
from a 64-bit, four-processor system:

3: kd> !pcr 0 
KPCR for Processor 0 at fffff800039fdd00: 
    Major 1 Minor 1 
        NtTib.ExceptionList: fffff80000b95000 
            NtTib.StackBase: fffff80000b96080 
           NtTib.StackLimit: 000000000008e2d8 
         NtTib.SubSystemTib: fffff800039fdd00 
              NtTib.Version: 00000000039fde80 
          NtTib.UserPointer: fffff800039fe4f0 
              NtTib.SelfTib: 000000007efdb000 
 
                    SelfPcr: 0000000000000000 
                       Prcb: fffff800039fde80 
                       Irql: 0000000000000000 
                        IRR: 0000000000000000 
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                        IDR: 0000000000000000 
              InterruptMode: 0000000000000000 
                        IDT: 0000000000000000 
                        GDT: 0000000000000000 
                        TSS: 0000000000000000 
 
              CurrentThread: fffffa8007aa8060 
                 NextThread: 0000000000000000 
                 IdleThread: fffff80003a0bcc0 
 
                  DpcQueue:

This output shows that CPU 0 was executing a thread other than its idle thread at the time 
the memory dump was obtained, because the CurrentThread and IdleThread pointers are dif-
ferent . (If you have a multi-CPU system you can try !pcr 1, !pcr 2, and so on, until you run out; 
observe that each IdleThread pointer is different .) 

Now use the !thread command on the indicated idle thread address:

3: kd> !thread fffff80003a0bcc0  
THREAD fffff80003a0bcc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread: 
0000000000000000 
  RUNNING on processor 0 
Not impersonating 
DeviceMap                 fffff8a000008aa0 
Owning Process            fffff80003a0c1c0       Image:         Idle 
Attached Process          fffffa800792a040       Image:         System 
Wait Start TickCount      50774016       Ticks: 12213 (0:00:03:10.828) 
Context Switch Count      1147613282              
UserTime                  00:00:00.000 
KernelTime                8 Days 07:21:56.656 
Win32 Start Address nt!KiIdleLoop (0xfffff8000387f910) 
Stack Init fffff80000b9cdb0 Current fffff80000b9cd40 
Base fffff80000b9d000 Limit fffff80000b97000 Call 0 
Priority 16 BasePriority 0 UnusualBoost 0 ForegroundBoost 0 IoPriority 0 PagePriority 0 
Child-SP          RetAddr           : Args to Child     [...]: Call Site 
fffff800'00b9cd80 00000000'00000000 : fffff800'00b9d000 [...]: nt!KiIdleLoop+0x10d

Finally, use the !process command on the “Owning Process” shown in the preceding output . 
For brevity, we’ll add a second parameter value of 3, which causes !process to emit only minimal 
information for each thread:

3: kd> !process fffff80003a0c1c0 3 
PROCESS fffff80003a0c1c0 
    SessionId: none  Cid: 0000    Peb: 00000000  ParentCid: 0000 
    DirBase: 00187000  ObjectTable: fffff8a000001630  HandleCount: 1338. 
    Image: Idle 
    VadRoot fffffa8007846c00 Vads 1 Clone 0 Private 1. Modified 0. Locked 0. 
    DeviceMap 0000000000000000 
    Token                             fffff8a000004a40 
    ElapsedTime                       00:00:00.000 
    UserTime                          00:00:00.000 
    KernelTime                        00:00:00.000 
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    QuotaPoolUsage[PagedPool]         0 
    QuotaPoolUsage[NonPagedPool]      0 
    Working Set Sizes (now,min,max)  (6, 50, 450) (24KB, 200KB, 1800KB) 
    PeakWorkingSetSize                6 
    VirtualSize                       0 Mb 
    PeakVirtualSize                   0 Mb 
    PageFaultCount                    1 
    MemoryPriority                    BACKGROUND 
    BasePriority                      0 
    CommitCharge                      0 
 
THREAD fffff80003a0bcc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread: 
0000000000000000 
  RUNNING on processor 0 
THREAD fffff8800310afc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread: 
0000000000000000  
  RUNNING on processor 1 
THREAD fffff8800317bfc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread: 
0000000000000000 
  RUNNING on processor 2 
THREAD fffff880031ecfc0  Cid 0000.0000  Teb: 0000000000000000 Win32Thread: 
0000000000000000 
  RUNNING on processor 3

These process and thread addresses can be used with dt nt!_EPROCESS, dt nt!_KTHREAD, 
and other such commands as well . 

The preceding experiment shows some of the anomalies associated with the idle process and its 
threads . The debugger indicates an “Image” name of “Idle” (which comes from the EPROCESS struc-
ture’s ImageFileName member), but various Windows utilities report the idle process using different 
names . Task Manager and Process Explorer call it “System Idle Process,” while Tlist calls it “System 
Process .” The process ID and thread IDs (the “client IDs”, or “Cid” in the debugger’s output) are zero, 
as are the PEB and TEB pointers, and there are many other fields in the idle process or its threads that 
might be reported as 0 . This occurs because the idle process has no user-mode address space and its 
threads execute no user-mode code, so they have no need of the various data needed to manage a 
user-mode environment . Also, the idle process is not an object-manager process object, and its idle 
threads are not object-manager thread objects . Instead, the initial idle thread and idle process struc-
tures are statically allocated and used to bootstrap the system before the process manager and the 
object manager are initialized . Subsequent idle thread structures are allocated dynamically (as simple 
allocations from nonpaged pool, bypassing the object manager) as additional processors are brought 
online . Once process management initializes, it uses the special variable PsIdleProcess to refer to the 
idle process . 

Perhaps the most interesting anomaly regarding the idle process is that Windows reports the 
priority of the idle threads as 0 (16 on x64 systems, as shown earlier) . In reality, however, the values of 
the idle threads’ priority members are irrelevant, because these threads are selected for dispatching 
only when there are no other threads to run . Their priority is never compared with that of any other 
thread, nor are they used to put an idle thread on a ready queue; idle threads are never part of any 
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ready queues . (Remember, only one thread per Windows system is actually running at priority 0—the 
zero page thread, explained in Chapter 10 in Part 2 .) 

Just as the idle threads are special cases in terms of selection for execution, they are also special 
cases for preemption . The idle thread’s routine, KiIdleLoop, performs a number of operations that 
preclude its being preempted by another thread in the usual fashion . When no non-idle threads are 
available to run on a processor, that processor is marked as idle in its PRCB . After that, if a thread is 
selected for execution on the idle processor, the thread’s address is stored in the NextThread pointer 
of the idle processor’s PRCB . The idle thread checks this pointer on each pass through its loop . 

Although some details of the flow vary between architectures, the basic sequence of operations of 
the idle thread is as follows:

1. Enables interrupts briefly, allowing any pending interrupts to be delivered, and then disables 
them again (using the STI and CLI instructions on x86 and x64 processors) . This is desirable 
because significant parts of the idle thread execute with interrupts disabled. 

2. On the debug build on some architectures, checks whether there is a kernel debugger trying 
to break into the system and, if so, gives it access . 

3. Checks whether any DPCs (described in Chapter 3) are pending on the processor . DPCs could 
be pending if a DPC interrupt was not generated when they were queued . If DPCs are pend-
ing, the idle loop calls KiRetireDpcList to deliver them . This will also perform timer expiration, 
as well as deferred ready processing; the latter is explained in the upcoming multiprocessor 
scheduling section . KiRetireDpcList must be entered with interrupts disabled, which is why 
interrupts are left disabled at the end of step 1 . KiRetireDpcList exits with interrupts disabled 
as well . 

4. Checks whether a thread has been selected to run next on the processor and, if so, dispatches 
that thread . This could be the case if, for example, a DPC or timer expiration processed in 
step 3 resolved the wait of a waiting thread, or if another processor selected a thread for this 
processor to run while it was already in the idle loop . 

5. If requested, checks for threads ready to run on other processors and, if possible, schedules 
one of them locally . (This operation is explained in the upcoming “Idle Scheduler” section .)

6. Calls the registered power management processor idle routine (in case any power manage-
ment functions need to be performed), which is either in the processor power driver (such as 
intelppm .sys) or in the HAL if such a driver is unavailable .

Thread Selection
Whenever a logical processor needs to pick the next thread to run, it calls the KiSelectNextThread 
scheduler function . This can happen in a variety of scenarios:

 ■ A hard affinity change has occurred, making the currently running or standby thread ineligible 
for execution on its selected logical processor, so another must be chosen .
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 ■ The currently running thread reached its quantum end, and the SMT set it was currently 
 running on has now become busy, while other SMT sets within the ideal node are fully 
idle . (SMT is the abbreviation for Symmetric Multi-Threading, the technical name for the 
 Hyperthreading technology described in Chapter 2 .) The scheduler performs a quantum end 
 migration of the current thread, so another must be chosen .

 ■ A wait operation has completed, and there were pending scheduling operations in the wait 
status register (in other words, the Priority and/or Affinity bits were set).

In these scenarios, the behavior of the scheduler is as follows:

 ■ Call KiSelectReadyThread to find the next ready thread that the processor should run, and 
check whether one was found .

 ■ If a ready thread was not found, the idle scheduler is enabled, and the idle thread is selected 
for execution .

 ■ Or, if a ready thread was found, it is put in the Standby state and set as the NextThread in the 
KPRCB of the logical processor .

The KiSelectNextThread operation is performed only when the logical processor needs to pick, but 
not yet run, the next schedulable thread (which is why the thread will enter Standby) . Other times, 
however, the logical processor is interested in immediately running the next ready thread or perform-
ing another action if one is not available (instead of going idle), such as when the following occurs:

 ■ A priority change has occurred, making the current standby or running thread no longer 
the highest priority ready thread on its selected logical processor, so a higher priority ready 
thread must now run .

 ■ The thread has explicitly yielded with YieldProcessor or NtYieldExecution, and another thread 
might be ready for execution .

 ■ The quantum of the current thread has expired, and other threads at the same priority level 
need their chance to run as well

 ■ A thread has lost its priority boost, causing a similar priority change to the scenario just 
 described .

 ■ The idle scheduler is running and needs to check whether a ready thread has not appeared in 
the interval between which idle scheduling was requested and the idle scheduler ran .

A simple way to remember the difference between which routine runs is to check whether or not 
the logical processor must run a different thread (in which case KiSelectNextThread is called) or if it 
should, if possible, run a different thread (in which case KiSelectReadyThread is called) . 

In either case, because each processor has its own database of threads that are ready to run (the 
dispatcher database’s ready queues in the KPRCB), KiSelectReadyThread can simply check the current 
LP’s queues, removing the first highest priority thread that it finds, unless this priority is lower than 
the one of the currently running thread (depending on whether the current thread is still allowed to 
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run, which would not be the case in the KiSelectNextThread scenario) . If there is no higher priority 
thread (or no threads are ready at all), no thread is returned .

Idle Scheduler
Whenever the idle thread runs, it checks whether idle scheduling has been enabled, such as in one of 
the scenarios described in the previous section . If so, the idle thread then begins scanning other pro-
cessor’s ready queues for threads it can run by calling KiSearchForNewThread . Note that the runtime 
costs associated with this operation are not charged as idle thread time, but are instead charged as 
interrupt and DPC time (charged to the processor), so idle scheduling time is considered system time . 
The KiSearchForNewThread algorithm, which is based on the functions seen in the “Thread Selection” 
section earlier, will be explained in the upcoming section .

Multiprocessor Systems
On a uniprocessor system, scheduling is relatively simple: the highest-priority thread that wants to 
run is always running . On a multiprocessor system, it is more complex, because Windows attempts to 
schedule threads on the most optimal processor for the thread, taking into account the thread’s pre-
ferred and previous processors, as well as the configuration of the multiprocessor system. Therefore, 
although Windows attempts to schedule the highest-priority runnable threads on all available CPUs, it 
guarantees only to be running one of the highest-priority threads somewhere .

Before we describe the specific algorithms used to choose which threads run where and when, let’s 
examine the additional information Windows maintains to track thread and processor state on mul-
tiprocessor systems and the three different types of multiprocessor systems supported by Windows 
(SMT, multicore, and NUMA) .

Package Sets and SMT Sets
Windows uses five fields in the KPRCB to determine correct scheduling decisions when dealing with 
logical processor topologies. The first field, CoresPerPhysicalProcessor, determines whether this 
logical processor is part of a multicore package, and it’s computed from the CPUID returned by the 
processor and rounded to a power of two. The second field, LogicalProcessorsPerCore determines 
whether the logical processor is part of an SMT set, such as on an Intel processor with HyperThreading 
enabled, and is also queried through CPUID and rounded . Multiplying these two numbers yields the 
number of logical processors per package, or an actual physical processor that fits into a socket. With 
these numbers, each PRCB can then populate its PackageProcessorSet value, which is the affinity mask 
describing which other logical processors within this group (because packages are constrained to a 
group) belong to the same physical processor . Similarly, the CoreProcessorSet value connects other 
logical processors to the same core, also called an SMT set . Finally, the GroupSetMember value defines 
which bit mask, within the current processor group, identifies this very logical processor. For example, 
the logical processor 3 normally has a GroupSetMember of 8 (2^3) .
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EXPERIMENT: Viewing Logical Processor Information
You can examine the information Windows maintains for SMT processors using the !smt com-
mand in the kernel debugger . The following output is from a dual-core Intel Core i5 system 
with SMT (four logical processors):

SMT Summary: 
KeActiveProcessors: 
****------------------------------------------------------------ (000000000000000f) 
KiIdleSummary: 
-*-*------------------------------------------------------------ (000000000000000a) 
---------------------------------------------------------------- (0000000000000000) 
---------------------------------------------------------------- (0000000000000000) 
---------------------------------------------------------------- (0000000000000000) 
 
No PRCB             SMT Set                              APIC Id 
  0 fffff8000324ae80 **-------------------------------------------------------------- 
(0000000000000003) 0x00000000 
  1 fffff880009e5180 **-------------------------------------------------------------- 
(0000000000000003) 0x00000001 
  2 fffff88002f65180 --**------------------------------------------------------------ 
(000000000000000c) 0x00000002 
  3 fffff88002fd7180 --**------------------------------------------------------------ 
(000000000000000c) 0x00000003 
Maximum cores per physical processor:   8 
Maximum logical processors per core:    2 

NUMA Systems
Another type of multiprocessor system supported by Windows is one with a nonuniform memory 
 access (NUMA) architecture . In a NUMA system, processors are grouped together in smaller units 
called nodes . Each node has its own processors and memory and is connected to the larger system 
through a cache-coherent interconnect bus . These systems are called “nonuniform” because each 
node has its own local high-speed memory . Although any processor in any node can access all of 
memory, node-local memory is much faster to access .

The kernel maintains information about each node in a NUMA system in a data structure called 
KNODE . The kernel variable KeNodeBlock is an array of pointers to the KNODE structures for each 
node . The format of the KNODE structure can be shown using the dt command in the kernel 
 debugger, as shown here:

lkd> dt nt!_KNODE 
   +0x000 PagedPoolSListHead : _SLIST_HEADER 
   +0x008 NonPagedPoolSListHead : [3] _SLIST_HEADER 
   +0x020 Affinity         : _GROUP_AFFINITY 
   +0x02c ProximityId      : Uint4B 
   +0x030 NodeNumber       : Uint2B 
... 
   +0x060 ParkLock         : Int4B 
   +0x064 NodePad1         : Uint4B
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EXPERIMENT: Viewing NUMA Information
You can examine the information Windows maintains for each node in a NUMA system 
 using the !numa command in the kernel debugger . The following partial output is from a 
64- processor NUMA system from Hewlett-Packard with four processors per node:

26: kd> !numa  
NUMA Summary:  
------------  
Number of NUMA nodes : 16  
Number of Processors : 64  
MmAvailablePages     : 0x03F55E67  
 
KeActiveProcessors   : **************************************************************** 
                       (ffffffffffffffff)  
   
NODE 0 (E000000084261900):  
    ProcessorMask    : ****------------------------------------------------------------ 
...  
NODE 1 (E0000145FF992200):  
    ProcessorMask    : ----****-------------------------------------------------------- 
...

Applications that want to gain the most performance out of NUMA systems can set the affinity 
mask to restrict a process to the processors in a specific node, although Windows already restricts 
nearly all threads to a single NUMA node due to its NUMA-aware scheduling algorithms .

How the scheduling algorithms take into account NUMA systems will be covered in the upcoming 
section “Processor Selection” (and the optimizations in the memory manager to take advantage of 
node-local memory are covered in Chapter 10 in Part 2) .

Processor Group Assignment
While querying the topology of the system to build the various relationships between logical 
 processors, SMT sets, multicore packages and physical sockets, Windows assigns processors to an 
 appropriate group that will describe their affinity (through the extended affinity mask seen earlier). 
This work is done by the KePerformGroupConfiguration routine, which is called during initialization 
before any other Phase 1 work is done . Note that regardless of the group assignment steps below, 
NUMA node 0 is always assigned to group 0, no matter what .

First, the function queries all detected nodes (KeNumberNodes) and computes the capacity of 
each node (that is, how many logical processors can be part of the node) . This value is stored as 
the MaximumProcessors in the KeNodeBlock, which identifies all NUMA nodes on the system . If the 
system supports NUMA Proximity IDs, the proximity ID is queried for each node as well and saved 
in the node block . Second, the NUMA distance array is allocated (KeNodeDistance), and the distance 
between each NUMA node is computed as was described in Chapter 3 .
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The next series of steps deal with specific user-configuration options that override default NUMA 
assignments. For example, on a system with Hyper-V installed (and the hypervisor configured to auto-
start), only one processor group will be enabled, and all NUMA nodes (that can fit) will be associated 
with group 0 . This means that Hyper-V scenarios cannot take advantage of machines with over 64 
processors at the moment .

Next, the function checks whether any static group assignment data was passed by the loader (and 
thus configured by the user). This data specifies the proximity information and group assignment for 
each NUMA node . 

Note Users dealing with large NUMA servers that might need custom control of proximity 
information and group assignments for testing or validation purposes can input this data 
through the Group Assignment and Node Distance registry values in the HKLM\SYSTEM 
\CurrentControlSet\Control\NUMA registry key. The exact format of this data includes a 
count, followed by an array of proximity IDs and group assignments, which are all 32-bit 
values .

Before treating this data as valid, the kernel queries the proximity ID to match the node number 
and then associates group numbers as requested . It then makes sure that NUMA node 0 is associated 
with group 0, and that the capacity for all NUMA nodes is consistent with the group size . Finally, the 
function checks how many groups still have remaining capacity .

Next, the kernel dynamically attempts to assign NUMA nodes to groups, while respecting any 
statically configured nodes if passed-in as we just described. Normally, the kernel tries to minimize 
the number of groups created, combining as many NUMA nodes as possible per group . However, if 
this behavior is not desired, it can be configured differently with the /MAXGROUP loader parameter, 
which is configured through the maxgroup BCD option . Turning this value on overrides the default 
behavior and causes the algorithm to spread as many NUMA nodes as possible into as many groups 
as possible (while respecting that the currently implemented group limit is 4) . If there is only one 
node, or if all nodes can fit into a single group (and maxgroup is off), the system performs the default 
setting of assigning all nodes to group 0 .

If there is more than one node, Windows checks the static NUMA node distances (if any), and then 
sorts all the nodes by their capacity so that the largest nodes come first. In the group-minimization 
mode, by adding up all the capacities, the kernel figures out how many maximum processors there 
can be . By dividing that by the number of processors per group, the kernel assumes there will be this 
many total groups on the machine (limited to a maximum of 4) . In the group-maximization mode, the 
initial estimate is that there will be as many groups as nodes (limited again to 4) . 

Now the kernel begins the final assignment process. All fixed assignments from earlier are now 
committed, and groups are created for those assignments. Next, all the NUMA nodes are reshuffled 
to minimize the distance between the different nodes within a group . In other words, closer nodes 
are put in the same group and sorted by distance . Next, the same process is performed for any 
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 dynamically configured node to group assignments. Finally, any remaining empty nodes are assigned 
to group 0 .

Logical Processors per Group
Generally, Windows assigns 64 processors per group as explained earlier, but this configuration can 
also be customized by using different load options, such as the /GROUPSIZE option, which is config-
ured through the groupsize BCD element . By specifying a number that is a power of two, groups can 
be forced to contain fewer processors than normal, for purposes such as testing group awareness in 
the system (for example, a system with 8 logical processors can be made to appear to have 1, 2, or 4 
groups) . To force the issue, the /FORCEGROUPAWARE option (BCD element groupaware) furthermore 
makes the kernel avoid group 0 whenever possible, assigning the highest group number available 
in actions such as thread and DPC affinity selection and process group assignment. Avoid setting a 
group size of 1, because this will force almost all applications on the system to behave as if they’re 
running on a uniprocessor machine, because the kernel sets the affinity mask of a given process to 
span only one group until the application requests otherwise (which most applications today will not 
do) .

Note that in the edge case where the number of logical processors in a package cannot fit into a 
single group, Windows adjusts these numbers so that a package can fit into a single group, shrink-
ing the CoresPerPhysicalProcessor number, and if the SMT cannot fit either, doing this as well for 
 LogicalProcessorsPerCore . The exception to this rule is if the system actually contains multiple NUMA 
nodes within a single package . Although this is not a possibility as of this writing, future Multiple-Chip 
Modules (MCMs, an extension of multicore packages) are due to ship from processor manufacturers 
in the future . In these modules, two sets of cores as well as two memory controllers are on the same 
die/package. If the ACPI SRAT table defines the MCM as having two NUMA nodes, depending on 
group configuration algorithms, Windows might associate the two nodes with two different groups. 
In this scenario, the MCM package would span more than one group .

Other than causing significant driver and application compatibility problems (which they are 
 designed to identify and root out, when used by developers), these options have an even greater 
 impact on the machine: they will force NUMA behaviors even on a non-NUMA machine . This is 
because Windows will never allow a NUMA node to span multiple groups, as was shown in the 
 assignment algorithms. So, if the kernel is creating artificially small groups, those two groups must 
each have their own NUMA node . For example, on a quad-core processor with a group size of two, 
this will create two groups, and thus two NUMA nodes, which will be subnodes of the main node . 
This will affect scheduling and memory-management policies in the same way a true NUMA system 
would, which can be useful for testing .

Logical Processor State
In addition to the ready queues and the ready summary, Windows maintains two bitmasks that track 
the state of the processors on the system . (How these bitmasks are used is explained in the upcoming 
section “Processor Selection .”) Following are the bitmasks that Windows maintains .
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The first one is the active processor mask (KeActiveProcessors), which has a bit set for each usable 
processor on the system . This might be fewer than the number of actual processors if the  licensing 
limits of the version of Windows running supports fewer than the number of available physical 
processors . To check this, use the variable KeRegisteredProcessors to see how many processors are 
 actually licensed on the machine . In this instance, “processors” refers to physical packages . The 
KeMaximumProcessors variable, on the other hand, is the maximum number of logical processors, 
including all future possible dynamic processor additions, bounded within the licensing limit, and any 
platform limitations that are queried by calling the HAL and checking with the ACPI SRAT table, if any .

The idle summary (KiIdleSummary) is actually an array of two extended bitmasks. In the first entry, 
called CpuSet, each set bit represents an idle processor, while in the second entry, SMTSet, each bit 
describes an idle SMT set .

The nonparked summary (KiNonParkedSummary) defines each nonparked logical processor 
through a bit .

Scheduler Scalability
Because on a multiprocessor system one processor might need to modify another processor’s 
 per-CPU scheduling data structures (such as inserting a thread that would like to run on a certain 
 processor), these structures are synchronized by using a per-PRCB queued spinlock, which is held 
at DISPATCH_LEVEL . Thus, thread selection can occur while locking only an individual processor’s 
PRCB . If needed, up to one more processor’s PRCB can also be locked, such as in scenarios of thread 
stealing, which will be described later . Thread context switching is also synchronized by using a 
 finer-grained per-thread spinlock.

There is also a per-CPU list of threads in the deferred ready state . These represent threads that 
are ready to run but have not yet been readied for execution; the actual ready operation has been 
deferred to a more appropriate time . Because each processor manipulates only its own per-processor 
deferred ready list, this list is not synchronized by the PRCB spinlock . The deferred ready thread list is 
processed by KiProcessDeferredReadyList after a function has already done modifications to process 
or thread affinity, priority (including due to priority boosting), or quantum values.

This function calls KiDeferredReadyThread for each thread on the list, which performs the 
 algorithm shown later in the “Processor Selection” section, which could either cause the thread to 
run immediately; to be put on the ready list of the processor; or if the processor is unavailable, to be 
 potentially put on a different processor’s deferred ready list, in a standby state, or immediately ex-
ecuted . This property is used by the Core Parking engine when parking a core: all threads are put into 
the deferred ready list, and it is then processed . Because KiDeferredReadyThread skips parked cores 
(as will be shown), it causes all of this processor’s threads to wind up on other processors .

Affinity
Each thread has an affinity mask that specifies the processors on which the thread is allowed to run. 
The thread affinity mask is inherited from the process affinity mask. By default, all processes (and 
therefore all threads) begin with an affinity mask that is equal to the set of all active processors on 
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their assigned group—in other words, the system is free to schedule all threads on any available 
 processor within the group associated with the process .

However, to optimize throughput, partition workloads to a specific set of processors, or both, 
 applications can choose to change the affinity mask for a thread. This can be done at several levels:

 ■ Calling the SetThreadAffinityMask function to set the affinity for an individual thread.

 ■ Calling the SetProcessAffinityMask function to set the affinity for all the threads in a process. 
Task Manager and Process Explorer provide a GUI to this function if you right-click a process 
and choose Set Affinity. The Psexec tool (from Sysinternals) provides a command-line interface 
to this function . (See the –a switch in its help output .)

 ■ By making a process a member of a job that has a jobwide affinity mask set using the 
 SetInformationJobObject function . (Jobs are described in the upcoming “Job Objects” section .)

 ■ By specifying an affinity mask in the image header when compiling the application. (For more 
information on the detailed format of Windows images, search for “Portable Executable and 
Common Object File Format Specification” on www.microsoft.com .)

An image can also have the “uniprocessor” flag set at link time. If this flag is set, the system 
 chooses a single processor at process creation time (MmRotatingProcessorNumber) and assigns that 
as the process affinity mask, starting with the first processor and then going round-robin across all 
the processors within the group. For example, on a dual-processor system, the first time an image 
marked as uniprocessor is launched, it is assigned to CPU 0; the second time, CPU 1; the third time, 
CPU 0; the fourth time, CPU 1; and so on. This flag can be useful as a temporary workaround for pro-
grams that have multithreaded synchronization bugs that, as a result of race conditions, surface on 
multiprocessor systems but that don’t occur on uniprocessor systems . If an image exhibits such symp-
toms and is unsigned, the flag can be manually added by editing the image header with a tool such 
as Imagecfg .exe . A better solution, also compatible with signed executables, is to use the  Microsoft 
Application Compatibility Toolkit and add a shim to force the compatibility database to mark the 
 image as uniprocessor-only at launch time .

EXPERIMENT: Viewing and Changing Process Affinity
In this experiment, you will modify the affinity settings for a process and see that process 
 affinity is inherited by new processes:

1. Run the command prompt (Cmd .exe) .

2. Run Task Manager or Process Explorer, and find the Cmd.exe process in the 
 process list .
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3. Right-click the process, and select Set Affinity. A list of processors should be displayed. 
For example, on a dual-processor system you will see this:

4. Select a subset of the available processors on the system, and click OK . The process’ 
threads are now restricted to run on the processors you just selected .

5. Now run Notepad .exe from the command prompt (by typing Notepad .exe) .

6. Go back to Task Manager or Process Explorer and find the new Notepad process. 
Right-click it, and choose Affinity. You should see the same list of processors you 
chose for the command-prompt process. This is because processes inherit their affinity 
 settings from their parent .

Windows won’t move a running thread that could run on a different processor from one CPU 
to a second processor to permit a thread with an affinity for the first processor to run on the first 
processor . For example, consider this scenario: CPU 0 is running a priority 8 thread that can run on 
any processor, and CPU 1 is running a priority 4 thread that can run on any processor . A priority 6 
thread that can run on only CPU 0 becomes ready . What happens? Windows won’t move the priority 
8 thread from CPU 0 to CPU 1 (preempting the priority 4 thread) so that the priority 6 thread can run; 
the priority 6 thread has to stay in the ready state .

Therefore, changing the affinity mask for a process or a thread can result in threads getting less 
CPU time than they normally would, because Windows is restricted from running the thread on 
certain processors. Therefore, setting affinity should be done with extreme care—in most cases, it is 
optimal to let Windows decide which threads run where .

Extended Affinity Mask
To support more than 64 processors, which is the limit enforced by the affinity mask structure 
( composed of 64 bits on a 64-bit system), Windows uses an extended affinity mask (KAFFINITY_EX) 
that is an array of affinity masks, one for each supported processor group (currently defined to 4). 
When the scheduler needs to refer to a processor in the extended affinity masks, it first de-references 
the correct bitmask by using its group number and then accesses the resulting affinity directly. In the 
kernel API, extended affinity masks are not exposed; instead, the caller of the API inputs the group 
number as a parameter, and receives the legacy affinity mask for that group. In the Windows API, on 
the other hand, only information about a single group can usually be queried, which is the group of 
the currently running thread (which is fixed).
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The extended affinity mask and its underlying functionality are also how a process can escape the 
boundaries of its original assigned processor group. By using the extended affinity APIs, threads in a 
process can choose affinity masks on other processor groups. For example, if a process has 4 threads 
and the machine has 256 processors, thread 1 can run on processor 4, thread 2 can run on processor 
68, thread 3 on processor 132, and thread 4 on processor 196, if each thread set an affinity mask of 
0x10 (0b10000 in binary) on groups 0, 1, 2, and 3. Alternatively, the threads can each set an affinity 
of 0xFFFFFFFF for their given group, and the process then can execute its threads on any available 
processor on the system (with the limitation, that each thread is restricted to running within its own 
group only) .

Taking advantage of extended affinity must be done at creation time, by specifying a group 
 number in the thread attribute list when creating a new thread . (See the previous topic on thread 
creation for more information on attribute lists .)

System Affinity Mask
Because Windows drivers usually execute in the context of the calling thread or in the context of an 
arbitrary thread (that is, not in the safe confines of the System process), currently running driver code 
might be subject to affinity rules set by the application developer, which are not currently relevant 
to the driver code and might even prevent correct processing of interrupts and other queued work . 
Driver developers therefore have a mechanism to temporarily bypass user thread affinity settings, by 
using the APIs KeSetSystemAffinityThread(Ex)/KeSetSystemGroupAffinityThread and  
KeRevertToUserAffinityThread(Ex)/KeRevertToUserGroupAffinityThread .

Ideal and Last Processor
Each thread has three CPU numbers stored in the kernel thread control block:

 ■ Ideal processor, or the preferred processor that this thread should run on

 ■ Last processor, or the processor on which the thread last ran

 ■ Next processor, or the processor that the thread will be, or is already, running on

The ideal processor for a thread is chosen when a thread is created using a seed in the process 
control block . The seed is incremented each time a thread is created so that the ideal processor for 
each new thread in the process rotates through the available processors on the system . For example, 
the first thread in the first process on the system is assigned an ideal processor of 0. The second 
thread in that process is assigned an ideal processor of 1 . However, the next process in the system has 
its first thread’s ideal processor set to 1, the second to 2, and so on. In that way, the threads within 
each process are spread across the processors .

Note that this assumes the threads within a process are doing an equal amount of work . This is 
typically not the case in a multithreaded process, which normally has one or more housekeeping 
threads and then a number of worker threads . Therefore, a multithreaded application that wants to 
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take full advantage of the platform might find it advantageous to specify the ideal processor numbers 
for its threads by using the SetThreadIdealProcessor function . To take advantage of processor groups, 
developers should call SetThreadIdealProcessorEx instead, which allows selection of a group number 
for the affinity.

64-bit Windows uses the Stride field in the KPRCB to balance the assignment of newly created 
threads within a process . The stride is a scalar number that represents the number of affinity bits 
within a given NUMA node that must be skipped to attain a new independent logical processor slice, 
where “independent” means on another core (if dealing with an SMT system) or another package (if 
dealing with a non-SMT but multicore system) . Because 32-bit Windows doesn’t support large proces-
sor configuration systems, it doesn’t use a stride, and it simply selects the next processor number, 
trying to avoid sharing the same SMT set if possible . For example, on a dual-processor SMT system 
with four logical processors, if the ideal processor for the first thread is assigned to logical processor 
0, the second thread would be assigned to logical processor 2, the third thread to logical processor 1, 
the fourth thread to logical process 3, and so forth . In this way, the threads are spread evenly across 
the physical processors .

Ideal Node
On NUMA systems, when a process is created, an ideal node for the process is selected. The first 
process is assigned to node 0, the second process to node 1, and so on . Then the ideal processors for 
the threads in the process are chosen from the process’ ideal node. The ideal processor for the first 
thread in a process is assigned to the first processor in the node. As additional threads are created in 
processes with the same ideal node, the next processor is used for the next thread’s ideal processor, 
and so on .

Thread Selection on Multiprocessor Systems
Before covering multiprocessor systems in more detail, I should summarize the algorithms discussed 
in the “Thread Selection” section . They either continued executing the current thread (if no new 
candidate was found) or started running the idle thread (if the current thread had to block) . However, 
there is a third algorithm for thread selection, which was hinted at in the “Idle Scheduler” section ear-
lier, called KiSearchForNewThread. This algorithm is called in one specific instance: when the current 
thread is about to block due to a wait on an object, including when doing an NtDelayExecutionThread 
call, also known as the Sleep API in Windows .

Note This shows a subtle difference between the commonly used Sleep(1) call, which 
makes the current thread block until the next timer tick, and the SwitchToThread() call, 
which was shown earlier . The “sleep” will use the algorithm about to be described, while 
the “yield” uses the previously shown logic .
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KiSearchForNewThread initially checks whether there is already a thread that was selected for this 
processor (by reading the NextThread field); if so, it dispatches this thread immediately in the Running 
state . Otherwise, it calls the KiSelectReadyThread routine and, if a thread was found, performs the 
same steps . 

If a thread was not found, however, the processor is marked as idle (even though the idle thread is 
not yet executing) and a scan of other logical processors queues is initiated (unlike the other stan-
dard algorithms, which would now give up) . Also, because the processor is now considered idle, if the 
 Distributed Fair Share Scheduling mode (described in the next topic) is enabled, a thread will be re-
leased from the idle-only queue if possible and scheduled instead . On the other hand, if the processor 
core is now parked, the algorithm will not attempt to check other logical processors, as it is preferable 
to allow the core to enter the parking state instead keeping it busy with new work .

Barring these two scenarios, the work-stealing loop now runs . This code looks at the current 
NUMA node and removes any idle processors (because they shouldn’t have threads that need 
 stealing) . Then, starting from the highest numbered processor, the loop calls KiFindReadyThread but 
points it to the remote KPRCB instead of the current one, causing this processor to find the best ready 
thread from the other processor’s queue . If this is unsuccessful and Distributed Fair Share Scheduler is 
enabled, a thread from the idle-only queue of the remote logical processor is released on the current 
processor instead, if possible .

If no candidate ready thread is found, the next lower numbered logical processor is attempted, 
and so on, until all logical processors have been exhausted on the current NUMA node . In this case, 
the algorithm keeps searching for the next closest node, and so on, until all nodes in the current 
group have been exhausted. (Recall that Windows allows a given thread to have affinity only on a 
single group.) If this process fails to find any candidates, the function returns NULL and the processor 
enters the idle thread in the case of a wait (which will skip idle scheduling) . If this work was already 
being done from the idle scheduler, the processor enters a sleep state .

Processor Selection
Up until now, we’ve described how Windows picks a thread when a logical processor needs to make 
a selection (or when a selection must be made for a given logical processor) and assumed the various 
scheduling routines have an existing database of ready threads to choose from . Now we’ll see how 
this database gets populated in the first place—in other words, how Windows chooses which LP’s 
ready queues a given ready thread will be associated with . Having described the types of multipro-
cessor systems supported by Windows as well as the thread affinity and ideal processor settings, we’re 
now ready to examine how this information is used for this purpose .

Choosing a Processor for a Thread When There Are Idle Processors
When a thread becomes ready to run, the KiDeferredReadyThread scheduler function is called, 
causing Windows to perform two tasks: adjust priorities and refresh quantums as needed, as was 
explained in the “Priority Boosts” section, and then pick the best logical processor for the thread . 
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Windows first looks up the thread’s ideal processor, and then it computes the set of idle processors 
within the thread’s hard affinity mask. This set is then pruned as follows:

 ■ Any idle logical processors that have been parked by the Core Parking mechanism are 
 removed . (See Chapter 9, “Storage Management,” in Part 2 for more information on Core 
Parking .) If this causes no idle processors to remain, idle processor selection is aborted, 
and the scheduler behaves as if no idle processors were available (which is described in the 
 upcoming section)

 ■ Any idle logical processors that are not on the ideal node (defined as the node containing the 
ideal processor) are removed, unless this would cause all idle processors to be eliminated .

 ■ On an SMT system, any non-idle SMT sets are removed, even if this might cause the 
 elimination of the ideal processor itself . In other words, Windows prioritizes a non-ideal, idle 
SMT set over an ideal processor .

 ■ Windows then checks whether the ideal processor is among the remaining set of idle 
 processors. If it isn’t, it must then find the most appropriate idle processor. It does so by first 
checking whether the processor that the thread last ran on is part of the remaining idle set . If 
so, this processor is considered to be a temporary ideal processor and chosen . (Recall that the 
ideal processor attempts to maximize processor cache hits, and picking the last processor a 
thread ran on is a good way of doing so .)

 ■ If the last processor is not part of the remaining idle set, Windows next checks whether the 
current processor (that is, the processor currently executing this scheduling code) is part of this 
set; if so, it applies the same logic as in the prior step .

 ■ If neither the last nor the current processor is idle, Windows performs one more pruning 
 operation, by removing any idle logical processors that are not on the same SMT set as the 
ideal processor . If there are none left, Windows instead removes any processors not on the 
SMT set of the current processor, unless this, too, eliminates all idle processors . In other words, 
Windows prefers idle processors that share the same SMT set as the unavailable ideal proces-
sor and/or last processor it would’ve liked to pick in the first place. Because SMT implementa-
tions share the cache on the core, this has nearly the same effect as picking the ideal or last 
processor from the caching perspective .

 ■ Finally, if this last step results in more than one processor remaining in the idle set, Windows 
picks the lowest numbered processor as the thread’s current processor .

Once a processor has been selected for the thread to run on, that thread is put in the standby 
state and the idle processor’s PRCB is updated to point to this thread . If the processor is idle, but not 
halted, a DPC interrupt is sent so that the processor handles the scheduling operation immediately .

Whenever such a scheduling operation is initiated, KiCheckForThreadDispatch is called, which 
will realize that a new thread has been scheduled on the processor and cause an immediate context 
switch if possible (as well as pending APC deliveries), or it will cause a DPC interrupt to be sent .
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Choosing a Processor for a Thread When There Are No Idle Processors
If there are no idle processors when a thread wants to run, or if the only idle processors were 
 eliminated by the first pruning (which got rid of parked idle processors), Windows first checks whether 
the latter situation has occurred . In this scenario, the scheduler calls KiSelectCandidateProcessor to 
ask the Core Parking engine for the best candidate processor . The Core Parking engine selects the 
highest-numbered processor that is unparked within the ideal node . If there are no such processors, 
the engine forcefully overrides the park state of the ideal processor and causes it to be unparked . 
Upon returning to the scheduler, it will check whether the candidate it received is idle; if so, it will pick 
this processor for the thread, following the same last steps as in the previous scenario .

If this fails, Windows compares the priority of the thread running (or the one in the standby state) 
on the thread’s ideal processor to determine whether it should preempt that thread . 

If the thread’s ideal processor already has a thread selected to run next (waiting in the standby 
state to be scheduled) and that thread’s priority is less than the priority of the thread being readied 
for execution, the new thread preempts that first thread out of the standby state and becomes the 
next thread for that CPU . If there is already a thread running on that CPU, Windows checks whether 
the priority of the currently running thread is less than the thread being readied for execution . If so, 
the currently running thread is marked to be preempted, and Windows queues a DPC interrupt to the 
target processor to preempt the currently running thread in favor of this new thread .

If the ready thread cannot be run right away, it is moved into the ready state on the priority queue 
appropriate to its thread priority, where it will await its turn to run . As seen in the scheduling sce-
narios earlier, the thread will be inserted either at the head or the tail of the queue, based on whether 
it entered the ready state due to preemption . 

As such, regardless of the underlying scenario and various possibilities, note that threads are 
always put on their ideal processor’s per-processor ready queues, guaranteeing the consistency of the 
algorithms that determine how a logical processor picks a thread to run .

Processor Share-Based Scheduling

In the previous section, the standard thread-based scheduling implementation of Windows was 
described, which has served general user and server scenarios reliably since its appearance in the first 
Windows NT release (with scalability improvements done throughout each release) . However, because 
thread-based scheduling attempts to fairly share the processor or processors only among competing 
threads of same priority, it does not take into account higher-level requirements such as the distribu-
tion of threads to users and the potential for certain users to benefit from more overall CPU time at 
the expense of other users . This kind of behavior, as it turns out, is highly sought after in terminal- 
services environments, where dozens of users can be competing for CPU time and a single high- 
priority thread from a given user has the potential to starve threads from all users on the machine if 
only thread-based scheduling is used .
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Distributed Fair Share Scheduling
In this section, two alternative scheduling modes implemented by recent versions of Windows will be 
described: the session-based Distributed Fair Share Scheduler (DFSS) and an older, legacy SID-based 
CPU Rate Limit implementation .

DFSS Initialization
During the very last parts of system initialization, as the SOFTWARE hive is initialized by Smss, the 
process manager initiates the final post-boot initialization in PsBootPhaseComplete, which calls 
 PsInitializeCpuQuota . It is here that the system decides which of the two CPU quota mechanisms 
(DFSS or legacy) will be employed . For DFSS to be enabled, the EnableCpuQuota registry value must 
be set to 1 in both of the two quota keys: HKLM\SOFTWARE\Policies\Microsoft\Windows\Session 
Manager\Quota System for the policy-based setting (that can be configured through the Group 
 Policy Editor under Computer Configuration\Administrative Templates\Windows Components 
\Remote Desktop Services\Remote Desktop Session Host\Connections - Turn off Fair Share CPU 
Scheduling), as well as under the system key HKLM\SYSTEM\CurrentControlSet\Control\Session 
 Manager\Quota System, which determines if the system supports the functionality (which, by default, 
is set to TRUE on Windows Server with the Remote Desktop role) .

Note Due to a bug (which you can learn more about at http://technet.microsoft.com 
/en-us/library/ee808941(WS.10).aspx), the group policy setting to turn off DFSS is not 
 honored . The system setting must be manually turned off .

If DFSS is enabled, the PsCpuFairShareEnabled variable is set to true, which will instruct the kernel, 
through various scheduling code paths, to behave differently and/or to call into the DFSS engine . 
 Additionally, the default quota is set up to 150 milliseconds for each DFSS cycle, a number called 
credit that will be explained in more detail shortly .

Once DFSS is enabled, the global PspCpuQuotaControl data structure is used to maintain DFSS 
information, such as the list of per-session CPU quota blocks (as well as a spinlock and count) and the 
total weight of all sessions on the system . It also stores an array of per-processor DFSS data structures, 
which you’ll see next .

Per-Session CPU Quota Blocks
After DFSS is enabled, whenever a new session is created (other than Session 0), MiSessionCreate calls 
PsAllocateCpuQuotaBlock to set up the per-session CPU quota block. The first time this happens on 
the system (for example, for Session 1), this calls PspLazyInitializeCpuQuota to finalize the initialization 
of DFSS . 

This results in the allocation of per-CPU DFSS data structures mentioned in the previous sections, 
which contain the DPC used for managing the quota (PspCpuQuotaDpcRoutine, seen later) and the 
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total number of cycles credited as well as accumulated . This structure also keeps the block generation 
a monotonically increasing sequence to guarantee atomicity, as well as keeping the idle-only queue 
lock protecting the list of the same name, which is a central element of the DFSS mechanism yet to be 
described . Each per-CPU DFSS data structure, in turn, is connected through a sorted doubly-linked list 
to the various per-session CPU quota blocks that were mentioned at the beginning of this discussion .

When the first-time initialization of DFSS is complete, PsAllocateCpuQuotaBlock can continue, first 
by allocating the actual CPU quota block for this session . This structure maintains overall accounting 
information on the session, as well as per-CPU tracking—including the cycles remaining and initially 
allocated, as well as the idle-only queue itself, in a per-CPU quota entry structure .

To begin with, the session ID is stored, and the CPU share weight is set to its default of 5 . 
You’ll see shortly what a weight is, how it can be computed, and its effects on the DFSS engine . 
 Because the quota block has just been created, the initial cycle values are all set to their maximum 
value for now . Next, this new per-session CPU block must be visible to the system . Therefore, the 
 PspCpuQuotaControl data structure is updated with the new total weight of all sessions (by add-
ing this weight), and the quota block is inserted into the block list (sorted by session ID) . Finally, 
 PspCalculateCpuQuotaBlockCycleCredits enumerates every other session’s quota block and captures 
the new total weight of the system .

Once this is done, the per-session CPU quota block is finalized, and the memory manager sets it in 
the CpuQuotaBlock field of the MM_SESSION_SPACE structure for this session. Likewise, the current 
EPROCESS (part of this new session’s CpuQuotaBlock field) is also updated to point to this session’s 
CPU quota block . Now that the process has received a CPU quota block as soon as it became part of 
the session, future threads created by this process (including the first thread itself) will be allocated 
with an extra structure after their typical ETHREAD—a per-process CPU Quota APC structure . Addi-
tionally, the ETHREAD’s RateApcState field will be set to PsRateApcContained, indicating that this is an 
embedded Quota APC, as used by the DFSS mechanism (rather than the pool-allocated legacy APC) . 
Finally, the CpuThrottled bit is set in the KTHREAD’s ThreadControlFlags .

At this point, the global quota-control structure contains a pointer to the DFSS per-CPU data 
structure array, which itself is linked to all the per-session CPU blocks that have been created for each 
session and associated with the EPROCESS structure of the member processes . In turn, each thread 
part of such a process has CPU throttling turned on . There is a per-CPU DPC ready to execute, as well 
as per-thread APCs for each throttled thread .

When the last process in the session loses all its references,  PsDeleteCpuQuotaBlock 
is called . It removes the block from the list, refreshes the total weights, and calls 
 PspCalculateCpuQuotaBlockCycleCredits to update all other per-session CPU quota blocks .

Charging of Cycles to Throttled Threads
After everything is set up, the entire DFSS mechanism is triggered by the consumption of CPU 
cycles—something that was already explained in the earlier sections . In other words, not only are 
consumed cycles used for quantum accounting and providing finer-grained information to thread 
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APIs, but they also can be “charged” against the thread (and thus against its quota) . This operation is 
done by the PsChargeProcessCpuCycles function that is called whenever a thread has completed the 
accumulation of cycles in its current execution timeline . 

The first operation involves accumulating the additional cycles to the per-CPU DFSS data  structure 
for this processor, increasing the TotalCyclesAccumulated value . If this accumulation has reached 
the total credit, the quota DPC is immediately queued . Once the DPC ultimately executes, it calls 
 PspStartNewFairShareInterval, which updates the generation, resets the cycles accumulated, and 
resets the credit to 150 ms . Finally, the idle-only queue is flushed on each processor associated with 
a given session. (You’ll see what this queue is and what flushing it entails, later.) This part of the 
 algorithm manages the 150-ms interval that controls DFSS .

A second possibility is that the generation of the per-CPU quota entry contained in the  current 
process’ CPU quota block (owned by the session) does not manage the generation of the cur-
rent per-CPU DFSS data structure . This generation mismatch suggests that a new interval has 
been reached and no cycle limits have yet been set, so PspReplenishCycleCredit is called to do 
the work . This reads the per-CPU weight and the total weight that were captured earlier in 
 PspCalculateCpuQuotaBlockCycleCredits, and it uses them to set the base cycle allowance for the 
current per-CPU data inside the process’ CPU quota block . To do this, it uses a simple formula: the 
process receives the equivalent of its cycle credit (150 ms) divided by the total weight of all sessions 
on the system . Then the amount of cycles it will be permitted to run for (CyclesRemaining) is set to the 
base cycle allowance multiplied by the weight of this particular session . In other words, the process 
runs for a fairly-divided chunk of time based on the number of other sessions on the system, calcu-
lated as a percentage based on its relative weight compared to the overall system weight . When the 
computation is completed, the generation is set to match .

In all other cases, PsChargeProcessCpuCycles merely subtracts the amount of cycles from 
 CyclesRemaining and then calls PsCheckThreadCpuQuota to see whether these cycles have been 
exhausted (reaching zero) . Note that this function can sometimes also be called directly from the 
 context switch code when control is about to pass to a thread that has CPU throttling enabled .

PsCheckThreadCpuQuota recovers the CPU quota block for this process (that is, for the session), 
and then further extracts the precise per-CPU information out of it . Once again, it checks whether the 
generation does not match, which would indicate this is the first charge for this 150-ms credit cycle, 
and then it calls PspReplenishCycleCredit . Next, it checks whether the CPU quota block for the process 
indicates there are no more cycles remaining . If cycles still remain, the function returns; otherwise, it 
prepares to suspend the thread’s execution .

Before stopping execution, the function extracts the per-CPU DPC, making sure that it (or the 
associated per-thread APC) is not already running . If this operation is happening due to the context-
switch scenario brought up earlier, the per-thread APC is queued, which will preempt the thread’s 
execution as soon as the context switch completes . Otherwise, if this is occurring as result of cycle 
charging (which happens at DISPATCH_LEVEL or higher), the per-CPU DPC is queued instead, which 
will later queue the per-thread APC . (This forces a near-immediate response to the CPU quota 
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 restriction .) In case further cycle accumulation has occurred past the 150-ms cycle credit, the DPC also 
calls PspStartNewFairShareInterval, which was explained earlier .

CPU Throttling and Quota Enforcement
So far, you’ve seen how DFSS initializes, how CPU quota blocks are created for each session (and then 
associated with member processes), and how threads running with the CPU throttling bit (implying 
they are part of processes that are members of a session with DFSS enabled) will consume cycles out 
of their total weight-relative allowance, resetting every 150 ms . You also saw how, eventually, an APC 
is queued in all cases where a thread has exhausted its allowed cycles . You’ll now see how the APC 
enforces the CPU quota restriction .

The APC first enters an infinite loop, creating a stack-allocated Quota Wait Block that contains the 
current thread being restricted, as well as a resume event . It is this event that ultimately allows the 
thread to continue its execution . Next, the APC gets the per-CPU DFSS data structure pointer and 
 acquires the idle-only queue lock referenced earlier . It then checks whether the idle-only queue on 
the current processor (which comes from the per-CPU quota entry contained in the process’ CPU 
quota block) is empty . If the list is empty, it implies that this CPU has never been inserted in the sorted 
block list that is contained in the per-CPU DFSS data structure (part of the PspCpuQuotaControl 
global array) . The PspInsertQuotaBlockCpuEntry function is thus called to rectify the situation .

Because the DFSS scheduler itself (which has yet to be described) uses this data structure, it must 
be inserted in the most optimal way—in this case, sorted by the base cycle allowance of each per-
CPU data contained within the per-process CPU quota block . Recall that the base cycle allowance is 
initially the 150-ms credit cycle divided by the total weight of the system (that is, a full allowance), but 
you’ll see how the allowance can be later modified by the DFSS scheduler.

Next, now that the per-CPU Quota Entry is in the sorted block list (or it might already have been 
if the idle-only queue was not empty), this thread is inserted at the end of the idle-only queue, and 
it’s connected by a linked list entry that’s present in the Quota Wait Block . Because this wait block 
contains the resume event initialized earlier, the DFSS scheduler is able to control the thread when 
needed .

Finally, the APC enters a wait on this resume event, with the wait reason WrCpuRateControl . By 
 using a tool such as Sysinternals PsList, or Process Explorer—all of which display wait reasons (as well 
as a kernel debugger)—you can see such threads intermittently blocked on a DFSS system .
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Resuming Execution
With more and more threads possibly hitting their CPU quota restrictions and block on their 
 respective idle-queues, how will they eventually resume execution? One of the possibilities is that a 
new 150-ms interval has started . Recall from the earlier discussion that PspStartNewFairShareInterval 
was said to “flush the idle-only queue.” This operation, performed by PspFlushProcessorIdleOnlyQueue, 
essentially scans every per-CPU quota entry for this processor (which is located in the sorted block 
list), and then scans the idle-only queue of each such processor . Picking every thread in the list, the 
function removes the thread and manually sets the resume event . Thus, any blocked thread on the 
current CPU gets to resume execution after 150 ms .

Obviously, flushing is not the usual mechanism through which the idle-only queue threads 
are managed . This work typically is done by the DFSS scheduler itself, which provides the 
 PsReleaseThreadFromIdleOnlyQueue routine as a callback that the regular thread scheduler, when 
the system is about to go idle, can use whenever DFSS-related work is required. Specifically, it is the 
KiSearchForNewThread function, thoroughly described earlier, that calls DFSS in the following two 
scenarios:

 ■ If KiSelectReadyThread, which is called initially, has not found a new thread for the current 
processor, before it checks other processors’ dispatcher ready queues, KiSearchForNewThread 
will ask DFSS to release a thread from the idle-only queue .
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 ■ Otherwise, as each CPU’s dispatcher ready queues are scanned (by looping 
 KiSelectReadyThread calls on each PRCB), if once again no thread is found, the DFSS scheduler 
is called to release a thread from the idle-only queue on the target processor as well .

Finally, you’ll see what work PsReleaseThreadFromIdleOnlyQueue actually does and how the DFSS 
scheduler is implemented .

DFSS Idle-Only Queue Scheduling
PsReleaseThreadFromIdleOnlyQueue initially checks whether the sorted block list is empty (which 
would imply there aren’t even any valid per-CPU quota entries), and it exits if this is the case . 
 Otherwise, it acquires the idle-only queue spinlock from the per-CPU DFSS data structure and calls 
PspFindHighestPriorityThreadToRun . This function scans the sorted block list, recovering every per-
CPU quota entry, and then scans every entry (which, if you recall, points to the Quota Wait Block for 
the thread) . Unfortunately, because threads are not inserted by priority (such as real dispatcher ready 
queues), the entire idle-only queue must be scanned, and the highest priority found to this point is 
recorded in each iteration . (Because the lock is acquired, no new per-CPU quota entries or idle-only 
queue threads can be inserted during the scan .) 

Note Because DFSS is not truly integrated with the regular thread scheduler, the reason 
the threads are not sorted by priority is obvious: DFSS is not aware of priority changes after 
idle-only queue threads have been inserted in its lists . A user could still modify the priority, 
and because the thread scheduler does not notify DFSS of this, an incorrect thread would 
be picked .

Additionally, affinity is carefully checked to ensure only correctly affinitized threads are scanned. 
Although each idle-only queue contains only threads for the current processor, scenario #2 in the 
preceding section showed how remote processor idle-only queues can also be scanned . DFSS must 
ensure that the current CPU will run an appropriate remote-CPU, idle-only thread .

Once the highest priority thread has been found on the current per-CPU quota entry, it is removed 
from the idle-only queue and returned to the caller . Additionally, if this was the last thread on the 
idle-only queue, the per-CPU entry is removed from the sorted block list . Therefore, note that the 
other per-CPU quota entries are not checked unless a runnable highest-priority thread was not found 
on the first per-CPU quota entry (that is, the one with the highest base cycle allowance).

Once the thread is found, PsReleaseThreadFromIdleOnlyQueue resumes its execution and once 
more queues the DPC responsible for eventually launching the per-thread APC from earlier (after 
making sure the DPC is not already running) . Thus, the APC is never directly queued in this case, 
because this function runs as part of the thread scheduler, already at DISPATCH_LEVEL . Additionally, 
it wouldn’t make sense to queue another per-thread APC just to notify the original APC; instead, the 
DPC itself will wake up the thread .
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This is done by a special check in the DPC routine that checks whether the 
 ThreadWaitBlockForRelease field in the per-CPU DFSS data structure is set. If so, the DPC knows that 
this is a wake-up, not a stop, request, and it sets the resume event associated with the Quota Wait 
Block . Additionally, it forces the Idle Scheduler on the current CPU to run, by setting the IdleSchedule 
field in the KPRCB that was brought up in the earlier idle scheduler section.

One detail has been glossed over, however: once the idle-only thread is picked, as soon 
as a context switch is initiated, the cycle accumulation once again detects that the thread 
has exhausted its cycles, and it re-inserts the thread in the idle-only queue . Therefore, 
 PsReleaseThreadFromIdleOnlyQueue must update the cycles remaining for the current per-CPU quota 
entry, allowing this CPU to run the thread for a little bit longer . How much longer exactly is deter-
mined by the value of KiCyclesPerClockQuantum, which was shown in the earlier “Quantum” section . 
Therefore, this CPU is allowed to run the current thread for an entire quantum, at most . 

Additionally, the base cycle allowance for this entry must be updated, because the quota for the 
CPU is actually exhausted and no longer working on a 150-ms cycle credit . Therefore, the allowance 
is now updated to include an extra KiCyclesPerClockQuantum divided by the weight of the session” 
cycle . Because the base cycle allowance has changed, the sorted block list is reparsed, and the entries 
are re-sorted correctly to account for this change . Thus, this block will now migrate to the front of the 
list and have a higher chance to be picked once a future idle-only thread (within this interval) needs 
to be picked .

Session Weight Configuration
So far, the weight associated to sessions has been described as its default value of 5 . However, this 
weight can be set to anywhere between 1 and 9, and DFSS provides two internal APIs for managing 
weight information: PsQueryCpuInformation and its Set equivalent .

Given an array of session handles (to session objects) and associated weights, the Set API sets the 
new weight for each session, as well as updating the total weight stored in the PspCpuQuotaControl 
global . By calling PspCalculateCpuQuotaBlockCycleCredits again, the new settings will be propagated . 
Likewise, the Query API returns an array of weights and session IDs . The SeIncreaseQuotaPrivilege is 
required in both cases, as well as SESSION_MODIFY_ACCESS for each session whose weight is being 
modified. Accessing these APIs is done through the native API function NtQuerySystemInformation, 
with the SystemCpuQuotaInformation call .

This API, although not provided by the Windows API directly, is what the Windows System 
 Resource Manager uses when the administrator assigns different priorities to different users when the 
Weighted_Remote_Sessions policy is enabled . The three priorities—Premium, Standard, and Basic—
map to the 1, 5, and 9 weights in the internal DFSS scheduler mechanism, respectively .
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CPU Rate Limits
As part of the hard quota management system in Windows (based on the original soft-limit quota 
support present since the first version of Windows NT), support for limiting CPU usage exists in the 
system in three different ways: per-session, per-user, or per-system . Unfortunately, there is no tool 
that is part of the operating system that allows you to set these limits—you must modify the regis-
try settings manually . Because all the quotas—save one—are memory quotas, we will cover those in 
Chapter 10 in Part 2, which deals with the memory manager, and instead focus our attention here on 
the CPU rate limit .

Note See the topic “CPU rate limits in Windows Server 2008 R2 and Windows 7” in the 
Microsoft Technet Knowledge Articles at http://technet.microsoft.com/en-us/library 
/ff384148(WS.10).aspx for further documentation and examples on when to use CPU rate 
limits .

The new quota system can be accessed through the registry key HKLM\SYSTEM 
\ CurrentControlSet\Control\Session Manager\QuotaSystem, as well as through the standard 
 NtSetInformationProcess system call . CPU rate limits can therefore be set in one of three ways:

 ■ By creating a new DWORD value called CpuRateLimit and entering the rate information .

 ■ By creating a new key with the security ID (SID) of the account you want to limit, and creating 
a CpuRateLimit DWORD value inside that key .

 ■ By calling NtSetInformationProcess and giving it the process handle of the process to limit and 
the CPU rate limiting information, if the process is tied to the system quota block .

In all three cases, the CPU rate limit data is a straightforward value; it is simply a rate limit 
 expressed as a percentage . For example, to limit a user’s applications to consume at most 10% of CPU 
time, you set CpuRateLimit to 10 . The process manager, which is responsible for enforcing the CPU 
rate limit, uses various system mechanisms to do its job . First, rate limiting works reliably because of 
the CPU cycle count improvements discussed earlier, which allow the process manager to accurately 
determine how much CPU time a process has taken and know whether the limit should be enforced . 
It then uses a combination of DPC and APC routines to throttle down DPC and APC CPU usage, which 
are outside the direct control of user-mode developers but still result in CPU usage in the system (in 
the case of a systemwide CPU rate limit) .

Finally, the main mechanism through which rate limiting works is by creating an artificial wait on 
an event object (making the thread uniquely bound to this object and putting it in a wait state, which 
does not consume CPU cycles) . Threads that are artificially waiting because of CPU rate limits can 
be observed because their wait reason code is set to WrCpuRateControl . This mechanism operates 
through the normal routine of an APC object queued to the thread or threads inside the process cur-
rently responsible for the work . The event is eventually signaled by the DPC routine associated with a 
timer (firing every half a second) responsible for replenishing systemwide CPU usage requests.
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Dynamic Processor Addition and Replacement

As you’ve seen, developers can fine-tune which threads are allowed to (and in the case of the ideal 
processor, should) run on which processor. This works fine on systems that have a constant num-
ber of processors during their run time . (For example, desktop machines require shutting down the 
 computer to make any sort of hardware changes to the processor or their count .)

Today’s server systems, however, cannot afford the downtime that CPU replacement or addition 
normally requires . In fact, one example of when adding a CPU is required for a server is at times of 
high load that is above what the machine can support at its current level of performance . Having to 
shut down the server during a period of peak usage would defeat the purpose . To meet this require-
ment, the latest generation of server motherboards and systems support the addition of processors 
(as well as their replacement) while the machine is still running . The ACPI BIOS and related hardware 
on the machine have been specifically built to allow and be aware of this need, but operating system 
participation is required for full support .

Dynamic processor support is provided through the HAL, which notifies the kernel of a new 
 processor on the system through the function KeStartDynamicProcessor . This routine does similar 
work to that performed when the system detects more than one processor at startup and needs to 
initialize the structures related to them . When a dynamic processor is added, various system compo-
nents perform some additional work . For example, the memory manager allocates new pages and 
memory structures optimized for the CPU . It also initializes a new DPC kernel stack while the kernel 
initializes the global descriptor table (GDT), the interrupt Dispatch table (IDT), the processor control 
region (PCR), the process control block (PRCB), and other related structures for the processor .

Other executive parts of the kernel are also called, mostly to initialize the per-processor look-
aside lists for the processor that was added . For example, the I/O manager, executive look-aside list 
code, cache manager, and object manager all use per-processor look-aside lists for their frequently 
 allocated structures .

Finally, the kernel initializes threaded DPC support for the processor and adjusts exported kernel 
variables to report the new processor . Different memory-manager masks and process seeds based on 
processor counts are also updated, and processor features need to be updated for the new proces-
sor to match the rest of the system (for example, enabling virtualization support on the newly added 
processor). The initialization sequence completes with the notification to the Windows Hardware Error 
Architecture (WHEA) component that a new processor is online .

The HAL is also involved in this process . It is called once to start the dynamic processor after the 
kernel is aware of it, and it is called again after the kernel has finished initialization of the processor. 
However, these notifications and callbacks only make the kernel aware and respond to processor 
changes . Although an additional processor increases the throughput of the kernel, it does nothing to 
help drivers .

To handle drivers, the system has a new default executive callback object, the ProcessorAdd 
callback, that drivers can register with for notifications. Similar to the callbacks that notify drivers of 
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power state or system time changes, this callback allows driver code to, for example, create a new 
worker thread if desirable so that it can handle more work at the same time .

Once drivers are notified, the final kernel component called is the Plug and Play manager, which 
adds the processor to the system’s device node and rebalances interrupts so that the new processor 
can handle interrupts that were already registered for other processors . CPU-hungry applications are 
also able to take advantage of newer processors as well .

However, a sudden change of affinity can have potentially breaking changes for a running 
 application (especially when going from a single-processor to a multiprocessor environment) through 
the appearance of potential race conditions or simply misdistribution of work (because the process 
might have calculated the perfect ratios at startup, based on the number of CPUs it was aware of) . As 
a result, applications do not take advantage of a dynamically added processor by default—they must 
request it .

The Windows APIs SetProcessAffinityUpdateMode and QueryProcessAffinityMode (which use 
the undocumented NtSet/QueryInformationProcess system call) tell the process manager that 
these  applications should have their affinity updated (by setting the AffinityUpdateEnable flag in 
 EPROCESS), or that they do not want to deal with affinity updates (by setting the AffinityPermanent 
flag in EPROCESS). Once an application has told the system that its affinity is permanent, it cannot 
later change its mind and request affinity updates, so this is a one-time change.

As part of KeStartDynamicProcessor, a new step has been added after interrupts are 
 rebalanced, which is to call the process manager to perform affinity updates through 
 PsUpdateActiveProcessAffinity. Some Windows core processes and services already have affinity 
updates enabled, while third-party software will need to be recompiled to take advantage of the new 
API call . The System process, Svchost processes, and Smss are all compatible with dynamic processor 
addition .

Job Objects

A job object is a nameable, securable, shareable kernel object that allows control of one or more 
processes as a group . A job object’s basic function is to allow groups of processes to be managed and 
manipulated as a unit . A process can be a member of only one job object . By default, its association 
with the job object can’t be broken and all processes created by the process and its descendants are 
associated with the same job object as well . The job object also records basic accounting information 
for all processes associated with the job and for all processes that were associated with the job but 
have since terminated . 

Jobs can also be associated with an I/O completion port object, which other threads might be 
waiting for, with the Windows GetQueuedCompletionStatus function . This allows interested parties 
(typically, the job creator) to monitor for limit violation and events that could affect the job’s security 
(such as a new process being created or a process abnormally exiting) .
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Job Limits
The following are some of the CPU-related and memory-related limits you can specify for a job:

 ■ Maximum number of active processes Limits the number of concurrently existing 
 processes in the job .

 ■ Jobwide user-mode CPU time limit Limits the maximum amount of user-mode CPU time 
that the processes in the job can consume (including processes that have run and exited) . 
Once this limit is reached, by default all the processes in the job are terminated with an error 
code and no new processes can be created in the job (unless the limit is reset) . The job object 
is signaled, so any threads waiting for the job will be released . You can change this default 
 behavior with a call to SetInformationJobObject to set the EndOfJobTimeAction information 
class and request a notification to be sent through the job’s completion port instead.

 ■ Per-process user-mode CPU time limit Allows each process in the job to accumulate only 
a fixed maximum amount of user-mode CPU time. When the maximum is reached, the process 
terminates (with no chance to clean up) .

 ■ Job processor affinity Sets the processor affinity mask for each process in the job. 
( Individual threads can alter their affinity to any subset of the job affinity, but processes can’t 
alter their process affinity setting.)

 ■ Job group affinity Sets a list of groups to which the processes in the job can be assigned 
to. Any affinity changes are then subject to the group selection imposed by the limit. This is 
treated as a group-aware version of the job processor affinity limit (legacy), and prevents that 
limit from being used .

 ■ Job process priority class Sets the priority class for each process in the job . Threads can’t 
increase their priority relative to the class (as they normally can) . Attempts to increase thread 
priority are ignored . (No error is returned on calls to SetThreadPriority, but the increase 
doesn’t occur .)

 ■ Default working set minimum and maximum Defines the specified working set minimum 
and maximum for each process in the job . (This setting isn’t jobwide—each process has its 
own working set with the same minimum and maximum values .)

 ■ Process and job committed virtual memory limit Defines the maximum amount of virtual 
 address space that can be committed by either a single process or the entire job .

You can also place security limits on processes in a job . You can set a job so that each process 
runs under the same jobwide access token . You can then create a job to restrict processes from 
 impersonating or creating processes that have access tokens that contain the local administrator’s 
group. In addition, you can apply security filters so that when threads in processes contained in a 
job impersonate client threads, certain privileges and security IDs (SIDs) can be eliminated from the 
impersonation token .
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Finally, you can also place user-interface limits on processes in a job . Such limits include being able 
to restrict processes from opening handles to windows owned by threads outside the job, reading 
and/or writing to the clipboard, and changing the many user-interface system parameters via the 
Windows SystemParametersInfo function . These user-interface limits are managed by the Windows 
subsystem GDI/USER driver, Win32k .sys, and are enforced through one of the special callouts that it 
registers with the process manager, the job callout .

Job Sets
The job implementation also allows for finer grained control of which job object a given process 
will be associated with by enabling the creation of job sets . A job set is an array that associates a job 
member level with each job object that was created by the caller . Later, when the process manager 
attempts to associate a process with a job, it picks the correct job object from the set based on the 
job member level that was associated with the newly created process (which must be higher than or 
equal to the parent’s job member level . This allows the parent process to have created multiple job 
objects, and for its children to pick the appropriate one depending on which limits the parent might 
want to enforce .

EXPERIMENT: Viewing the Job Object
You can view named job objects with the Performance tool . (See the Job Object and Job Object 
Details performance objects .) You can view unnamed jobs with the kernel debugger !job or dt 
nt!_ejob command .

To see whether a process is associated with a job, you can use the kernel debugger !process 
command or Process Explorer . Follow these steps to create and view an unnamed job object:

1. From the command prompt, use the runas command to create a process running the 
command prompt (Cmd .exe) . For example, type runas /user:<domain> 
\< username> cmd . You’ll be prompted for your password . Enter your password, and 
a Command Prompt window will appear . The Windows service that executes runas 
commands creates an unnamed job to contain all processes (so that it can terminate 
these processes at logoff time) .

2. From the command prompt, run Notepad .exe .

3. Then run Process Explorer, and notice that the Cmd .exe and Notepad .exe processes 
are highlighted as part of a job. (You can configure the colors used to highlight 
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processes that are members of a job by clicking Options, Configure Colors.) Here is a 
screen shot showing these two processes:

4. Double-click either the Cmd .exe or Notepad .exe process to bring up the process 
 properties . You will see a Job tab in the process properties dialog box .

5. Click the Job tab to view the details about the job . In this case, there are no quotas 
associated with the job, but there are two member processes:

6. Now run the kernel debugger on the live system, display the process list with  !process, 
and find the recently created process running Cmd.exe. Then display the process by 
using !process <process ID>, find the address of the job object, and finally display 
the job object with the !job command . Here’s some partial debugger output of these 
 commands on a live system:

lkd> !process 0 1 cmd.exe 
PROCESS 8567b758  SessionId: 1  Cid: 0fc4    Peb: 7ffdf000  ParentCid: 00b0  
    DirBase: 1b3fb000  ObjectTable: e18dd7d0  HandleCount:  19.  
    Image: Cmd.exe  
...  
    BasePriority                      8  
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    CommitCharge                      636 
...    Job                               85557988  
  
lkd> !job 85557988  
Job at 85557988  
  TotalPageFaultCount      0  
  TotalProcesses           2 
  ActiveProcesses          2  
  TotalTerminatedProcesses 0  
  LimitFlags               0  
...

7. You can also use the dt command to display the job object and see the additional 
fields shown about the job, such as its member level, if it is part of a job set:

lkd> dt nt!_ejob 85557988  
nt!_EJOB  
   +0x000 Event            : _KEVENT 
... 
   +0x0b8 EndOfJobTimeAction : 0 
   +0x0bc CompletionPort   : 0x87e3d2e8  
   +0x0c0 CompletionKey    : 0x07a89508  
   +0x0c4 SessionId        : 1 
   +0x0c8 SchedulingClass  : 5 
... 
   +0x120 MemberLevel      : 0 
   +0x124 JobFlags         : 0

8. Finally, if the job has UI limits, you can use the dt command to display the Win32k job 
structure (tagW32JOB). To do this, you must first obtain the W32PROCESS structure 
pointer as shown in the experiment at the beginning of this chapter, and then display 
the pW32Job field within it. 

For example, here is the Win32k job structure for a process using the Block Access To Global 
Atom Table UI limitation . The structure shows the local atom table this process is using in 
pAtomTable . You can further explore this structure with the dt nt!_RTL_ATOM_TABLE command 
and see which atoms are defined:

lkd> ?? ((win32k!tagPROCESSINFO*)(((nt!_EPROCESS*)0x847c4740)->Win32Process))-
>pW32Job 
struct tagW32JOB * 0xfd573300 
   +0x000 pNext            : 0xff87c5d8 tagW32JOB 
   +0x004 Job              : 0x8356ab90 _EJOB 
   +0x008 pAtomTable       : 0x8e03eb18  
   +0x00c restrictions     : 0xff 
   +0x010 uProcessCount    : 1 
   +0x014 uMaxProcesses    : 4 
   +0x018 ppiTable         : 0xfe5072c0  -> 0xff97db18 tagPROCESSINFO 
   +0x01c ughCrt           : 0 
   +0x020 ughMax           : 0 
   +0x024 pgh              : (null)
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Conclusion

In this chapter, we examined the structure of processes and threads and jobs, saw how they are 
 created, and looked at how Windows decides which threads should run and for how long, and on 
which processor or processors .

In the next chapter, we’ll look at a part of the system that sometimes receives more attention than 
anything else: the Windows security reference monitor .
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C H A P T E R  6

Security

Preventing unauthorized access to sensitive data is essential in any environment in which  multiple 
users have access to the same physical or network resources . An operating system, as well as 

 individual users, must be able to protect files, memory, and configuration settings from  unwanted 
viewing and modification. Operating system security includes obvious mechanisms such as  accounts, 
passwords, and file protection. It also includes less obvious mechanisms, such as  protecting the 
 operating system from corruption, preventing less privileged users from performing actions 
( rebooting the computer, for example), and not allowing user programs to adversely affect the 
 programs of other users or the operating system .

In this chapter, we explain how every aspect of the design and implementation of Microsoft 
 Windows was influenced in some way by the stringent requirements of providing robust security .

Security Ratings

Having software, including operating systems, rated against well-defined standards helps the 
 government, corporations, and home users protect proprietary and personal data stored in computer 
systems . The current security rating standard used by the United States and many other countries is 
the Common Criteria (CC) . To understand the security capabilities designed into Windows, however, 
it’s useful to know the history of the security ratings system that influenced the design of Windows, 
the Trusted Computer System Evaluation Criteria (TCSEC) .

Trusted Computer System Evaluation Criteria
The National Computer Security Center (NCSC) was established in 1981 as part of the U .S . 
 Department of Defense’s (DoD) National Security Agency (NSA) . One goal of the NCSC was to 
 create a range of security ratings, listed in Table 6-1, to be used to indicate the degree of protection 
commercial operating systems, network components, and trusted applications offer . These security 
 ratings, which can be found at http://csrc.nist.gov/publications/history/dod85.pdf, were defined in 1983 
and are commonly referred to as “the Orange Book .”

The TCSEC standard consists of “levels of trust” ratings, where higher levels build on lower levels by 
adding more rigorous protection and validation requirements . No operating system meets the A1, or 
“Verified Design,” rating. Although a few operating systems have earned one of the B-level ratings, C2 
is considered sufficient and the highest rating practical for a general-purpose operating system.
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TABLE 6-1 TCSEC Rating Levels

Rating Description

A1 Verified Design

B3 Security Domains

B2 Structured Protection

B1 Labeled Security Protection

C2 Controlled Access Protection 

C1 Discretionary Access Protection (obsolete)

D Minimal Protection

In July 1995, Windows NT 3.5 (Workstation and Server) with Service Pack 3 was the first version 
of Windows NT to earn the C2 rating . In March 1999, Windows NT 4 with Service Pack 3 achieved an 
E3 rating from the U .K . government’s Information Technology Security (ITSEC) organization, a rating 
equivalent to a U .S . C2 rating . In November 1999, Windows NT 4 with Service Pack 6a earned a C2 
rating in both stand-alone and networked configurations.

The following were the key requirements for a C2 security rating, and they are still considered the 
core requirements for any secure operating system:

 ■ A secure logon facility, which requires that users can be uniquely identified and that they must 
be granted access to the computer only after they have been authenticated in some way .

 ■ Discretionary access control, which allows the owner of a resource (such as a file) to determine 
who can access the resource and what they can do with it . The owner grants rights that permit 
various kinds of access to a user or to a group of users .

 ■ Security auditing, which affords the ability to detect and record security-related events or any 
attempts to create, access, or delete system resources. Logon identifiers record the identities 
of all users, making it easy to trace anyone who performs an unauthorized action .

 ■ Object reuse protection, which prevents users from seeing data that another user has deleted 
or from accessing memory that another user previously used and then released . For example, 
in some operating systems, it’s possible to create a new file of a certain length and then exam-
ine the contents of the file to see data that happens to have occupied the location on the disk 
where the file is allocated. This data might be sensitive information that was stored in another 
user’s file but had been deleted. Object reuse protection prevents this potential security hole 
by initializing all objects, including files and memory, before they are allocated to a user.

Windows also meets two requirements of B-level security:

 ■ Trusted path functionality, which prevents Trojan horse programs from being able to 
 intercept users’ names and passwords as they try to log on . The trusted path functionality in 
 Windows comes in the form of its Ctrl+Alt+Delete logon-attention sequence, which cannot be 
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 intercepted by nonprivileged applications . This sequence of keystrokes, which is also known 
as the secure attention sequence (SAS), always displays a system-controlled Windows security 
screen (if a user is already logged on) or the logon screen so that would-be Trojan horses can 
easily be recognized . (The secure attention sequence can also be sent programmatically via 
the SendSAS API, if group policy allows it .) A Trojan horse presenting a fake logon dialog box 
will be bypassed when the SAS is entered . 

 ■ Trusted facility management, which requires support for separate account roles for 
 administrative functions . For example, separate accounts are provided for administration 
( Administrators), user accounts charged with backing up the computer, and standard users .

Windows meets all of these requirements through its security subsystem and related components .

The Common Criteria
In January 1996, the United States, United Kingdom, Germany, France, Canada, and the Netherlands 
released the jointly developed Common Criteria for Information Technology Security Evaluation 
(CCITSE) security evaluation specification. CCITSE, which is usually referred to as the Common Criteria 
(CC), is the recognized multinational standard for product security evaluation . The CC home page is at 
www .niap-ccevs .org/cc-scheme/ .

The CC is more flexible than the TCSEC trust ratings and has a structure closer to the ITSEC 
 standard than to the TCSEC standard . The CC includes the concept of a Protection Profile (PP), used 
to collect security requirements into easily specified and compared sets, and the concept of a Security 
Target (ST), which contains a set of security requirements that can be made by reference to a PP . 
The CC also defines a range of seven Evaluation Assurance Levels (EALs), which indicate a level of 
confidence in the certification. In this way, the CC (like the ITSEC standard before it) removes the link 
between functionality and assurance level that was present in TCSEC and earlier certification schemes. 

Windows 2000, Windows XP, Windows Server 2003, and Windows Vista Enterprise all achieved 
Common Criteria certification under the Controlled Access Protection Profile (CAPP). This is 
roughly equivalent to a TCSEC C2 rating. All received a rating of EAL 4+, the “plus” denoting “flaw 
 remediation .” EAL 4 is the highest level recognized across national boundaries . 

In March 2011, Windows 7 and Windows Server 2008 R2 were evaluated as meeting the 
 requirements of the US Government Protection Profile for General-Purpose Operating Systems in a 
Networked Environment, version 1 .0, 30 August 2010 (GPOSPP) (http://www.commoncriteriaportal.org 
/files/ppfiles/pp_gpospp_v1.0.pdf ). The certification includes the Hyper-V hypervisor, and again 
 Windows achieved Evaluation Assurance Level 4 with flaw remediation (EAL-4+). The validation 
report can be found at http://www.commoncriteriaportal.org/files/epfiles/st_vid10390-vr.pdf, and the 
 description of the security target, giving details of the requirements satisfied, can be found at  
http://www.commoncriteriaportal.org/files/epfiles/st_vid10390-st.pdf . 
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Security System Components

These are the core components and databases that implement Windows security:

 ■ Security reference monitor (SRM) A component in the Windows executive 
( %SystemRoot%\System32\Ntoskrnl.exe) that is responsible for defining the access token 
data structure to represent a security context, performing security access checks on objects, 
 manipulating privileges (user rights), and generating any resulting security audit messages .

 ■ Local Security Authority subsystem (LSASS) A user-mode process running the image 
%SystemRoot%\System32\Lsass.exe that is responsible for the local system security policy 
(such as which users are allowed to log on to the machine, password policies, privileges 
granted to users and groups, and the system security auditing settings), user authentication, 
and sending security audit messages to the Event Log . The Local Security Authority service 
(Lsasrv—%SystemRoot%\System32\Lsasrv.dll), a library that LSASS loads, implements most of 
this functionality .

 ■ LSASS policy database A database that contains the local system security policy settings . 
This database is stored in the registry in an ACL-protected area under HKLM\SECURITY. It 
includes such information as what domains are entrusted to authenticate logon attempts, 
who has permission to access the system and how (interactive, network, and service logons), 
who is assigned which privileges, and what kind of security auditing is to be performed . The 
LSASS policy database also stores “secrets” that include logon information used for cached 
domain logons and Windows service user-account logons . (See Chapter 4, “Management 
 Mechanisms,” for more information on Windows services .)

 ■ Security Accounts Manager (SAM) A service responsible for managing the database that 
contains the user names and groups defined on the local machine. The SAM service, which is 
implemented as %SystemRoot%\System32\Samsrv.dll, is loaded into the LSASS process.

 ■ SAM database A database that contains the defined local users and groups, along with their 
passwords and other attributes . On domain controllers, the SAM does not store the domain-
defined users, but stores the system’s administrator recovery account definition and password. 
This database is stored in the registry under HKLM\SAM.

 ■ Active Directory A directory service that contains a database that stores information about 
objects in a domain . A domain is a collection of computers and their associated security 
groups that are managed as a single entity . Active Directory stores information about the 
 objects in the domain, including users, groups, and computers . Password information and 
privileges for domain users and groups are stored in Active Directory, which is replicated 
across the computers that are designated as domain controllers of the domain . The Active 
 Directory server, implemented as %SystemRoot%\System32\Ntdsa.dll, runs in the LSASS 
 process . For more information on Active Directory, see Chapter 7, “Networking .”
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 ■ Authentication packages These include dynamic-link libraries (DLLs) that run both in the 
context of the LSASS process and client processes, and implement Windows authentication 
policy . An authentication DLL is responsible for authenticating a user, by checking whether a 
given user name and password match, and if so, returning to the LSASS information detailing 
the user’s security identity, which LSASS uses to generate a token .

 ■ Interactive logon manager (Winlogon) A user-mode process running %SystemRoot% 
\System32\Winlogon.exe that is responsible for responding to the SAS and for managing 
interactive logon sessions. Winlogon creates a user’s first process when the user logs on, for 
example .

 ■ Logon user interface (LogonUI) A user-mode process running %SystemRoot%\System32 
\LogonUI.exe that presents users with the user interface they can use to authenticate them-
selves on the system . LogonUI uses credential providers to query user credentials through 
various methods .

 ■ Credential providers (CPs) In-process COM objects that run in the LogonUI  process 
( started on demand by Winlogon when the SAS is performed) and used to obtain a 
 user’s name and password, smartcard PIN, or biometric data (such as a fingerprint). The 
 standard CPs are %SystemRoot%\System32\authui.dll and %SystemRoot%\System32 
\SmartcardCredentialProvider.dll.

 ■ Network logon service (Netlogon) A Windows service (%SystemRoot%\System32 
\Netlogon.dll) that sets up the secure channel to a domain controller, over which security 
requests—such as an interactive logon (if the domain controller is running Windows NT 4) or 
LAN Manager and NT LAN Manager (v1 and v2) authentication validation—are sent . Netlogon 
is also used for Active Directory logons . 

 ■ Kernel Security Device Driver (KSecDD) A kernel-mode library of functions that 
 implement the advanced local procedure call (ALPC) interfaces that other kernel mode 
 security components, including the Encrypting File System (EFS), use to communicate with 
LSASS in user mode. KSecDD is located in %SystemRoot%\System32\Drivers\Ksecdd.sys.

 ■ AppLocker A mechanism that allows administrators to specify which executable files, 
DLLs, and scripts can be used by specified users and groups. AppLocker consists of a driver 
(%SystemRoot%\System32\Drivers\AppId.sys) and a service (%SystemRoot%\System32 
\AppIdSvc.dll) running in a SvcHost process.

Figure 6-1 shows the relationships among some of these components and the databases they 
manage .
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FIGURE 6-1 Windows security components

EXPERIMENT: Looking Inside HKLM\SAM and HKLM\Security
The security descriptors associated with the SAM and Security keys in the registry prevent 
 access by any account other than the local system account . One way to gain access to these 
keys for exploration is to reset their security, but that can weaken the system’s security . Another 
way is to execute Regedit .exe while running as the local system account . This can be done using 
the PsExec tool from Windows Sysinternals with the –s option, as shown here: 

C:\>psexec –s –i –d c:\windows\regedit.exe
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The SRM, which runs in kernel mode, and LSASS, which runs in user mode, communicate using 
the ALPC facility described in Chapter 3, “System Mechanisms .” During system initialization, the SRM 
creates a port, named SeRmCommandPort, to which LSASS connects . When the LSASS process starts, 
it creates an ALPC port named SeLsaCommandPort . The SRM connects to this port, resulting in the 
creation of private communication ports . The SRM creates a shared memory section for messages 
longer than 256 bytes, passing a handle in the connect call . Once the SRM and LSASS connect to each 
other during system initialization, they no longer listen on their respective connect ports . Therefore, a 
later user process has no way to connect successfully to either of these ports for malicious purposes—
the connect request will never complete .

Figure 6-2 shows the communication paths as they exist after system initialization .
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FIGURE 6-2 Communication between the SRM and LSASS
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Protecting Objects

Object protection and access logging is the essence of discretionary access control and auditing . 
The objects that can be protected on Windows include files, devices, mailslots, pipes (named and 
anonymous), jobs, processes, threads, events, keyed events, event pairs, mutexes, semaphores, shared 
memory sections, I/O completion ports, LPC ports, waitable timers, access tokens, volumes, window 
stations, desktops, network shares, services, registry keys, printers, Active Directory objects, and 
so on—theoretically, anything managed by the executive object manager . In practice, objects that 
are not exposed to user mode (such as driver objects) are usually not protected . Kernel-mode code 
is trusted and usually uses interfaces to the object manager that do not perform access checking . 
Because system resources that are exported to user mode (and hence require security validation) are 
implemented as objects in kernel mode, the Windows object manager plays a key role in enforcing 
object security . 

We described the object manager in Chapter 3, showing how the object manager maintains the 
security descriptor for objects . This is illustrated in Figure 6-3 using the Sysinternals Winobj tool, 
showing the security descriptor for a section object in the user’s session. Although files are the 
 resources most commonly associated with object protection, Windows uses the same security model 
and mechanism for executive objects as it does for files in the file system. As far as access controls are 
concerned, executive objects differ from files only in the access methods supported by each type of 
object . 

As you will see later, what is shown in Figure 6-3 is actually the object’s discretionary access control 
list, or DACL . We will describe DACLs in detail in a later section . 

To control who can manipulate an object, the security system must first be sure of each user’s 
identity . This need to guarantee the user’s identity is the reason that Windows requires authenticated 
logon before accessing any system resources . When a process requests a handle to an object, the ob-
ject manager and the security system use the caller’s security identification and the object’s security 
descriptor to determine whether the caller should be assigned a handle that grants the process access 
to the object it desires .
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FIGURE 6-3 An executive object and its security descriptor, viewed by Winobj 

As discussed later in this chapter, a thread can assume a different security context than that of 
its process . This mechanism is called impersonation, and when a thread is impersonating, security 
validation mechanisms use the thread’s security context instead of that of the thread’s process . When 
a thread isn’t impersonating, security validation falls back on using the security context of the thread’s 
owning process . It’s important to keep in mind that all the threads in a process share the same handle 
table, so when a thread opens an object—even if it’s impersonating—all the threads of the process 
have access to the object .

Sometimes, validating the identity of a user isn’t enough for the system to grant access to 
a  resource that should be accessible by the account . Logically, one can think of a clear distinc-
tion  between a service running under the Alice account and an unknown application that Alice 
 downloaded while browsing the Internet . Windows achieves this kind of intra-user isolation with the 
Windows integrity mechanism, which implements integrity levels . The Windows integrity mechanism 
is used by User Account Control (UAC) elevations, Protected Mode Internet Explorer (PMIE), and User 
Interface Privilege Isolation (UIPI) .

Access Checks
The Windows security model requires that a thread specify up front, at the time that it opens an 
object, what types of actions it wants to perform on the object . The object manager calls the SRM 
to perform access checks based on a thread’s desired access, and if the access is granted, a handle is 
assigned to the thread’s process with which the thread (or other threads in the process) can perform 
further operations on the object . As explained in Chapter 3, the object manager records the access 
permissions granted for a handle in the process’ handle table .



496 Windows Internals, Sixth Edition, Part 1

One event that causes the object manager to perform security access validation is when a  process 
opens an existing object using a name . When an object is opened by name, the object manager 
performs a lookup of the specified object in the object manager namespace. If the object isn’t located 
in a secondary namespace, such as the configuration manager’s registry namespace or a file system 
driver’s file system namespace, the object manager calls the internal function ObpCreateHandle once 
it locates the object . As its name implies, ObpCreateHandle creates an entry in the process’ handle 
table that becomes associated with the object . ObpCreateHandle first calls ObpGrantAccess to see if 
the thread has permission to access the object; if the thread does, ObpCreateHandle calls the execu-
tive function ExCreateHandle to create the entry in the process handle table . ObpGrantAccess calls 
ObCheckObjectAccess to initiate the security access check .

ObpGrantAccess passes to ObCheckObjectAccess the security credentials of the thread opening 
the object, the types of access to the object that the thread is requesting (read, write, delete, and so 
forth), and a pointer to the object . ObCheckObjectAccess first locks the object’s security descriptor 
and the security context of the thread . The object security lock prevents another thread in the system 
from changing the object’s security while the access check is in progress . The lock on the thread’s 
security context prevents another thread (from that process or a different process) from altering the 
security identity of the thread while security validation is in progress . ObCheckObjectAccess then calls 
the object’s security method to obtain the security settings of the object . (See Chapter 3 for a descrip-
tion of object methods .) The call to the security method might invoke a function in a different execu-
tive component . However, many executive objects rely on the system’s default security  management 
support .

When an executive component defining an object doesn’t want to override the SRM’s  default 
 security policy, it marks the object type as having default security . Whenever the SRM calls an 
object’s security method, it first checks to see whether the object has default security . An  object 
with default security stores its security information in its header, and its security method is 
 SeDefaultObjectMethod . An object that doesn’t rely on default security must manage its own secu-
rity information and supply a specific security method. Objects that rely on default security include 
 mutexes, events, and semaphores . A file object is an example of an object that overrides default 
security. The I/O manager, which defines the file object type, has the file system driver on which a 
file resides manage (or choose not to implement) the security for its files. Thus, when the system 
queries the security on a file object that represents a file on an NTFS volume, the I/O manager file 
object security method retrieves the file’s security using the NTFS file system driver. Note, however, 
that  ObCheckObjectAccess isn’t executed when files are opened, because they reside in  secondary 
namespaces; the system invokes a file object’s security method only when a thread explicitly  queries 
or sets the security on a file (with the Windows SetFileSecurity or GetFileSecurity functions, for 
 example) .

After obtaining an object’s security information, ObCheckObjectAccess invokes the SRM  function 
SeAccessCheck . SeAccessCheck is one of the functions at the heart of the Windows security model . 
Among the input parameters SeAccessCheck accepts are the object’s security information, the 
security identity of the thread as captured by ObCheckObjectAccess, and the access that the thread 
is  requesting . SeAccessCheck returnsTrue or False, depending on whether the thread is granted the 
access it requested to the object .
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Another event that causes the object manager to execute access validation is when a process 
 references an object using an existing handle . Such references often occur indirectly, as when a 
process calls on a Windows API to manipulate an object and passes an object handle . For example, a 
thread opening a file can request read permission to the file. If the thread has permission to  access 
the object in this way, as dictated by its security context and the security settings of the file, the 
 object manager creates a handle—representing the file—in the handle table of the thread’s process. 
The types of accesses the process is granted through the handle are stored with the handle by the 
object manager .

Subsequently, the thread could attempt to write to the file using the WriteFile Windows function, 
passing the file’s handle as a parameter. The system service NtWriteFile, which WriteFile calls via  
Ntdll .dll, uses the object manager function ObReferenceObjectByHandle to obtain a pointer to 
the file object from the handle. ObReferenceObjectByHandle accepts the access that the caller 
wants from the object as a parameter. After finding the handle entry in the process’ handle table, 
 ObReferenceObjectByHandle compares the access being requested with the access granted at the 
time the file was opened. In this example, ObReferenceObjectByHandle will indicate that the write 
operation should fail because the caller didn’t obtain write access when the file was opened.

The Windows security functions also enable Windows applications to define their own private 
objects and to call on the services of the SRM (through the AuthZ user-mode APIs, described later) to 
enforce the Windows security model on those objects . Many kernel-mode functions that the object 
manager and other executive components use to protect their own objects are exported as Windows 
user-mode APIs . The user-mode equivalent of SeAccessCheck is the AuthZ API AccessCheck . Windows 
applications can therefore leverage the flexibility of the security model and transparently integrate 
with the authentication and administrative interfaces that are present in Windows .

The essence of the SRM’s security model is an equation that takes three inputs: the security iden-
tity of a thread, the access that the thread wants to an object, and the security settings of the object . 
The output is either “yes” or “no” and indicates whether or not the security model grants the thread 
the access it desires . The following sections describe the inputs in more detail and then document the 
model’s access-validation algorithm .

Security Identifiers
Instead of using names (which might or might not be unique) to identify entities that perform actions 
in a system, Windows uses security identifiers (SIDs). Users have SIDs, and so do local and domain 
groups, local computers, domains, domain members, and services . A SID is a variable-length  numeric 
value that consists of a SID structure revision number, a 48-bit identifier authority value, and a 
 variable number of 32-bit subauthority or relative identifier (RID) values. The authority value identi-
fies the agent that issued the SID, and this agent is typically a Windows local system or a domain. 
 Subauthority values identify trustees relative to the issuing authority, and RIDs are simply a way for 
Windows to create unique SIDs based on a common base SID . Because SIDs are long and Windows 
takes care to generate truly random values within each SID, it is virtually impossible for Windows to 
issue the same SID twice on machines or domains anywhere in the world . 
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When displayed textually, each SID carries an S prefix, and its various components are separated 
with hyphens:

S-1-5-21-1463437245-1224812800-863842198-1128

In this SID, the revision number is 1, the identifier authority value is 5 (the Windows security 
authority), and four subauthority values plus one RID (1128) make up the remainder of the SID . This 
SID is a domain SID, but a local computer on the domain would have a SID with the same revision 
number, identifier authority value, and number of subauthority values.

When you install Windows, the Windows Setup program issues the computer a machine SID . 
 Windows assigns SIDs to local accounts on the computer . Each local-account SID is based on the 
source computer’s SID and has a RID at the end . RIDs for user accounts and groups start at 1000 and 
increase in increments of 1 for each new user or group . Similarly, Dcpromo .exe (Domain Controller 
Promote), the utility used to create a new Windows domain, reuses the computer SID of the computer 
being promoted to domain controller as the domain SID, and it re-creates a new SID for the computer 
if it is ever demoted . Windows issues to new domain accounts SIDs that are based on the domain SID 
and have an appended RID (again starting at 1000 and increasing in increments of 1 for each new 
user or group) . A RID of 1028 indicates that the SID is the twenty-ninth SID the domain issued .

Windows issues SIDs that consist of a computer or domain SID with a predefined RID to many 
 predefined accounts and groups. For example, the RID for the administrator account is 500, and 
the RID for the guest account is 501 . A computer’s local administrator account, for example, has the 
 computer SID as its base with the RID of 500 appended to it:

S-1-5-21-13124455-12541255-61235125-500

Windows also defines a number of built-in local and domain SIDs to represent well-known groups. 
For example, a SID that identifies any and all accounts (except anonymous users) is the Everyone 
SID: S-1-1-0 . Another example of a group that a SID can represent is the network group, which is the 
group that represents users who have logged on to a machine from the network . The network-group 
SID is S-1-5-2 . Table 6-2, reproduced here from the Windows SDK documentation, shows some basic 
well-known SIDs, their numeric values, and their use. Unlike users’ SIDs, these SIDs are predefined 
constants, and have the same values on every Windows system and domain in the world. Thus, a file 
that is accessible by members of the Everyone group on the system where it was created is also ac-
cessible to Everyone on any other system or domain to which the hard drive where it resides happens 
to be moved . Users on those systems must, of course, authenticate to an account on those systems 
before becoming members of the Everyone group . 

Note See Microsoft Knowledge Base article 243330 for a list of defined SIDs at  
http://support.microsoft.com/kb/243330 .

Finally, Winlogon creates a unique logon SID for each interactive logon session . A typical use of 
a logon SID is in an access control entry (ACE) that allows access for the duration of a client’s logon 
session . For example, a Windows service can use the LogonUser function to start a new logon session . 
The LogonUser function returns an access token from which the service can extract the logon SID . The 
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service can then use the SID in an ACE that allows the client’s logon session to access the  interactive 
window station and desktop . The SID for a logon session is S-1-5-5-0, and the RID is randomly 
 generated .

TABLE 6-2 A Few Well-Known SIDs

SID Group Use

S-1-0-0 Nobody Used when the SID is unknown .

S-1-1-0 Everyone A group that includes all users except anonymous users .

S-1-2-0 Local Users who log on to terminals locally (physically) connected to the system .

S-1-3-0 Creator Owner ID A security identifier to be replaced by the security identifier of the user 
who created a new object . This SID is used in inheritable ACEs .

S-1-3-1 Creator Group ID Identifies a security identifier to be replaced by the primary-group SID of 
the user who created a new object . Use this SID in inheritable ACEs .

S-1-9-0 Resource Manager Used by third-party applications performing their own security on internal 
data (such as Microsoft Exchange) . 

EXPERIMENT: Using PsGetSid and Process Explorer to View SIDs
You can easily see the SID representation for any account you’re using by running the PsGetSid 
utility from Sysinternals . 

PsGetSid’s options allow you to translate machine and user account names to their 
 corresponding SIDs and vice versa .

If you run PsGetSid with no options, it prints the SID assigned to the local computer . By 
using the fact that the Administrator account always has a RID of 500, you can determine the 
name assigned to the account (in cases where a system administrator has renamed the account 
for  security reasons) simply by passing the machine SID appended with -500 as PsGetSid’s 
 command-line argument .

To obtain the SID of a domain account, enter the user name with the domain as a prefix:

c:\>psgetsid redmond\daryl

You can determine the SID of a domain by specifying the domain’s name as the argument to 
PsGetSid:

c:\>psgetsid Redmond

Finally, by examining the RID of your own account, you know at least a number of security 
accounts (equal to the number resulting from subtracting 999 from your RID) have been creat-
ed in your domain or on your local machine (depending on whether you are using a domain or 
local machine account) . You can determine what accounts have been assigned RIDs by passing 
a SID with the RID you want to query to PsGetSid . If PsGetSid reports that no mapping between 
the SID and an account name was possible and the RID is lower than that of your account, you 
know that the account assigned the RID has been deleted .
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For example, to find out the name of the account assigned the twenty-eighth RID, pass the 
domain SID appended with -1027 to PsGetSid:

c:\>psgetsid S-1-5-21-1787744166-3910675280-2727264193-1027  
Account for S-1-5-21-1787744166-3910675280-2727264193-1027:  
User: redmond\daryl

Process Explorer can also show you information on account and group SIDs on your system 
through its Security tab . This tab shows you information such as who owns this process and 
which groups the account is a member of . To view this information, simply double-click on any 
process (for example, Explorer .exe) in the Process list, and then click on the Security tab . You 
should see something similar to the following:

The information displayed in the User field contains the friendly name of the account owning 
this process, while the SID field contains the actual SID value. The Group list includes infor-
mation on all the groups that this account is a member of . (Groups are described later in this 
chapter .)

Integrity Levels
As mentioned earlier, integrity levels can override discretionary access to differentiate a process and 
objects running as and owned by the same user, offering the ability to isolate code and data within 
a user account . The mechanism of mandatory integrity control (MIC) allows the SRM to have more 
detailed information about the nature of the caller by associating it with an integrity level . It also 
 provides information on the trust required to access the object by defining an integrity level for it.  
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These integrity levels are specified by a SID . Though integrity levels can be arbitrary values, the 
 system uses five primary levels to separate privilege levels, as described in Table 6-3 .

TABLE 6-3 Integrity Level SIDs

SID Name (Level) Use

S-1-16-0x0 Untrusted (0) Used by processes started by the Anonymous group . It blocks most write 
 access .

S-1-16-0x1000 Low (1) Used by Protected Mode Internet Explorer . It blocks write access to most 
 objects (such as files and registry keys) on the system.

S-1-16-0x2000 Medium (2) Used by normal applications being launched while UAC is enabled .

S-1-16-0x3000 High (3) Used by administrative applications launched through elevation when UAC 
is enabled, or normal applications if UAC is disabled and the user is an 
 administrator .

S-1-16-0x4000 System (4) Used by services and other system-level applications (such as Wininit, 
Winlogon, Smss, and so forth) .

EXPERIMENT: Looking at the Integrity Level of Processes
You can use Process Explorer from Sysinternals to quickly display the integrity level for the 
 processes on your system . The following steps demonstrate this functionality .

1. Launch Internet Explorer in Protected Mode .

2. Open an elevated Command Prompt window .

3. Open Microsoft Paint normally (without elevating it) .

4. Now open Process Explorer, right-click on any of the columns in the Process list, and 
then click Select Columns . You should see a dialog box similar to the one shown here:
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5. Select the Integrity Level check box, and click OK to close the dialog box and save the 
change .

6. Process Explorer will now show you the integrity level of the processes on your system . 
You should see the Protected Mode Internet Explorer process at Low, Microsoft Paint 
at Medium, and the elevated command prompt at High . Also note that the services 
and system processes are running at an even higher integrity level, System .

Every process has an integrity level that is represented in the process’ token and propagated 
 according to the following rules:

 ■ A process normally inherits the integrity level of its parent (which means an elevated 
 command prompt will spawn other elevated processes) .

 ■ If the file object for the executable image to which the child process belongs has an integrity 
level and the parent process’ integrity level is medium or higher, the child process will inherit 
the lower of the two .

 ■ A parent process can create a child process with an explicit integrity level lower than its own 
(for example, when launching Protected Mode Internet Explorer from an elevated  command 
prompt) . To do this, it uses DuplicateTokenEx to duplicate its own access token, it uses 
 SetTokenInformation to change the integrity level in the new token to the desired level, and 
then it calls CreateProcessAsUser with that new token . 
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EXPERIMENT: Understanding Protected Mode Internet Explorer
As mentioned earlier, one of the users of the Windows integrity mechanism is Internet 
 Explorer’s Protected Mode, also called Protected Mode Internet Explorer (PMIE) . This feature 
was added in Internet Explorer 7 to take advantage of the Windows integrity levels . This experi-
ment will show you how PMIE utilizes integrity levels to provide a safer Internet experience . To 
do this, we’ll use Process Monitor to trace Internet Explorer’s behavior .

1. Make sure that you haven’t disabled UAC and PMIE on your systems (they are both on 
by default), and close any running instances of Internet Explorer .

2. Run Process Monitor, and select Filter, Filter to display the filtering dialog box. Add an 
include filter for the process name Iexplore.exe, as shown next:

3. Run Process Explorer, and repeat the previous experiment to display the Integrity Level 
column .

4. Now launch Internet Explorer. You should see a flurry of events appear in the Process 
Monitor window and a quick succession of events in Process Explorer, showing some 
processes starting and some exiting .

Once Internet Explorer is running, Process Explorer will show you two new Iexplore .exe 
processes, the parent Iexplore .exe running at medium integrity level and its child running at low 
integrity level . 

Part of the added protection offered by PMIE is that Iexplore .exe processes that access 
websites run at low integrity . Because Internet Explorer hosts tabs in multiple processes, if you 
create additional tabs you might see additional instances of Iexplore .exe . There is one parent 
Iexplore .exe process that acts as a broker, providing access to parts of the system not accessible 
by those running at low integrity—for example, to save or open files from other parts of the 
file system. 
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Table 6-3 lists the integrity level associated with processes, but what about objects? Objects also 
have an integrity level stored as part of their security descriptor, in a structure that is called the 
 mandatory label .

To support migrating from previous versions of Windows (whose registry keys and files would 
not include integrity-level information), as well as to make it simpler for application developers, all 
objects have an implicit integrity level to avoid having to manually specify one . This implicit integrity 
level is the medium level, meaning that the mandatory policy (described shortly) on the object will be 
 performed on tokens accessing this object with an integrity level lower than medium .

When a process creates an object without specifying an integrity level, the system checks the 
integrity level in the token . For tokens with a level of medium or higher, the implicit integrity level of 
the object remains medium . However, when a token contains an integrity level lower than medium, 
the object is created with an explicit integrity level that matches the level in the token .

The reason that objects that are created by high or system integrity-level processes have a 
 medium integrity level themselves is so that users can disable and enable UAC: if object integrity 
levels always inherited their creator’s integrity level, the applications of an administrator who disables 
UAC and subsequently re-enables it would potentially fail because the administrator would not be 
able to modify any registry settings or files created when running at the high integrity level. Objects 
can also have an explicit integrity level that is set by the system or by the creator of the object . For 
example, the following objects are given an explicit integrity level by the kernel when it creates them:

 ■ Processes

 ■ Threads

 ■ Tokens

 ■ Jobs

The reason for assigning an integrity level to these objects is to prevent a process for the same 
user, but one running at a lower integrity level, from accessing these objects and modifying their 
content or behavior (for example, DLL injection or code modification).

EXPERIMENT: Looking at the Integrity Level of Objects
You can use the Accesschk tool from Sysinternals to display the integrity level of objects on the 
system, such as files, processes, and registry keys. Here’s an experiment showing the purpose of 
the LocalLow directory in Windows .

1. Browse to C:\Users\UserName\ in a command prompt.



 CHAPTER 6 Security 505

2. Try running Accesschk on the AppData folder, as follows: 

C:\Users\UserName> accesschk –v appdata

3. Note the differences between Local and LocalLow in your output, similar to the one 
shown here:

C:\Users\UserName\AppData\Local 
  Medium Mandatory Level (Default) [No-Write-Up] 
  [...]C:\Users\UserName\AppData\LocalLow 
  Low Mandatory Level [No-Write-Up] 
  [...] 
C:\Users\UserName\AppData\Roaming 
  Medium Mandatory Level (Default) [No-Write-Up] 
  [...]

4. Notice that the LocalLow directory has an integrity level that is set to Low, while the 
Local and Roaming directories have an integrity level of Medium (Default) . The default 
means the system is using an implicit integrity level .

5. You can pass the –e flag to Accesschk so that it displays only explicit integrity  levels. 
If you run the tool on the AppData folder again, you’ll notice only the LocalLow 
 information is displayed .

The –o (Object), –k (Registry Key), and –p (Process) flags allow you to specify something 
other than a file or directory.

Apart from an integrity level, objects also have a mandatory policy, which defines the actual level 
of protection that’s applied based on the integrity-level check . Three types are possible, shown in 
Table 6-4 . The integrity level and the mandatory policy are stored together in the same ACE .

TABLE 6-4 Object Mandatory Policies

Policy Present on, by Default Description

No-Write-Up Implicit on all objects Used to restrict write access coming from a lower integrity 
level process to the object .

No-Read-Up Only on process objects Used to restrict read access coming from a lower integrity 
level process to the object. Specific use on process objects 
protects against information leakage by blocking address 
space reads from an external process .

No-Execute-Up Only on binaries  implementing 
COM classes

Used to restrict execute access coming from a lower integ-
rity level process to the object. Specific use on COM classes 
is to restrict launch-activation permissions on a COM class .
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Tokens
The SRM uses an object called a token (or access token) to identify the security context of a process or 
thread . A security context consists of information that describes the account, groups, and privileges 
associated with the process or thread . Tokens also include information such as the session ID, the 
integrity level, and UAC virtualization state . (We’ll describe both privileges and UAC’s virtualization 
mechanism later in this chapter .)

During the logon process (described at the end of this chapter), LSASS creates an initial token 
to represent the user logging on . It then determines whether the user logging on is a member of a 
 powerful group or possesses a powerful privilege . The groups checked for in this step are as follows: 

 ■ Built-In Administrators

 ■ Certificate Administrators

 ■ Domain Administrators

 ■ Enterprise Administrators

 ■ Policy Administrators

 ■ Schema Administrators

 ■ Domain Controllers

 ■ Enterprise Read-Only Domain Controllers

 ■ Read-Only Domain Controllers

 ■ Account Operators

 ■ Backup Operators

 ■ Cryptographic Operators

 ■ Network Configuration Operators

 ■ Print Operators

 ■ System Operators

 ■ RAS Servers

 ■ Power Users

 ■ Pre-Windows 2000 Compatible Access
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Many of the groups listed are used only on domain-joined systems and don’t give users local 
 administrative rights directly . Instead, they allow users to modify domainwide settings . 

The privileges checked for are

 ■ SeBackupPrivilege

 ■ SeCreateTokenPrivilege

 ■ SeDebugPrivilege

 ■ SeImpersonatePrivilege

 ■ SeLabelPrivilege

 ■ SeLoadDriverPrivilege

 ■ SeRestorePrivilege

 ■ SeTakeOwnershipPrivilege

 ■ SeTcbPrivilege 

These privileges are described in detail in a later section . 

If one or more of these groups or privileges are present, LSASS creates a restricted token for the 
user (also called a filtered admin token), and it creates a logon session for both. The standard user 
token is attached to the initial process or processes that Winlogon starts (by default, Userinit .exe) .

Note If UAC has been disabled, administrators run with a token that includes their 
 administrator group memberships and privileges .

Because child processes by default inherit a copy of the token of their creators, all processes in 
the user’s session run under the same token . You can also generate a token by using the Windows 
 LogonUser function . You can then use this token to create a process that runs within the security 
context of the user logged on through the LogonUser function by passing the token to the Windows 
CreateProcessAsUser function . The CreateProcessWithLogon function combines these into a single call, 
which is how the Runas command launches processes under alternative tokens .

Tokens vary in size because different user accounts have different sets of privileges and  associated 
group accounts . However, all tokens contain the same types of information . The most important 
 contents of a token are represented in Figure 6-4 .
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Token source

Impersonation type

Token ID

Authentication ID

Modified ID

Expiration time

Default primary group

Default DACL

User account SID

Group 1 SID

Group n SID

Restricted SID 1

Restricted SID n

Privilege 1

Privilege n

Session ID

Flags

Logon session

Mandatory policy

FIGURE 6-4 Access tokens

The security mechanisms in Windows use two components to determine what objects can be 
 accessed and what secure operations can be performed . One component comprises the token’s 
user account SID and group SID fields. The security reference monitor (SRM) uses SIDs to determine 
whether a process or thread can obtain requested access to a securable object, such as an NTFS file.

The group SIDs in a token indicate which groups a user’s account is a member of . For example, a 
server application can disable specific groups to restrict a token’s credentials when the server applica-
tion is performing actions requested by a client . Disabling a group produces nearly the same effect as 
if the group wasn’t present in the token . (It results in a deny-only group, described later . Disabled SIDs 
are used as part of security access checks, described later in the chapter .) Group SIDs can also include 
a special SID that contains the integrity level of the process or thread. The SRM uses another field in 
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the token, which describes the mandatory integrity policy, to perform the mandatory integrity check 
described later in the chapter .

The second component in a token that determines what the token’s thread or process can do is 
the privilege array . A token’s privilege array is a list of rights associated with the token . An example 
privilege is the right for the process or thread associated with the token to shut down the computer . 
Privileges are described in more detail later in this chapter .

A token’s default primary group field and default discretionary access control list (DACL) field are 
security attributes that Windows applies to objects that a process or thread creates when it uses the 
token . By including security information in tokens, Windows makes it convenient for a process or 
thread to create objects with standard security attributes, because the process or thread doesn’t need 
to request discrete security information for every object it creates .

Each token’s type distinguishes a primary token (a token that identifies the security context of a 
process) from an impersonation token (a type of token that threads use to temporarily adopt a differ-
ent security context, usually of another user) . Impersonation tokens carry an impersonation level that 
signifies what type of impersonation is active in the token. (Impersonation is described later in this 
chapter .)

A token also includes the mandatory policy for the process or thread, which defines how MIC will 
behave when processing this token . There are two policies:

 ■ TOKEN_MANDATORY_NO_WRITE_UP, which is enabled by default, sets the No-Write-Up policy 
on this token, specifying that the process or thread will not be able to access objects with a 
higher integrity level for write access .

 ■ TOKEN_MANDATORY_NEW_PROCESS_MIN, which is also enabled by default, specifies that the 
SRM should look at the integrity level of the executable image when launching a child process 
and compute the minimum integrity level of the parent process and the file object’s integrity 
level as the child’s integrity level .

Token flags include parameters that determine the behavior of certain UAC and UIPI mechanisms, 
such as virtualization and user interface access . Those mechanisms will be described later in this 
 chapter .

Each token can also contain attributes that are assigned by the Application Identification service 
(part of AppLocker) when AppLocker rules have been defined. AppLocker and its use of attributes in 
the access token are described later in this chapter . 

The remaining fields in a token serve informational purposes. The token source field contains a 
short textual description of the entity that created the token . Programs that want to know where a 
token originated use the token source to distinguish among sources such as the Windows  Session 
Manager, a network file server, or the remote procedure call (RPC) server. The token identifier is 
a locally unique identifier (LUID) that the SRM assigns to the token when it creates the token. The 
Windows executive maintains the executive LUID, a monotonically increasing counter it uses to assign 
a unique numeric identifier to each token. A LUID is guaranteed to be unique only until the system is 
shut down .
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The token authentication ID is another kind of LUID . A token’s creator assigns the token’s 
 authentication ID when calling the LsaLogonUser function . If the creator doesn’t specify a LUID, 
LSASS obtains the LUID from the executive LUID . LSASS copies the authentication ID for all tokens 
 descended from an initial logon token . A program can obtain a token’s authentication ID to see 
whether the token belongs to the same logon session as other tokens the program has examined .

The executive LUID refreshes the modified ID every time a token’s characteristics are modified. An 
application can test the modified ID to discover changes in a security context since the context’s last 
use .

Tokens contain an expiration time field that can be used by applications performing their own 
security to reject a token after a specified amount of time. However, Windows itself does not enforce 
the expiration time of tokens . 

Note To guarantee system security, the fields in a token are immutable (because they are 
located in kernel memory). Except for fields that can be modified through a specific system 
call designed to modify certain token attributes (assuming the caller has the appropriate 
access rights to the token object), data such as the privileges and SIDs in a token can never 
be modified from user mode.

EXPERIMENT: Viewing Access Tokens
The kernel debugger dt _TOKEN command displays the format of an internal token object . 
Although this structure differs from the user-mode token structure returned by Windows API 
security functions, the fields are similar. For further information on tokens, see the description in 
the Windows SDK documentation .

The following output is from the kernel debugger’s dt nt!_TOKEN command:

kd> dt nt!_TOKEN  
   +0x000 TokenSource      : _TOKEN_SOURCE 
   +0x010 TokenId          : _LUID 
   +0x018 AuthenticationId : _LUID 
   +0x020 ParentTokenId    : _LUID 
   +0x028 ExpirationTime   : _LARGE_INTEGER 
   +0x030 TokenLock        : Ptr32 _ERESOURCE 
   +0x034 ModifiedId       : _LUID 
   +0x040 Privileges       : _SEP_TOKEN_PRIVILEGES 
   +0x058 AuditPolicy      : _SEP_AUDIT_POLICY 
   +0x074 SessionId        : Uint4B 
   +0x078 UserAndGroupCount : Uint4B 
   +0x07c RestrictedSidCount : Uint4B 
   +0x080 VariableLength   : Uint4B 
   +0x084 DynamicCharged   : Uint4B 
   +0x088 DynamicAvailable : Uint4B 
   +0x08c DefaultOwnerIndex : Uint4B 
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   +0x090 UserAndGroups    : Ptr32 _SID_AND_ATTRIBUTES 
   +0x094 RestrictedSids   : Ptr32 _SID_AND_ATTRIBUTES 
   +0x098 PrimaryGroup     : Ptr32 Void 
   +0x09c DynamicPart      : Ptr32 Uint4B 
   +0x0a0 DefaultDacl      : Ptr32 _ACL 
   +0x0a4 TokenType        : _TOKEN_TYPE 
   +0x0a8 ImpersonationLevel : _SECURITY_IMPERSONATION_LEVEL 
   +0x0ac TokenFlags       : Uint4B 
   +0x0b0 TokenInUse       : UChar 
   +0x0b4 IntegrityLevelIndex : Uint4B 
   +0x0b8 MandatoryPolicy  : Uint4B 
   +0x0bc ProxyData        : Ptr32 _SECURITY_TOKEN_PROXY_DATA 
   +0x0c0 AuditData        : Ptr32 _SECURITY_TOKEN_AUDIT_DATA 
   +0x0c4 LogonSession     : Ptr32 _SEP_LOGON_SESSION_REFERENCES 
   +0x0c8 OriginatingLogonSession : _LUID 
   +0x0d0 SidHash          : _SID_AND_ATTRIBUTES_HASH 
   +0x158 RestrictedSidHash : _SID_AND_ATTRIBUTES_HASH 
   +0x1e0 VariablePart     : Uint4B

You can examine the token for a process with the !token command. You’ll find the address of 
the token in the output of the !process command, as shown here:

lkd> !process d6c 1 
Searching for Process with Cid == d6c 
PROCESS 85450508  SessionId: 1  Cid: 0d6c    Peb: 7ffda000  ParentCid: 0ecc 
    DirBase: cc9525e0  ObjectTable: afd75518  HandleCount:  18. 
    Image: cmd.exe 
    VadRoot 85328e78 Vads 24 Clone 0 Private 148. Modified 0. Locked 0. 
    DeviceMap a0688138 
    Token                             afd48470 
    ElapsedTime                       01:10:14.379 
    UserTime                          00:00:00.000 
    KernelTime                        00:00:00.000 
    QuotaPoolUsage[PagedPool]         42864 
    QuotaPoolUsage[NonPagedPool]      1152 
    Working Set Sizes (now,min,max)  (566, 50, 345) (2264KB, 200KB, 1380KB) 
    PeakWorkingSetSize                582 
    VirtualSize                       22 Mb 
    PeakVirtualSize                   25 Mb 
    PageFaultCount                    680 
    MemoryPriority                    BACKGROUND 
    BasePriority                      8 
    CommitCharge                      437 
  
lkd> !token afd48470 
_TOKEN afd48470 
TS Session ID: 0x1 
User: S-1-5-21-2778343003-3541292008-524615573-500 (User: ALEX-LAPTOP\Administrator) 
Groups:  
 00 S-1-5-21-2778343003-3541292008-524615573-513 (Group: ALEX-LAPTOP\None) 
    Attributes - Mandatory Default Enabled  
 01 S-1-1-0 (Well Known Group: localhost\Everyone) 
    Attributes - Mandatory Default Enabled  
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 02 S-1-5-21-2778343003-3541292008-524615573-1000 (Alias: ALEX-LAPTOP\Debugger Users) 
    Attributes - Mandatory Default Enabled  
 03 S-1-5-32-544 (Alias: BUILTIN\Administrators) 
    Attributes - Mandatory Default Enabled Owner  
 04 S-1-5-32-545 (Alias: BUILTIN\Users) 
    Attributes - Mandatory Default Enabled  
 05 S-1-5-4 (Well Known Group: NT AUTHORITY\INTERACTIVE) 
    Attributes - Mandatory Default Enabled  
 06 S-1-5-11 (Well Known Group: NT AUTHORITY\Authenticated Users) 
    Attributes - Mandatory Default Enabled  
 07 S-1-5-15 (Well Known Group: NT AUTHORITY\This Organization) 
    Attributes - Mandatory Default Enabled  
 08 S-1-5-5-0-89263 (no name mapped) 
    Attributes - Mandatory Default Enabled LogonId  
 09 S-1-2-0 (Well Known Group: localhost\LOCAL) 
    Attributes - Mandatory Default Enabled  
 10 S-1-5-64-10 (Well Known Group: NT AUTHORITY\NTLM Authentication) 
    Attributes - Mandatory Default Enabled  
 11 S-1-16-12288 Unrecognized SID 
    Attributes - GroupIntegrity GroupIntegrityEnabled  
Primary Group: S-1-5-21-2778343003-3541292008-524615573-513 (Group: ALEX-LAPTOP\None) 
Privs:  
 05 0x000000005 SeIncreaseQuotaPrivilege          Attributes -  
 08 0x000000008 SeSecurityPrivilege               Attributes -  
 09 0x000000009 SeTakeOwnershipPrivilege          Attributes -  
 10 0x00000000a SeLoadDriverPrivilege             Attributes -  
 11 0x00000000b SeSystemProfilePrivilege          Attributes -  
 12 0x00000000c SeSystemtimePrivilege             Attributes -  
 13 0x00000000d SeProfileSingleProcessPrivilege   Attributes -  
 14 0x00000000e SeIncreaseBasePriorityPrivilege   Attributes -  
 15 0x00000000f SeCreatePagefilePrivilege         Attributes -  
 17 0x000000011 SeBackupPrivilege                 Attributes -  
 18 0x000000012 SeRestorePrivilege                Attributes -  
 19 0x000000013 SeShutdownPrivilege               Attributes -  
 20 0x000000014 SeDebugPrivilege                  Attributes -  
 22 0x000000016 SeSystemEnvironmentPrivilege      Attributes -  
 23 0x000000017 SeChangeNotifyPrivilege           Attributes - Enabled Default  
 24 0x000000018 SeRemoteShutdownPrivilege         Attributes -  
 25 0x000000019 SeUndockPrivilege                 Attributes -  
 28 0x00000001c SeManageVolumePrivilege           Attributes -  
 29 0x00000001d SeImpersonatePrivilege            Attributes - Enabled Default  
 30 0x00000001e SeCreateGlobalPrivilege           Attributes - Enabled Default  
 33 0x000000021 SeIncreaseWorkingSetPrivilege     Attributes -  
 34 0x000000022 SeTimeZonePrivilege               Attributes -  
 35 0x000000023 SeCreateSymbolicLinkPrivilege     Attributes -  
Authentication ID:         (0,be1a2) 
Impersonation Level:       Identification 
TokenType:                 Primary 
Source: User32             TokenFlags: 0x0 ( Token in use ) 
Token ID: 711076           ParentToken ID: 0 
Modified ID:               (0, 711081) 
RestrictedSidCount: 0      RestrictedSids: 00000000 
OriginatingLogonSession: 3e7
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You can indirectly view token contents with Process Explorer’s Security tab in its process 
Properties dialog box . The dialog box shows the groups and privileges included in the token of 
the process you examine .

EXPERIMENT: Launching a Program at Low Integrity Level
When you elevate a program, either by using the Run As Administrator option or because the 
program is requesting it, the program is explicitly launched at high integrity level; however, it is 
also possible to launch a program (other than PMIE) at low integrity level by using Psexec from 
Sysinternals:

1. Launch Notepad at low integrity level by using the following command:

c:\psexec –l notepad.exe

2. Try opening a file (such as one of the .XML files) in the %SystemRoot%\System32 
 directory. Notice that you can browse the directory and open any file contained 
within it .

3. Now use Notepad’s File | New command, enter some text in the window, and try 
 saving it in the %SystemRoot%\System32 directory. Notepad should present a 
 message box indicating a lack of permissions and recommend saving the file in the 
Documents folder .

4. Accept Notepad’s suggestion . You will get the same message box again, and 
 repeatedly for each attempt .

5. Now try saving the file in the LocalLow directory of your user profile, shown in an 
experiment earlier in the chapter .

In the previous experiment, saving a file in the LocalLow directory worked because Notepad 
was running with low integrity level, and only the LocalLow directory also had low integrity 
level. All the other locations where you tried to write the file had an implicit medium integrity 
level. (You can verify this with Accesschk.) However, reading from the %SystemRoot%\System32 
directory, as well as opening files within it, did work, even though the directory and its file also 
have an implicit medium integrity level .
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Impersonation
Impersonation is a powerful feature Windows uses frequently in its security model . Windows also uses 
impersonation in its client/server programming model . For example, a server application can provide 
access to resources such as files, printers, or databases. Clients wanting to access a resource send a 
request to the server . When the server receives the request, it must ensure that the client has permis-
sion to perform the desired operations on the resource . For example, if a user on a remote machine 
tries to delete a file on an NTFS share, the server exporting the share must determine whether the 
user is allowed to delete the file. The obvious way to determine whether a user has permission is for 
the server to query the user’s account and group SIDs and scan the security attributes on the file. This 
approach is tedious to program, prone to errors, and wouldn’t permit new security features to be 
supported transparently . Thus, Windows provides impersonation services to simplify the server’s job .

Impersonation lets a server notify the SRM that the server is temporarily adopting the security 
profile of a client making a resource request. The server can then access resources on behalf of the 
client, and the SRM carries out the access validations, but it does so based on the impersonated client 
security context . Usually, a server has access to more resources than a client does and loses some of 
its security credentials during impersonation . However, the reverse can be true: the server can gain 
security credentials during impersonation .

A server impersonates a client only within the thread that makes the impersonation request . 
Thread-control data structures contain an optional entry for an impersonation token . However, a 
thread’s primary token, which represents the thread’s real security credentials, is always accessible in 
the process’ control structure .

Windows makes impersonation available through several mechanisms . For  example, 
if a  server communicates with a client through a named pipe, the server can use the 
 ImpersonateNamedPipeClient Windows API function to tell the SRM that it wants to imper-
sonate the user on the other end of the pipe . If the server is communicating with the client 
through  Dynamic Data Exchange (DDE) or RPC, it can make similar impersonation requests using 
 DdeImpersonateClient and RpcImpersonateClient . A thread can create an impersonation token that’s 
simply a copy of its process token with the ImpersonateSelf function . The thread can then alter its 
 impersonation token, perhaps to disable SIDs or privileges . A Security Support Provider Interface 
(SSPI) package can impersonate its clients with ImpersonateSecurityContext . SSPIs implement a net-
work authentication protocol such as LAN Manager version 2 or Kerberos . Other interfaces such as 
COM expose impersonation through APIs of their own, such as CoImpersonateClient .

After the server thread finishes its task, it reverts to its primary security context. These forms of 
impersonation are convenient for carrying out specific actions at the request of a client and for en-
suring that object accesses are audited correctly . (For example, the audit that is generated gives the 
identity of the impersonated client rather than that of the server process .) The disadvantage to these 
forms of impersonation is that they can’t execute an entire program in the context of a client . In addi-
tion, an impersonation token can’t access files or printers on network shares unless it is a delegation-
level impersonation (described shortly) and has sufficient credentials to authenticate to the remote 
machine, or the file or printer share supports null sessions . (A null session is one that results from an 
anonymous logon .)
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If an entire application must execute in a client’s security context or must access network  resources 
without using impersonation, the client must be logged on to the system . The LogonUser Windows 
API function enables this action . LogonUser takes an account name, a password, a domain or com-
puter name, a logon type (such as interactive, batch, or service), and a logon provider as input, 
and it returns a primary token . A server thread can adopt the token as an impersonation token, or 
the server can start a program that has the client’s credentials as its primary token . From a security 
standpoint, a process created using the token returned from an interactive logon via LogonUser, such 
as with the CreateProcessAsUser API, looks like a program a user starts by logging on to the machine 
interactively . The disadvantage to this approach is that a server must obtain the user’s account name 
and password . If the server transmits this information across the network, the server must encrypt it 
securely so that a malicious user snooping network traffic can’t capture it.

To prevent the misuse of impersonation, Windows doesn’t let servers perform impersonation 
without a client’s consent . A client process can limit the level of impersonation that a server process 
can perform by specifying a security quality of service (SQOS) when connecting to the server . For 
instance, when opening a named pipe, a process can specify SECURITY_ANONYMOUS, SECURITY_
IDENTIFICATION, SECURITY_IMPERSONATION, or SECURITY_DELEGATION as flags for the Windows 
CreateFile function . Each level lets a server perform different types of operations with respect to the 
client’s security context:

 ■ SecurityAnonymous is the most restrictive level of impersonation—the server can’t 
 impersonate or identify the client .

 ■ SecurityIdentification lets the server obtain the identity (the SIDs) of the client and the client’s 
privileges, but the server can’t impersonate the client .

 ■ SecurityImpersonation lets the server identify and impersonate the client on the local system .

 ■ SecurityDelegation is the most permissive level of impersonation . It lets the server 
 impersonate the client on local and remote systems .

Other interfaces such as RPC use different constants with similar meanings (for example,  
RPC_C_IMP_LEVEL_IMPERSONATE) .

If the client doesn’t set an impersonation level, Windows chooses the SecurityImpersonation level 
by default . The CreateFile function also accepts SECURITY_EFFECTIVE_ONLY and SECURITY_CONTEXT_
TRACKING as modifiers for the impersonation setting:

 ■ SECURITY_EFFECTIVE_ONLY prevents a server from enabling or disabling a client’s privileges or 
groups while the server is impersonating .

 ■ SECURITY_CONTEXT_TRACKING specifies that any changes a client makes to its security 
 context are reflected in a server that is impersonating it. If this option isn’t specified, the server 
adopts the context of the client at the time of the impersonation and doesn’t receive any 
changes . This option is honored only when the client and server processes are on the same 
system .
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To prevent spoofing scenarios in which a low integrity process could create a user interface that 
captured user credentials and then used LogonUser to obtain that user’s token, a special integrity pol-
icy applies to impersonation scenarios: a thread cannot impersonate a token of higher integrity than 
its own . For example, a low-integrity application cannot spoof a dialog box that queries administrative 
credentials and then attempt to launch a process at a higher privilege level . The integrity-mechanism 
policy for impersonation access tokens is that the integrity level of the access token that is returned 
by LsaLogonUser must be no higher than the integrity level of the calling process .

Restricted Tokens
A restricted token is created from a primary or impersonation token using the CreateRestrictedToken 
function . The restricted token is a copy of the token it’s derived from, with the following possible 
modifications:

 ■ Privileges can be removed from the token’s privilege array .

 ■ SIDs in the token can be marked as deny-only . These SIDs remove access to any resources for 
which the SID’s access is denied by using a matching access-denied ACE that would otherwise 
be overridden by an ACE granting access to a group containing the SID earlier in the security 
descriptor .

 ■ SIDs in the token can be marked as restricted . These SIDs are subject to a second pass of the 
access-check algorithm, which will parse only the restricted SIDs in the token . The results 
of both the first pass and the second pass must grant access to the resource or no access is 
granted to the object .

Restricted tokens are useful when an application wants to impersonate a client at a reduced 
 security level, primarily for safety reasons when running untrusted code . For example, the restricted 
token can have the shutdown-system privilege removed from it to prevent code executed in the 
restricted token’s security context from rebooting the system .

Filtered Admin Token
As you saw earlier, restricted tokens are also used by UAC to create the filtered admin token that all 
user applications will inherit . A filtered admin token has the following characteristics:

 ■ The integrity level is set to medium .

 ■ The administrator and administrator-like SIDs mentioned previously are marked as deny-
only to prevent a security hole if the group was removed altogether. For example, if a file 
had an access control list (ACL) that denied the Administrators group all access but granted 
some access to another group the user belongs to, the user would be granted access if the 
 Administrators group was absent from the token, which would give the standard user version 
of the user’s identity more access than the user’s administrator identity .

 ■ All privileges are stripped except Change Notify, Shutdown, Undock, Increase Working Set, 
and Time Zone .
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EXPERIMENT: Looking at Filtered Admin Tokens
You can make Explorer launch a process with either the standard user token or the 
 administrator token by following these steps on a Windows machine with UAC enabled:

1. Log on to an account that’s a member of the Administrators group .

2. Click Start, Programs, Accessories, Command Prompt, right-click on the shortcut, 
and then select Run As Administrator . You will see a command prompt with the word 
 Administrator in the title bar .

3. Now repeat the process, but simply click on the shortcut—this will launch a second 
command prompt without administrative privileges .

4. Run Process Explorer, and view the Security tab in the Properties dialog boxes for the 
two command prompt processes you launched . Note that the standard user token 
contains a deny-only SID and a Medium Mandatory Label, and that it has only a 
couple of privileges . The properties on the right in the following screen shot are from 
a command prompt running with an administrator token, and the properties on the 
left are from one running with the filtered administrative token:
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Virtual Service Accounts
Windows provides a specialized type of account known as a virtual service account (or simply virtual 
account) to improve the security isolation and access control of Windows services with minimal 
 administrative effort . (See Chapter 4 for more information on Windows services .) Without this mecha-
nism, Windows services must run either under one of the accounts defined by Windows for its built-in 
services (such as Local Service or Network Service) or under a regular domain account . The accounts 
such as Local Service are shared by many existing services and so offer limited granularity for privi-
lege and access control; furthermore, they cannot be managed across the domain . Domain accounts 
require periodic password changes for security, and the availability of services during a password 
change cycle might be affected . Furthermore, for best isolation, each service should run under its own 
account, but with ordinary accounts this multiplies the management effort . 

With virtual service accounts, each service runs under its own account with its own security ID . The 
name of the account is always “NT SERVICE\” followed by the internal name of the service. Virtual ser-
vice accounts can appear in access control lists and can be associated with privileges via Group Policy 
like any other account name . They cannot, however, be created or deleted through the usual account 
management tools, nor assigned to groups . 

Windows automatically sets and periodically changes the password of the virtual service  account . 
Similar to the “Local System and other service accounts” account, there is a password, but the 
 password is unknown to the system administrators 

EXPERIMENT: Using Virtual Service Accounts
You can create a service that runs under a virtual service account by using the Sc (service 
 control) tool by following these steps:

1. In an Administrator command prompt, use the create command of the command-line 
tool Sc (service control) to create a service and a virtual account in which it will run . 
This example uses the “srvany” service from an earlier Windows Resource Kit: 

C:\Windows\system32>sc create srvany obj= "NT SERVICE\srvany"  binPath= "d:\a\
test\srvany.exe" 
[SC] CreateService SUCCESS

2. The previous command created the service (in the registry and also in the service 
 controller manager’s internal list) and also created the virtual service account . Now 
Run the Services MMC snap-in (services .msc), select the new service, and look at the 
Log On tab in the Properties dialog . 
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3. You can also use the service properties dialog to create a virtual service account for an 
existing service. To do so, change the account name to “NT SERVICE\servicename and 
clear both password fields. Note, however, that existing services might not run cor-
rectly under a virtual service account, because that account might not have access to 
files or other resources needed by the service. 

4. If you run Process Explorer and view the Security tab in the Properties dialog boxes for 
a service that uses a virtual account, you can observe the virtual account name and its 
security ID (SID) . 
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5. The virtual service account can appear in an access control entry for any object (such 
as a file) the service needs to access. If you open the Properties dialog’s Security tab 
for a file and create an ACL that references the virtual service account, you will find 
that the account name you typed (for example, NT SERVICE\srvany) is changed to 
simply the service name (srvany) by the Check Names function, and it appears in the 
access control list in this shortened form . 
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6. The virtual service account can be granted permissions (or user rights) via Group 
Policy . In this example, the virtual account for the srvany service has been granted the 
right to create a pagefile. 

 

7. You won’t see the virtual service account in user administration tools like lusrmgr .msc 
because it is not stored in the SAM registry hive . However, if you examine the registry 
within the context of the built-in System account (as described previously), you will see 
evidence of the account in the HKLM\Security\Policy\Secrets key: 

C:\>psexec –s –i –d c:\windows\regedit.exe
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Security Descriptors and Access Control
Tokens, which identify a user’s credentials, are only part of the object security equation . Another part 
of the equation is the security information associated with an object, which specifies who can perform 
what actions on the object . The data structure for this information is called a security descriptor . A 
security descriptor consists of the following attributes:

 ■ Revision number The version of the SRM security model used to create the descriptor .

 ■ Flags Optional modifiers that define the behavior or characteristics of the descriptor. These 
flags are listed in Table 6-5.

 ■ Owner SID The owner’s security ID .

 ■ Group SID The security ID of the primary group for the object (used only by POSIX) .

 ■ Discretionary access control list (DACL) Specifies who has what access to the object.

 ■ System access control list (SACL) Specifies which operations by which users should be 
logged in the security audit log and the explicit integrity level of an object .

TABLE 6-5 Security Descriptor Flags

Flag Meaning

SE_OWNER_DEFAULTED Indicates a security descriptor with a default owner security identifier (SID). Use 
this bit to find all the objects that have default owner permissions set.

SE_GROUP_DEFAULTED Indicates a security descriptor with a default group SID. Use this bit to find all the 
objects that have default group permissions set .

SE_DACL_PRESENT Indicates a security descriptor that has a DACL. If this flag is not set, or if this flag 
is set and the DACL is NULL, the security descriptor allows full access to everyone .

SE_DACL_DEFAULTED Indicates a security descriptor with a default DACL . For example, if an object 
creator does not specify a DACL, the object receives the default DACL from the 
access token of the creator. This flag can affect how the system treats the DACL, 
with respect to access control entry (ACE) inheritance . The system ignores this 
flag if the SE_DACL_PRESENT flag is not set.

SE_SACL_PRESENT Indicates a security descriptor that has a system access control list (SACL) .

SE_SACL_DEFAULTED Indicates a security descriptor with a default SACL . For example, if an object 
 creator does not specify an SACL, the object receives the default SACL from the 
access token of the creator. This flag can affect how the system treats the SACL 
with respect to ACE inheritance. The system ignores this flag if the SE_SACL_
PRESENT flag is not set.

SE_DACL_UNTRUSTED Indicates that the ACL pointed to by the DACL of the security descriptor was 
 provided by an untrusted source. If this flag is set and a compound ACE is 
 encountered, the system will substitute known valid SIDs for the server SIDs in the 
ACEs .

SE_SERVER_SECURITY Requests that the provider for the object protected by the security descriptor 
should be a server ACL based on the input ACL, regardless of its source (explicit 
or defaulting) . This is done by replacing all the GRANT ACEs with compound ACEs 
granting the current server access. This flag is meaningful only if the subject is 
impersonating .
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Flag Meaning

SE_DACL_AUTO_INHERIT_
REQ

Requests that the provider for the object protected by the security descriptor 
automatically propagate the DACL to existing child objects . If the provider sup-
ports automatic inheritance, the DACL is propagated to any existing child objects, 
and the SE_DACL_AUTO_INHERITED bit in the security descriptor of the parent 
and child objects is set .

SE_SACL_AUTO_INHERIT_
REQ

Requests that the provider for the object protected by the security descriptor 
automatically propagate the SACL to existing child objects . If the provider sup-
ports automatic inheritance, the SACL is propagated to any existing child objects, 
and the SE_SACL_AUTO_INHERITED bit in the security descriptors of the parent 
object and child objects is set .

SE_DACL_AUTO_
INHERITED

Indicates a security descriptor in which the DACL is set up to support automatic 
propagation of inheritable ACEs to existing child objects . The system sets this 
bit when it performs the automatic inheritance algorithm for the object and its 
 existing child objects . 

SE_SACL_AUTO_
INHERITED

Indicates a security descriptor in which the SACL is set up to support automatic 
propagation of inheritable ACEs to existing child objects . The system sets this 
bit when it performs the automatic inheritance algorithm for the object and its 
 existing child objects . 

SE_DACL_PROTECTED Prevents the DACL of a security descriptor from being modified by inheritable 
ACEs .

SE_SACL_PROTECTED Prevents the SACL of a security descriptor from being modified by inheritable 
ACEs .

SE_RM_CONTROL_VALID Indicates that the resource control manager bits in the security descriptor are 
valid . The resource control manager bits are 8 bits in the security descriptor 
 structure that contains information specific to the resource manager accessing 
the structure .

SE_SELF_RELATIVE Indicates a security descriptor in self-relative format, with all the security 
 information in a contiguous block of memory. If this flag is not set, the security 
descriptor is in absolute format .

An access control list (ACL) is made up of a header and zero or more access control entry (ACE) 
structures . There are two types of ACLs: DACLs and SACLs . In a DACL, each ACE contains a SID and an 
access mask (and a set of flags, explained shortly), which typically specifies the access rights (Read, 
Write, Delete, and so forth) that are granted or denied to the holder of the SID . There are nine types 
of ACEs that can appear in a DACL: access allowed, access denied, allowed object, denied object, 
allowed callback, denied callback, allowed object callback, denied-object callback, and conditional 
claims . As you would expect, the access-allowed ACE grants access to a user, and the access-denied 
ACE denies the access rights specified in the access mask. The callback ACEs are used by applications 
that make use of the AuthZ API (described later) to register a callback that AuthZ will call when it 
performs an access check involving this ACE .

The difference between allowed object and access allowed, and between denied object and  access 
denied, is that the object types are used only within Active Directory . ACEs of these types have a 
GUID (globally unique identifier) field that indicates that the ACE applies only to particular objects or 
subobjects (those that have GUID identifiers). In addition, another optional GUID indicates what type 
of child object will inherit the ACE when a child is created within an Active Directory container that 
has the ACE applied to it. (A GUID is a 128-bit identifier guaranteed to be universally unique.) The 
conditional claims ACE is stored in a *-callback type ACE structure and is described in the section on 
the AuthZ APIs . 
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The accumulation of access rights granted by individual ACEs forms the set of access rights granted 
by an ACL . If no DACL is present (a null DACL) in a security descriptor, everyone has full access to the 
object . If the DACL is empty (that is, it has zero ACEs), no user has access to the object .

The ACEs used in DACLs also have a set of flags that control and specify characteristics of the 
ACE related to inheritance . Some object namespaces have containers and objects . A container can 
hold other container objects and leaf objects, which are its child objects . Examples of containers are 
directories in the file system namespace and keys in the registry namespace. Certain flags in an ACE 
control how the ACE propagates to child objects of the container associated with the ACE . Table 6-6, 
reproduced in part from the Windows SDK, lists the inheritance rules for ACE flags.

TABLE 6-6 Inheritance Rules for ACE Flags

Flag Inheritance Rule

CONTAINER_INHERIT_ACE Child objects that are containers, such as directories, inherit the ACE as an 
 effective ACE . The inherited ACE is inheritable unless the NO_PROPAGATE_
INHERIT_ACE bit flag is also set.

INHERIT_ONLY_ACE This flag indicates an inherit-only ACE that doesn’t control access to the object it’s 
attached to. If this flag is not set, the ACE controls access to the object to which it 
is attached .

INHERITED_ACE This flag indicates that the ACE was inherited. The system sets this bit when it 
propagates an inheritable ACE to a child object .

NO_PROPAGATE_INHERIT_ACE If the ACE is inherited by a child object, the system clears the OBJECT_INHERIT_
ACE and CONTAINER_INHERIT_ACE flags in the inherited ACE. This action prevents 
the ACE from being inherited by subsequent generations of objects .

OBJECT_INHERIT_ACE Noncontainer child objects inherit the ACE as an effective ACE . For child objects 
that are containers, the ACE is inherited as an inherit-only ACE unless the  
NO_PROPAGATE_INHERIT_ACE bit flag is also set.

A SACL contains two types of ACEs, system audit ACEs and system audit-object ACEs . These ACEs 
specify which operations performed on the object by specific users or groups should be audited. 
Audit information is stored in the system Audit Log . Both successful and unsuccessful attempts can be 
audited. Like their DACL object-specific ACE cousins, system audit-object ACEs specify a GUID indicat-
ing the types of objects or subobjects that the ACE applies to and an optional GUID that controls 
propagation of the ACE to particular child object types . If a SACL is null, no auditing takes place on 
the object. (Security auditing is described later in this chapter.) The inheritance flags that apply to 
DACL ACEs also apply to system audit and system audit-object ACEs .

Figure 6-5 is a simplified picture of a file object and its DACL.
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FIGURE 6-5 Discretionary access control list (DACL)
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As shown in Figure 6-5, the first ACE allows USER1 to query the file. The second ACE allows 
 members of the group TEAM1 to have read and write access to the file, and the third ACE grants all 
other users (Everyone) execute access .

EXPERIMENT: Viewing a Security Descriptor
Most executive subsystems rely on the object manager’s default security functionality to 
 manage security descriptors for their objects . The object manager’s default security functions 
use the security descriptor pointer to store security descriptors for such objects . For example, 
the process manager uses default security, so the object manager stores process and thread 
 security descriptors in the object headers of process and thread objects, respectively . The secu-
rity descriptor pointer of events, mutexes, and semaphores also store their security descriptors . 
You can use live kernel debugging to view the security descriptors of these objects once you 
locate their object header, as outlined in the following steps . (Note that both Process Explorer 
and AccessChk can also show security descriptors for processes .)

1. Start the kernel debugger .

2. Type !process 0 0 explorer .exe to obtain process information about Explorer:

lkd> !process 0 0 explorer.exe 
PROCESS 85a3e030  SessionId: 1  Cid: 0aa4    Peb: 7ffd4000  ParentCid: 0a84 
    DirBase: 0f419000  ObjectTable: 952cdd18  HandleCount: 1046. 
    Image: explorer.exe

3. Type !object with the address following the word PROCESS in the output of the 
 previous command as the argument to show the object data structure:

lkd> !object 85a3e030   
Object: 85a3e030  Type: (842339e0) Process 
    ObjectHeader: 85a3e018 (new version) 
    HandleCount: 8  PointerCount: 497

4. Type dt _OBJECT_HEADER and the address of the object header field from the 
previous command’s output to show the object header data structure, including the 
security descriptor pointer value:

lkd> dt _OBJECT_HEADER 85a3e018  
nt!_OBJECT_HEADER 
   +0x000 PointerCount     : 0n497 
   +0x004 HandleCount      : 0n8 
   +0x004 NextToFree       : 0x00000008 Void 
   +0x008 Lock             : _EX_PUSH_LOCK 
   +0x00c TypeIndex        : 0x7 '' 
   +0x00d TraceFlags       : 0 '' 
   +0x00e InfoMask         : 0x8 '' 
   +0x00f Flags            : 0 '' 
   +0x010 ObjectCreateInfo : 0x8577e940 _OBJECT_CREATE_INFORMATION 
   +0x010 QuotaBlockCharged : 0x8577e940 Void 
   +0x014 SecurityDescriptor : 0x97ed0b94 Void 
   +0x018 Body             : _QUAD
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5. Finally, use the debugger’s !sd command to dump the security descriptor . The  security 
descriptor pointer in the object header uses some of the low-order bits as flags, and 
these must be zeroed before following the pointer . On 32-bit systems there are three 
flag bits, so use & –8 with the security descriptor address displayed in the object 
header structure, as follows. On 64-bit systems there are four flag bits, so you use & 
–10 instead . 

lkd> !sd 0x97ed0b94 & -8 
->Revision: 0x1 
->Sbz1    : 0x0 
->Control : 0x8814 
            SE_DACL_PRESENT 
            SE_SACL_PRESENT 
            SE_SACL_AUTO_INHERITED 
            SE_SELF_RELATIVE 
->Owner   : S-1-5-21-1488595123-1430011218-1163345924-1000 
->Group   : S-1-5-21-1488595123-1430011218-1163345924-513 
->Dacl    :  
->Dacl    : ->AclRevision: 0x2 
->Dacl    : ->Sbz1       : 0x0 
->Dacl    : ->AclSize    : 0x5c 
->Dacl    : ->AceCount   : 0x3 
->Dacl    : ->Sbz2       : 0x0 
->Dacl    : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
->Dacl    : ->Ace[0]: ->AceFlags: 0x0 
->Dacl    : ->Ace[0]: ->AceSize: 0x24 
->Dacl    : ->Ace[0]: ->Mask : 0x001fffff 
->Dacl    : ->Ace[0]: ->SID: S-1-5-21-1488595123-1430011218-1163345924-1000 
 
->Dacl    : ->Ace[1]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
->Dacl    : ->Ace[1]: ->AceFlags: 0x0 
->Dacl    : ->Ace[1]: ->AceSize: 0x14 
->Dacl    : ->Ace[1]: ->Mask : 0x001fffff 
->Dacl    : ->Ace[1]: ->SID: S-1-5-18 
 
->Dacl    : ->Ace[2]: ->AceType: ACCESS_ALLOWED_ACE_TYPE 
->Dacl    : ->Ace[2]: ->AceFlags: 0x0 
->Dacl    : ->Ace[2]: ->AceSize: 0x1c 
->Dacl    : ->Ace[2]: ->Mask : 0x00121411 
->Dacl    : ->Ace[2]: ->SID: S-1-5-5-0-178173 
 
->Sacl    :  
->Sacl    : ->AclRevision: 0x2 
->Sacl    : ->Sbz1       : 0x0 
->Sacl    : ->AclSize    : 0x1c 
->Sacl    : ->AceCount   : 0x1 
->Sacl    : ->Sbz2       : 0x0 
->Sacl    : ->Ace[0]: ->AceType: SYSTEM_MANDATORY_LABEL_ACE_TYPE 
->Sacl    : ->Ace[0]: ->AceFlags: 0x0 
->Sacl    : ->Ace[0]: ->AceSize: 0x14 
->Sacl    : ->Ace[0]: ->Mask : 0x00000003 
->Sacl    : ->Ace[0]: ->SID: S-1-16-8192
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The security descriptor contains three access-allowed ACEs: one for the current user (S-1-5-
21-1488595123-1430011218-1163345924-1000), one for the System account (S-1-5-18), and the 
last for the Logon SID (S-1-5-5-0-178173) . The system access control list has one entry (S-1-16-
8192) labeling the process as medium integrity level . 

ACL Assignment
To determine which DACL to assign to a new object, the security system uses the first applicable rule 
of the following four assignment rules:

1. If a caller explicitly provides a security descriptor when creating the object, the security system 
applies it to the object . If the object has a name and resides in a container object (for example, 
a named event object in the \BaseNamedObjects object manager namespace directory), the 
system merges any inheritable ACEs (ACEs that might propagate from the object’s container) 
into the DACL unless the security descriptor has the SE_DACL_PROTECTED flag set, which 
prevents inheritance .

2. If a caller doesn’t supply a security descriptor and the object has a name, the security system 
looks at the security descriptor in the container in which the new object name is stored . Some 
of the object directory’s ACEs might be marked as inheritable, meaning that they should be 
applied to new objects created in the object directory . If any of these inheritable ACEs are 
present, the security system forms them into an ACL, which it attaches to the new object . 
(Separate flags indicate ACEs that should be inherited only by container objects rather than by 
objects that aren’t containers .)

3. If no security descriptor is specified and the object doesn’t inherit any ACEs, the security 
 system retrieves the default DACL from the caller’s access token and applies it to the new 
object . Several subsystems on Windows have hard-coded DACLs that they assign on object 
creation (for example, services, LSA, and SAM objects) .

4. If there is no specified descriptor, no inherited ACEs, and no default DACL, the system creates 
the object with no DACL, which allows everyone (all users and groups) full access to the object . 
This rule is the same as the third rule, in which a token contains a null default DACL .

The rules the system uses when assigning a SACL to a new object are similar to those used for 
DACL assignment, with some exceptions. The first is that inherited system audit ACEs don’t propa-
gate to objects with security descriptors marked with the SE_SACL_PROTECTED flag (similar to the 
SE_DACL_PROTECTED flag, which protects DACLs). Second, if there are no specified security audit 
ACEs and there is no inherited SACL, no SACL is applied to the object . This behavior is different from 
that used to apply default DACLs because tokens don’t have a default SACL .

When a new security descriptor containing inheritable ACEs is applied to a container, the system 
automatically propagates the inheritable ACEs to the security descriptors of child objects . (Note that 
a security descriptor’s DACL doesn’t accept inherited DACL ACEs if its SE_DACL_PROTECTED flag is 
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enabled, and its SACL doesn’t inherit SACL ACEs if the descriptor has the SE_SACL_PROTECTED flag 
set .) The order in which inheritable ACEs are merged with an existing child object’s security descriptor 
is such that any ACEs that were explicitly applied to the ACL are kept ahead of ACEs that the object 
inherits . The system uses the following rules for propagating inheritable ACEs:

 ■ If a child object with no DACL inherits an ACE, the result is a child object with a DACL 
 containing only the inherited ACE .

 ■ If a child object with an empty DACL inherits an ACE, the result is a child object with a DACL 
containing only the inherited ACE .

 ■ For objects in Active Directory only, if an inheritable ACE is removed from a parent object, 
automatic inheritance removes any copies of the ACE inherited by child objects .

 ■ For objects in Active Directory only, if automatic inheritance results in the removal of all ACEs 
from a child object’s DACL, the child object has an empty DACL rather than no DACL .

As you’ll soon discover, the order of ACEs in an ACL is an important aspect of the Windows security 
model .

Note Inheritance is generally not directly supported by the object stores, such as file 
 systems, the registry, or Active Directory . Windows APIs that support inheritance,  including 
SetEntriesInAcl, do so by invoking appropriate functions within the security inheritance 
support DLL (%SystemRoot%\System32\Ntmarta.dll) that know how to traverse those 
 object stores .

Determining Access
Two methods are used for determining access to an object:

 ■ The mandatory integrity check, which determines whether the integrity level of the caller 
is high enough to access the resource, based on the resource’s own integrity level and its 
 mandatory policy .

 ■ The discretionary access check, which determines the access that a specific user account has to 
an object .

When a process tries to open an object, the integrity check takes place before the standard 
Windows DACL check in the kernel’s SeAccessCheck function because it is faster to execute and can 
quickly eliminate the need to perform the full discretionary access check . Given the default integrity 
policies in its access token (TOKEN_MANDATORY_NO_WRITE_UP and TOKEN_MANDATORY_NEW_
PROCESS_MIN, described previously), a process can open an object for write access if its integrity 
level is equal to or higher than the object’s integrity level and the DACL also grants the process the 
accesses it desires . For example, a low-integrity-level process cannot open a medium-integrity-level 
process for write access, even if the DACL grants the process write access .
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With the default integrity policies, processes can open any object—with the exception of process, 
thread, and token objects—for read access as long as the object’s DACL grants them read access . 
That means a process running at low integrity level can open any files accessible to the user account 
in which it’s running . Protected Mode Internet Explorer uses integrity levels to help prevent malware 
that infects it from modifying user account settings, but it does not stop malware from reading the 
user’s documents .

Recall that process and thread objects are exceptions because their integrity policy also includes 
No-Read-Up . That means a process integrity level must be equal to or higher than the integrity level 
of the process or thread it wants to open, and the DACL must grant it the accesses it wants for an 
attempt to open it to succeed . Assuming the DACLs allow the desired access, Figure 6-6 shows the 
types of access that the processes running at medium or low have to other processes and objects .

Read
Write

Medium

High

Low

Medium integrity
level process

Low integrity
level process

Medium

High

Low

Processes Objects

FIGURE 6-6 Access to processes versus objects for medium and low integrity level processes

User Interface Privilege Isolation
The Windows messaging subsystem also honors integrity levels to implement User Interface 
Privilege Isolation (UIPI) . The subsystem does this by preventing a process from sending window 
messages to the windows owned by a process having a higher integrity level, with the following 
informational messages being exceptions:

 ■ WM_NULL

 ■ WM_MOVE

 ■ WM_SIZE

 ■ WM_GETTEXT

 ■ WM_GETTEXTLENGTH
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 ■ WM_GETHOTKEY

 ■ WM_GETICON

 ■ WM_RENDERFORMAT

 ■ WM_DRAWCLIPBOARD

 ■ WM_CHANGECBCHAIN

 ■ WM_THEMECHANGED

This use of integrity levels prevents standard user processes from driving input into the 
windows of elevated processes or from performing a shatter attack (such as sending the process 
malformed messages that trigger internal buffer overflows, which can lead to the execution 
of code at the elevated process’ privilege level) . UIPI also blocks window hooks from affecting 
the windows of higher integrity level processes so that a standard user process can’t log the 
keystrokes the user types into an administrative application, for example . Journal hooks are also 
blocked in the same way to prevent lower integrity level processes from monitoring the behav-
ior of higher integrity level processes .

Processes can choose to allow additional messages to pass the guard by calling the 
ChangeWindowMessageEx API . This function is typically used to add messages required by 
custom controls to communicate outside native common controls in Windows . An older API, 
ChangeWindowMessageFilter performs a similar function, but it is per-process rather than 
per-window . With ChangeWindowMessageFilter it is possible for two custom controls inside the 
same process to be using the same internal window messages, which could lead to one control’s 
potentially malicious window message to be allowed through, simply because it happens to be 
a query-only message for the other custom control .

Because accessibility applications such as the On-Screen Keyboard (Osk .exe) are subject to 
UIPI’s restrictions (which would require the accessibility application to be executed for each kind 
of visible integrity-level process on the desktop), these processes can enable UI Access . This 
flag can be present in the manifest file of the image and will run the process at a slightly higher 
integrity level than medium (between 0x2000 and 0x3000) if launched from a standard user 
account, or at high integrity level if launched from an administrator account . Note that in the 
second case, an elevation request won’t actually be displayed. For a process to set this flag, its 
image must also be signed and in one of several secure locations, including %SystemRoot% and 
%ProgramFiles% .

After the integrity check is complete, and assuming the mandatory policy allows access to the 
object based on the caller’s integrity, one of two algorithms is used for the discretionary check to an 
object, which will determine the final outcome of the access check:

 ■ Determine the maximum access allowed to the object, a form of which is exported to user 
mode with the Windows GetEffectiveRightsFromAcl function . This is also used when a program 
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specifies a desired access of MAXIMUM_ALLOWED, which is what the legacy APIs that don’t 
have a desired access parameter use .

 ■ Determine whether a specific desired access is allowed, which can be done with the Windows 
AccessCheck function or the AccessCheckByType function .

The first algorithm examines the entries in the DACL as follows:

1. If the object has no DACL (a null DACL), the object has no protection and the security system 
grants all access .

2. If the caller has the take-ownership privilege, the security system grants write-owner access 
before examining the DACL . (Take-ownership privilege and write-owner access are explained 
in a moment .)

3. If the caller is the owner of the object, the system looks for an OWNER_RIGHTS SID and uses 
that SID as the SID for the next steps . Otherwise, read-control and write-DACL access rights 
are granted .

4. For each access-denied ACE that contains a SID that matches one in the caller’s access token, 
the ACE’s access mask is removed from the granted-access mask .

5. For each access-allowed ACE that contains a SID that matches one in the caller’s access token, 
the ACE’s access mask is added to the granted-access mask being computed, unless that 
 access has already been denied .

When all the entries in the DACL have been examined, the computed granted-access mask is 
returned to the caller as the maximum allowed access to the object . This mask represents the total set 
of access types that the caller will be able to successfully request when opening the object .

The preceding description applies only to the kernel-mode form of the algorithm . The Windows 
version implemented by GetEffectiveRightsFromAcl differs in that it doesn’t perform step 2, and it 
considers a single user or group SID rather than an access token .

Owner Rights
Because owners of an object can normally override the security of an object by always being 
granted read-control and write-DACL rights, a specialized method of controlling this behavior is 
exposed by Windows: the Owner Rights SID .

The Owner Rights SID exists for two main reasons: improving service hardening in the op-
erating system, and allowing more flexibility for specific usage scenarios. For example, suppose 
an administrator wants to allow users to create files and folders but not to modify the ACLs on 
those objects. (Users could inadvertently or maliciously grant access to those files or folders to 
unwanted accounts .) By using an inheritable Owner Rights SID, the users can be prevented from 
editing or even viewing the ACL on the objects they create . A second usage scenario relates to 
group changes. Suppose an employee has been part of some confidential or sensitive group, 
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has created several files while a member of that group, and has now been removed from the 
group for business reasons . Because that employee is still a user, he could continue accessing 
the sensitive files.

As mentioned, Windows also uses the Owner Rights SID to improve service hardening . 
Whenever a service creates an object at run time, the Owner SID associated with that object is 
the account the service is running in (such as local system or local service) and not the actual 
service SID . This means that any other service in the same account would have access to the 
object by being an owner . The Owner Rights SID prevents that unwanted behavior .

The second algorithm is used to determine whether a specific access request can be granted, 
based on the caller’s access token . Each open function in the Windows API that deals with securable 
objects has a parameter that specifies the desired access mask, which is the last component of the 
security equation . To determine whether the caller has access, the following steps are performed:

1. If the object has no DACL (a null DACL), the object has no protection and the security system 
grants the desired access .

2. If the caller has the take-ownership privilege, the security system grants write-owner access if 
requested and then examines the DACL . However, if write-owner access was the only access 
requested by a caller with take-ownership privilege, the security system grants that access and 
never examines the DACL .

3. If the caller is the owner of the object, the system looks for an OWNER_RIGHTS SID and uses 
that SID as the SID for the next steps . Otherwise, read-control and write-DACL access rights 
are granted . If these rights were the only access rights that the caller requested, access is 
granted without examining the DACL

4. Each ACE in the DACL is examined from first to last. An ACE is processed if one of the 
 following conditions is satisfied:

a. The ACE is an access-deny ACE, and the SID in the ACE matches an enabled SID (SIDs can 
be enabled or disabled) or a deny-only SID in the caller’s access token .

b. The ACE is an access-allowed ACE, and the SID in the ACE matches an enabled SID in the 
caller’s token that isn’t of type deny-only .

c. It is the second pass through the descriptor for restricted-SID checks, and the SID in the 
ACE matches a restricted SID in the caller’s access token .

d. The ACE isn’t marked as inherit-only .
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5. If it is an access-allowed ACE, the rights in the access mask in the ACE that were requested are 
granted; if all the requested access rights have been granted, the access check succeeds . If it is 
an access-denied ACE and any of the requested access rights are in the denied-access rights, 
access is denied to the object .

6. If the end of the DACL is reached and some of the requested access rights still haven’t been 
granted, access is denied .

7.  If all accesses are granted but the caller’s access token has at least one restricted SID, the 
 system rescans the DACL’s ACEs looking for ACEs with access-mask matches for the accesses 
the user is requesting and a match of the ACE’s SID with any of the caller’s restricted SIDs . 
Only if both scans of the DACL grant the requested access rights is the user granted access to 
the object .

The behavior of both access-validation algorithms depends on the relative ordering of allow and 
deny ACEs . Consider an object with only two ACEs, where one ACE specifies that a certain user is 
 allowed full access to an object and the other ACE denies the user access . If the allow ACE precedes 
the deny ACE, the user can obtain full access to the object, but if the order is reversed, the user can-
not gain any access to the object .

Several Windows functions, such as SetSecurityInfo and SetNamedSecurityInfo, apply ACEs in the 
preferred order of explicit deny ACEs preceding explicit allow ACEs . Note that the security editor 
dialog boxes with which you edit permissions on NTFS files and registry keys, for example, use these 
functions . SetSecurityInfo and SetNamedSecurityInfo also apply ACE inheritance rules to the security 
descriptor on which they are applied .

Figure 6-7 shows an example access validation demonstrating the importance of ACE ordering . In 
the example, access is denied a user wanting to open a file even though an ACE in the object’s DACL 
grants the access because the ACE denying the user access (by virtue of the user’s membership in the 
Writers group) precedes the ACE granting access .

As we stated earlier, because it wouldn’t be efficient for the security system to process the DACL 
every time a process uses a handle, the SRM makes this access check only when a handle is opened, 
not each time the handle is used . Thus, once a process successfully opens a handle, the security 
system can’t revoke the access rights that have been granted, even if the object’s DACL changes . Also 
keep in mind that because kernel-mode code uses pointers rather than handles to access objects, the 
access check isn’t performed when the operating system uses objects . In other words, the Windows 
executive trusts itself (and all loaded drivers) in a security sense .

The fact that an object’s owner is always granted write-DACL access to an object means that users 
can never be prevented from accessing the objects they own . If, for some reason, an object had an 
empty DACL (no access), the owner would still be able to open the object with write-DACL access and 
then apply a new DACL with the desired access permissions .
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FIGURE 6-7 Access validation example

A Warning Regarding the GUI Security Editors
When you use the GUI permissions editors to modify security settings on a file, a registry, or an 
Active Directory object, or on another securable object, the main security dialog box shows you 
a potentially misleading view of the security that’s applied to the object . If you allow Full Con-
trol to the Everyone group and deny the Administrator group Full Control, the list might lead 
you to believe that the Everyone group access-allowed ACE precedes the Administrator deny 
ACE because that’s the order in which they appear . However, as we’ve said, the editors place 
deny ACEs before allow ACEs when they apply the ACL to the object .
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The Permissions tab of the Advanced Security Settings dialog box shows the order of ACEs 
in the DACL . However, even this dialog box can be confusing because a complex DACL can have 
deny ACEs for various accesses followed by allow ACEs for other access types .

 

The only definitive way to know what accesses a particular user or group will have to an 
object (other than having that user or a member of the group try to access the object) is to use 
the Effective Permissions tab of the dialog box that is displayed when you click the Advanced 
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button in the Properties dialog box . Enter the name of the user or group you want to check, 
and the dialog box shows you what permissions they are allowed for the object .

 

The AuthZ API

The AuthZ Windows API provides authorization functions and implement the same security 
model as the security reference monitor, but it implements the model totally in user mode in the 
% SystemRoot%\System32\Authz.dll library. This gives applications that want to protect their own 
private objects, such as database tables, the ability to leverage the Windows security model without 
incurring the cost of user mode to kernel mode transitions that they would make if they relied on the 
security reference monitor .

The AuthZ API uses standard security descriptor data structures, SIDs, and privileges . Instead of 
using tokens to represent clients, AuthZ uses AUTHZ_CLIENT_CONTEXT . AuthZ includes user-mode 
equivalents of all access-check and Windows security functions—for example, AuthzAccessCheck is 
the AuthZ version of the AccessCheck Windows API that uses the SeAccessCheck security reference 
monitor function .

Another advantage available to applications that use AuthZ is that they can direct AuthZ to cache 
the results of security checks to improve subsequent checks that use the same client context and 
security descriptor . AuthZ is fully documented in the Windows SDK .
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The discretionary access control security mechanisms described previously have been part of the 
Windows NT family since the beginning, and they work well enough in a static, controlled environ-
ment . This type of access checking, using a security ID (SID) and security group membership, is known 
as identity-based access control (IBAC), and it requires that the security system knows the identity of 
every possible accessor when the DACL is placed in an object’s security descriptor . 

Windows includes support for Claims Based Access Control (CBAC), where access is granted not 
based upon the accessor’s identity or group membership, but upon arbitrary attributes assigned 
to the accessor and stored in the accessor’s access token . Attributes are supplied by an attribute 
provider, such as AppLocker. The CBAC mechanism provides many benefits, including the ability to 
create a DACL for a user whose identity is not yet known or dynamically-calculated user attributes . 
The CBAC ACE (also known as a conditional ACE) is stored in a *-callback ACE structure, which is 
 essentially  private to AuthZ and is ignored by the system SeAccessCheck API . The kernel-mode routine 
SeSrpAccessCheck does not understand conditional ACEs, so only applications calling the AuthZ APIs 
can make use of CBAC . The only system component that makes use of CBAC is AppLocker, for set-
ting attributes such as path, or publisher . Third-party applications can make use of CBAC by taking 
 advantage of the CBAC AuthZ APIs .

Using CBAC security checks allows powerful management policies, such as the following:

 ■ Run only applications approved by the corporate IT department .

 ■ Allow only approved applications to access your Microsoft Outlook contacts or calendar .

 ■ Allow only people on a particular building’s floor to access printers on that floor.

 ■ Allow access to an intranet website only to full-time employees (as opposed to contractors) .

Attributes can be referenced in what is known as a conditional ACE, where the presence, absence, 
or value of one or more attributes is checked . An attribute name can contain any alphanumeric 
 Unicode characters, as well as “:/ ._” . The value of an attribute can be one of the following: 64-bit 
 integer, Unicode string, byte string, or array . 

Conditional ACEs
The format of SDDL (Security Descriptor Definition Language) strings has been expanded to support 
ACEs with conditional expressions . The new format of an SDDL string is this: AceType;AceFlags;Rights;
ObjectGuid;InheritObjectGuid;AccountSid;(ConditionalExpression) .

The AceType for a conditional ACE is either XA (for SDDL_CALLBACK_ACCESS_ALLOWED) or XD 
(for SDDL_CALLBACK_ACCESS_DENIED) . Note that ACEs with conditional expressions are used for 
claims-type authorization (specifically, the AuthZ APIs and AppLocker) and are not recognized by the 
object manager or file systems.

A conditional expression can include any of the elements shown in Table 6-7 .
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TABLE 6-7 Acceptable Elements for a Conditional Expression

Expression Element Description

AttributeName Tests whether the specified attribute has a nonzero value.

exists AttributeName Tests whether the specified attribute exists in the client context.

AttributeName Operator Value Returns the result of the specified operation. The following 
 operators are defined for use in conditional expressions to test the 
values of attributes . All of these are binary operators (as opposed 
to unary) and are used in the form AttributeName Operator Value .
Operators: Contains any_of , ==, !=, <, <=, >, >=

ConditionalExpression||ConditionalExpression Tests whether either of the specified conditional expressions is 
true .

ConditionalExpression && ConditionalExpression Tests whether both of the specified conditional expressions are 
true .

!(ConditionalExpression) The inverse of a conditional expression .

Member_of{SidArray} Tests whether the SID_AND_ATTRIBUTES array of the  client 
 context contains all of the security identifiers (SIDs) in the 
 comma- separated list specified by SidArray .

A conditional ACE can contain any number of conditions, and it is either ignored if the resultant 
evaluation of the condition is false or applied if the result is true . A conditional ACE can be added to 
an object using the AddConditionalAce API and checked using the AuthzAccessCheck API .

A conditional ACE could specify that access to certain data records within a program should be 
granted only to a user who meets the following criteria:

 ■ Holds the Role attribute, with a value of Architect, Program Manager, or Development Lead, 
and the Division attribute with a value of Windows

 ■ Whose ManagementChain attribute contains the value John Smith

 ■ Whose CommissionType attribute is Officer and whose PayGrade attribute is greater than 6 
(that is, the rank of General Officer in the US military)

Windows does not include tools to view or edit conditional ACEs .

Account Rights and Privileges

Many operations performed by processes as they execute cannot be authorized through object 
 access protection because they do not involve interaction with a particular object . For example, the 
ability to bypass security checks when opening files for backup is an attribute of an account, not of a 
particular object . Windows uses both privileges and account rights to allow a system administrator to 
control what accounts can perform security-related operations .

A privilege is the right of an account to perform a particular system-related operation, such as 
shutting down the computer or changing the system time . An account right grants or denies the 
 account to which it’s assigned the ability to perform a particular type of logon, such as a local logon 
or interactive logon, to a computer .

http://msdn.microsoft.com/en-us/library/aa379595(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa379571(v=vs.85).aspx
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A system administrator assigns privileges to groups and accounts using tools such as the Active 
Directory Users and Groups MMC snap-in for domain accounts or the Local Security Policy Editor 
(%SystemRoot%\System32\secpol.msc). You access the Local Security Policy Editor in the Adminis-
trative Tools folder of the Control Panel or the Start menu (if you’ve configured your Start menu to 
contain an Administrative Tools link). Figure 6-8 shows the User Rights Assignment configuration 
in the Local Security Policy Editor, which displays the complete list of privileges and account rights 
available on Windows . Note that the tool makes no distinction between privileges and account rights . 
However, you can differentiate between them because any user right that does not contain the words 
log on is an account privilege .

FIGURE 6-8 Local Security Policy Editor user rights assignment
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Account Rights
Account rights are not enforced by the security reference monitor, nor are they stored in tokens . 
The function responsible for logon is LsaLogonUser . Winlogon, for example, calls the LogonUser API 
when a user logs on interactively to a computer, and LogonUser calls LsaLogonUser . LogonUser takes 
a  parameter that indicates the type of logon being performed, which includes interactive, network, 
batch, service, and Terminal Server client .

In response to logon requests, the Local Security Authority (LSA) retrieves account rights assigned 
to a user from the LSA policy database at the time that a user attempts to log on to the system . LSA 
checks the logon type against the account rights assigned to the user account logging on and denies 
the logon if the account does not have the right that permits the logon type or it has the right that 
denies the logon type. Table 6-8 lists the user rights defined by Windows.

Windows applications can add and remove user rights from an account by using the 
 LsaAddAccountRights and LsaRemoveAccountRights functions, and they can determine what rights are 
assigned to an account with LsaEnumerateAccountRights .

TABLE 6-8 Account Rights

User Right Role

Deny logon locally, 
Allow logon locally

Used for interactive logons that originate on the local machine

Deny logon over the network, 
Allow logon over the network

Used for logons that originate from a remote machine

Deny logon through Terminal Services, 
Allow logon through Terminal Services

Used for logons through a Terminal Server client

Deny logon as a service, 
Allow logon as a service

Used by the service control manager when starting a service in a 
particular user account

Deny logon as a batch job, 
Allow logon as a batch job

Used when performing a logon of type batch

Privileges
The number of privileges defined by the operating system has grown over time. Unlike user rights, 
which are enforced in one place by the LSA, different privileges are defined by different components 
and enforced by those components . For example, the debug privilege, which allows a process to by-
pass security checks when opening a handle to another process with the OpenProcess Windows API, 
is checked for by the process manager . Table 6-9 is a full list of privileges, and it describes how and 
when system components check for them .

When a component wants to check a token to see whether a privilege is present, it uses the 
 PrivilegeCheck or LsaEnumerateAccountRights APIs if running in user mode and SeSinglePrivilegeCheck 
or SePrivilegeCheck if running in kernel mode . The privilege-related APIs are not account-right aware, 
but the account-right APIs are privilege-aware .
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Unlike account rights, privileges can be enabled and disabled . For a privilege check to succeed, the 
privilege must be in the specified token and it must be enabled. The idea behind this scheme is that 
privileges should be enabled only when their use is required so that a process cannot inadvertently 
perform a privileged security operation .

EXPERIMENT: Seeing a Privilege Get Enabled
By following these steps, you can see that the Date and Time Control Panel applet enables the 
SeTimeZonePrivilege privilege in response to you using its interface to change the time zone of 
the computer:

1. Run Process Explorer, and set the refresh rate to Paused .

2. Open the Date And Time item by right-clicking on the clock in the system tray region 
of the taskbar, and then select Adjust Date/Time . A new Rundll32 process will appear 
with a green highlight when you force a refresh with F5 .

3. Hover the mouse over the Rundll32 process, and verify that the target contains the 
text “Time Date Control Panel Applet” as well as a path to Timedate .cpl . The presence 
of this argument tells Rundll32, which is a Control Panel DLL hosting process, to load 
the DLL that implements the user interface that enables you to change the time and 
date .

4. View the Security tab of the process Properties dialog box for your Rundll32 process . 
You should see that the SeTimeZonePrivilege privilege is disabled . 
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5. Now click the Change Time Zone button in the Control Panel item, close the process 
Properties dialog box, and then open it again . On the Security tab, you should now see 
that the SeTimeZonePrivilege privilege is enabled .

TABLE 6-9 Privileges
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Privilege User Right Privilege Usage

SeAssignPrimaryTokenPrivilege Replace a process-
level token

Checked for by various components, such as 
NtSetInformationJob, that set a process’ token .

SeAuditPrivilege Generate security 
audits

Required to generate events for the Security event log with 
the ReportEvent API .

SeBackupPrivilege Back up files and 
directories

Causes NTFS to grant the following access to any file 
or  directory, regardless of the security descriptor that’s 
 present: READ_CONTROL, ACCESS_SYSTEM_SECURITY,
FILE_GENERIC_READ, FILE_TRAVERSE
Note that when opening a file for backup, the caller must 
specify the FILE_FLAG_BACKUP_SEMANTICS flag.
Also allows corresponding access to registry keys when 
using RegSaveKey .

SeChangeNotifyPrivilege Bypass traverse 
checking

Used by NTFS to avoid checking permissions on 
 intermediate directories of a multilevel directory lookup . 
Also used by file systems when applications register for 
 notification of changes to the file system structure.

SeCreateGlobalPrivilege Create global 
 objects

Required for a process to create section and symbolic 
link objects in the directories of the object manager 
namespace that are assigned to a different session than 
the caller .

SeCreatePagefilePrivilege Create a pagefile Checked for by NtCreatePagingFile, which is the function 
used to create a new paging file.

SeCreatePermanentPrivilege Create permanent 
shared objects

Checked for by the object manager when creating a 
 permanent object (one that doesn’t get deallocated when 
there are no more references to it) .

SeCreateSymbolicLinkPrivilege Create symbolic 
links

Checked for by NTFS when creating symbolic links on the 
file system with the CreateSymbolicLink API .

SeCreateTokenPrivilege Create a token 
object

NtCreateToken, the function that creates a token object, 
checks for this privilege .

SeDebugPrivilege Debug programs If the caller has this privilege enabled, the process 
manager allows access to any process or thread using 
NtOpenProcess or NtOpenThread, regardless of the pro-
cess’ or thread’s security descriptor (except for protected 
processes) .

SeEnableDelegationPrivilege Enable computer 
and user accounts 
to be trusted for 
delegation

Used by Active Directory services to delegate 
 authenticated credentials .

SeImpersonatePrivilege Impersonate a client 
after authentication

The process manager checks for this when a thread wants 
to use a token for impersonation and the token represents 
a different user than that of the thread’s process token .

SeIncreaseBasePriorityPrivilege Increase scheduling 
priority

Checked for by the process manager and is required to 
raise the priority of a process .

SeIncreaseQuotaPrivilege Adjust memory 
quotas for a process

Enforced when changing a process’ working set  thresholds, 
a process’ paged and nonpaged pool quotas, and a 
 process’ CPU rate quota .

SeIncreaseWorkingSetPrivilege Increase a process 
working set

Required to call SetProcessWorkingSetSize to increase the 
minimum working set . This indirectly allows the process 
to lock up to the minimum working set of memory using 
VirtualLock .
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Privilege User Right Privilege Usage

SeLoadDriverPrivilege Load and unload 
device drivers

Checked for by the NtLoadDriver and NtUnloadDriver 
driver functions .

SeLockMemoryPrivilege Lock pages in 
memory

Checked for by NtLockVirtualMemory, the kernel 
 implementation of VirtualLock .

SeMachineAccountPrivilege Add workstations to 
the domain

Checked for by the Security Accounts Manager on a 
 domain controller when creating a machine account in a 
domain .

SeManageVolumePrivilege Perform volume 
maintenance tasks

Enforced by file system drivers during a volume open 
 operation, which is required to perform disk checking and 
defragmenting activities .

SeProfileSingleProcessPrivilege Profile single pro-
cess

Checked by Superfetch and the prefetcher when 
 requesting information for an individual process through 
the NtQuerySystemInformation API .

SeRelabelPrivilege Modify an object 
label

Checked for by the SRM when raising the integrity level of 
an object owned by another user, or when attempting to 
raise the integrity level of an object higher than that of the 
caller’s token .

SeRemoteShutdownPrivilege Force shutdown 
from a remote 
system

Winlogon checks that remote callers of the 
InitiateSystemShutdown function have this privilege .

SeRestorePrivilege Restore files and 
directories

This privilege causes NTFS to grant the following access to 
any file or directory, regardless of the security descriptor 
that’s present:
WRITE_DAC 
WRITE_OWNER 
ACCESS_SYSTEM_SECURITY 
FILE_GENERIC_WRITE 
FILE_ADD_FILE 
FILE_ADD_SUBDIRECTORY 
DELETE 
Note that when opening a file for restore, the caller must 
specify the FILE_FLAG_BACKUP_SEMANTICS flag.
Allows corresponding access to registry keys when using 
RegSaveKey .

SeSecurityPrivilege Manage auditing 
and security log

Required to access the SACL of a security descriptor, and to 
read and clear the security event log .

SeShutdownPrivilege Shut down the 
system

This privilege is checked for by NtShutdownSystem and 
NtRaiseHardError, which presents a system error dialog box 
on the interactive console .

SeSyncAgentPrivilege Synchronize 
 directory service 
data

Required to use the LDAP directory synchronization 
 services . It allows the holder to read all objects and prop-
erties in the directory, regardless of the protection on the 
objects and properties .

SeSystemEnvironmentPrivilege Modify firmware 
 environment 
 variables

Required by NtSetSystemEnvironmentValue and 
NtQuerySystemEnvironmentValue to modify and read 
 firmware environment variables using the hardware 
 abstraction layer (HAL) .

SeSystemProfilePrivilege Profile system 
 performance

Checked for by NtCreateProfile, the function used to 
 perform profiling of the system. This is used by the 
Kernprof tool, for example .

SeSystemtimePrivilege Change the system 
time

Required to change the time or date .
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Privilege User Right Privilege Usage

SeTakeOwnershipPrivilege Take ownership 
of files and other 
objects

Required to take ownership of an object without being 
granted discretionary access . 

SeTcbPrivilege Act as part of the 
operating system

Checked for by the security reference monitor when 
the session ID is set in a token, by the Plug and Play 
manager for Plug and Play event creation and man-
agement, by BroadcastSystemMessageEx when called 
with BSM_ALLDESKTOPS, by LsaRegisterLogonProcess, 
and when specifying an application as a VDM with 
NtSetInformationProcess .

SeTimeZonePrivilege Change the time 
zone

Required to change the time zone .

SeTrustedCredManAccessPrivilege Access  credential 
manager as a 
 trusted caller

Checked by the credential manager to verify that it should 
trust the caller with credential information that can be 
queried in plain text . It is granted only to Winlogon by 
default .

SeUndockPrivilege Remove computer 
from a docking 
 station

Checked for by the user-mode Plug and Play manager 
when either a computer undock is initiated or a device 
eject request is made .

SeUnsolicitedInputPrivilege Receive unsolicited 
data from a terminal 
device

This privilege isn’t currently used by Windows .

EXPERIMENT: The Bypass Traverse Checking Privilege
If you are a systems administrator, you must be aware of the Bypass Traverse Checking privilege 
(internally called SeNotifyPrivilege) and its implications . This experiment demonstrates that not 
understanding its behavior can lead to improperly applied security .

1. Create a folder and, within that folder, a new text file with some sample text.

2. Navigate in Explorer to the new file, and go to the Security tab of its Properties dialog 
box . Click the Advanced button, and clear the check box that controls inheritance . 
 Select Copy when you are prompted as to whether you want to remove or copy 
 inherited permissions .

3. Next, modify the security of the new folder so that your account does not have any 
access to the folder . Do this by selecting your account and selecting all the Deny boxes 
in the permissions list .

4. Run Notepad, and browse using the File, Open dialog box to the new directory . You 
should be denied access to the directory .

5. In the File Name field of the Open dialog box, type the full path of the new file. The 
file should open.

If your account does not have the Bypass Traverse Checking privilege, NTFS performs an 
access check on each directory of the path to a file when you try to open a file, which results in 
you being denied access to the file in this example.
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Super Privileges
Several privileges are so powerful that a user to which they are assigned is effectively a “super user” 
who has full control over a computer. These privileges can be used in an infinite number of ways to 
gain unauthorized access to otherwise off-limit resources and to perform unauthorized operations . 
However, we’ll focus on using the privilege to execute code that grants the user privileges not as-
signed to the user, with the knowledge that this capability can be leveraged to perform any operation 
on the local machine that the user desires . 

This section lists the privileges and discusses the ways that they can be exploited . Other privileges, 
such as Lock Pages In Physical Memory, can be exploited for denial-of-service attacks on a system, 
but these are not discussed . Note that on systems with UAC enabled, these privileges will be granted 
only to applications running at high integrity level or higher, even if the account possesses them:

 ■ Debug programs A user with this privilege can open any process on the system (except for 
a Protected Process) without regard to the security descriptor present on the process . The user 
could implement a program that opens the LSASS process, for example, copy executable code 
into its address space, and then inject a thread with the CreateRemoteThread Windows API to 
execute the injected code in a more-privileged security context . The code could grant the user 
additional privileges and group memberships .

 ■ Take ownership This privilege allows a holder to take ownership of any securable object 
(even protected processes and threads) by writing his own SID into the owner field of the 
 object’s security descriptor . Recall that an owner is always granted permission to read and 
modify the DACL of the security descriptor, so a process with this privilege could modify the 
DACL to grant itself full access to the object and then close and reopen the object with full 
access. This would allow the owner to see sensitive data and to even replace system files that 
execute as part of normal system operation, such as LSASS, with his own programs that grant a 
user elevated privileges .

 ■ Restore files and directories A user assigned this privilege can replace any file on the 
system with her own. She could exploit this power by replacing system files as described in the 
preceding paragraph .

 ■ Load and unload device drivers A malicious user could use this privilege to load a device 
driver into the system . Device drivers are considered trusted parts of the operating system 
that can execute within it with System account credentials, so a driver could launch privileged 
programs that assign the user other rights .

 ■ Create a token object This privilege can be used in the obvious way to generate tokens that 
represent arbitrary user accounts with arbitrary group membership and privilege assignment .

 ■ Act as part of operating system LsaRegisterLogonProcess, the function a process calls to 
establish a trusted connection to LSASS, checks for this privilege . A malicious user with this 
privilege can establish a trusted-LSASS connection and then execute LsaLogonUser, a function 
used to create new logon sessions . LsaLogonUser requires a valid user name and password and 
accepts an optional list of SIDs that it adds to the initial token created for a new logon session . 
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The user could therefore use her own user name and password to create a new logon session 
that includes the SIDs of more privileged groups or users in the resulting token .

Note that the use of an elevated privilege does not extend past the machine boundary to the 
 network, because any interaction with another computer requires authentication with a domain 
 controller and validation of domain passwords . Domain passwords are not stored on a computer 
either in plain text or encrypted form, so they are not accessible to malicious code .

Access Tokens of Processes and Threads

Figure 6-9 brings together the concepts covered so far in this chapter by illustrating the basic process 
and thread security structures. In the figure, notice that the process object and the thread objects 
have ACLs, as do the access token objects themselves. Also in this figure, thread 2 and thread 3 each 
have an impersonation token, whereas thread 1 uses the default process access token .
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Default ACL

Access token

User's SID
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Privileges
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ACL Thread 1 ACL Thread 2 ACL Thread 3

FIGURE 6-9 Process and thread security structures
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Security Auditing

The object manager can generate audit events as a result of an access check, and Windows  functions 
available to user applications can generate them directly . Kernel-mode code is always allowed to 
generate an audit event . Two privileges, SeSecurityPrivilege and SeAuditPrivilege, relate to audit-
ing . A process must have the SeSecurityPrivilege privilege to manage the security Event Log and 
to view or set an object’s SACL . Processes that call audit system services, however, must have the 
 SeAuditPrivilege privilege to successfully generate an audit record .

The audit policy of the local system controls the decision to audit a particular type of security 
event . The audit policy, also called the local security policy, is one part of the security policy LSASS 
maintains on the local system, and it is configured with the Local Security Policy Editor as shown in 
Figure 6-10 . 

The audit policy configuration (both the basic settings under Local Policies and the Advanced 
 Audit Policy Configuration to be described later) is stored in the registry as a bitmapped value in the 
key HKEY_LOCAL_MACHINE\SECURITY\Policy\PolAdtEv. 

FIGURE 6-10 Local Security Policy Editor audit policy configuration

LSASS sends messages to the SRM to inform it of the auditing policy at system initialization time 
and when the policy changes . LSASS is responsible for receiving audit records generated based on the 
audit events from the SRM, editing the records, and sending them to the Event Logger . LSASS (instead 
of the SRM) sends these records because it adds pertinent details, such as the information needed to 
more completely identify the process that is being audited .

The SRM sends audit records via its ALPC connection to LSASS . The Event Logger then writes the 
audit record to the security Event Log . In addition to audit records the SRM passes, both LSASS and 
the SAM generate audit records that LSASS sends directly to the Event Logger, and the AuthZ APIs 
allow for applications to generate application-defined audits. Figure 6-11 depicts this overall flow.
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FIGURE 6-11 Flow of security audit records

Audit records are put on a queue to be sent to the LSA as they are received—they are not 
 submitted in batches . The audit records are moved from the SRM to the security subsystem in one 
of two ways . If the audit record is small (less than the maximum ALPC message size), it is sent as an 
ALPC message . The audit records are copied from the address space of the SRM to the address space 
of the LSASS process . If the audit record is large, the SRM uses shared memory to make the message 
 available to LSASS and simply passes a pointer in an ALPC message . 

Object Access Auditing
An important use of the auditing mechanism in many environments is to maintain a log of accesses 
to secured objects, files in particular. To do this, the Audit Object Access policy must be enabled, 
and there must be audit ACEs in System Access Control Lists that enable auditing for the objects in 
 question . 

When an accessor attempts to open a handle to an object, the security reference monitor first 
determines whether the attempt is allowed or denied . If object access auditing is enabled, the SRM 
then scans the System ACL of the object . There are two types of audit ACEs, access allowed and access 
denied . An audit ACE must match any of the security IDs held by the accessor, it must match any of 
the access methods requested, and its type (access allowed or access denied) must match the result of 
the access check in order to generate an object access audit record . 

Object access audit records include not just the fact of access allowed or denied, but also the 
 reason for the success or failure . This “reason for access” reporting generally takes the form of an 
access control entry, specified in SDDL (Security Descriptor Definition Language), in the audit record . 
This allows for a diagnosis of scenarios in which an object to which you believe access should be 
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 denied is being permitted, or vice versa, by identifying the specific access control entry that caused 
the attempted access to succeed or fail . 

As can be seen in Figure 6-10, object access auditing is disabled by default (as are all other 
 auditing policies) . 

EXPERIMENT: Object Access Auditing
You can demonstrate object access auditing by following these steps:

1. In Explorer, navigate to a file to which you would normally have access. In its 
 Properties dialog box, click on the Security tab and then select the Advanced settings . 
Click on the Auditing tab, and click through the administrative privileges warning . The 
resulting dialog box allows you to add auditing of access control entries to the file’s 
System Access Control List . 

 

2. Click the Add button . In the resulting Select User Or Group dialog box, enter your own 
user name or a group to which you belong, such as Everyone, and click Check Names 
and then OK . This presents a dialog box for creating an Auditing Access Control Entry 
for this user or group for this file. 
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3. In the Successful column, select Full control (which will cause all of the other access 
methods to be selected as well). Click OK four times to close the file Properties dialog 
box . 

4. In Explorer, double-click on the file to open it with its associated program. 

5. In Event Viewer, navigate to the Security log . Note that there is no entry for access to 
the file. This is because the audit policy for object access is not yet configured. 

6. In the Local Security Policy Editor, navigate to Local Policies, Audit Policy . Double-click 
on Audit Object Access, and then click Success to enable auditing of successful access 
to files.

7. In Event Viewer, click Action, Refresh . Note that the changes to audit policy resulted in 
audit records . 

8. In Explorer, double-click on the file to open it again. 

9. In Event Viewer, click Action, Refresh. Note that several file access audit records are 
now present .

Find one of the file access audit records for Event ID 4656, This shows up as “a handle to 
an object was requested.” Scroll down in the text box to find the Access Reasons section. The 
 following example shows that two access methods, READ_CONTROL and ReadAttributes, were 
requested. The former was granted because the accessor was the owner of the file, and the 
latter was granted because of the indicated Access Control Entry . The ACE includes the SID of 
the user who attempted the access and includes the designation A:FA, indicating that this SID is 
Allowed (A) all file access methods (FA) to the file. 
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Global Audit Policy
In addition to object-access ACEs on individual objects, a global audit policy can be defined for the 
system that enables object access auditing for all file system objects, for all registry keys, or for both. 
A security auditor can therefore be certain that the desired auditing will be performed, without 
 having to set or examine SACLs on all of the individual objects of interest . 

An administrator can set or query the global audit policy via the AuditPol command with the  
/resourceSACL option . This can also be done with a program calling the AuditSetGlobalSacl and 
AuditQueryGlobalSacl APIs . As with changes to objects’ SACLs, changing these global SACLs requires 
SeSecurityPrivilege . 

EXPERIMENT: Setting Global Audit Policy
You can use the AuditPol command to enable global audit policy . 

1. If not already done in the previous experiment, in the Local Security Policy Editor, 
 navigate to the Audit Policy settings (as shown in Figure 6-10), double-click Audit 
Object Access, and enable auditing for both success and failure . Note that on most 
systems, SACLs specifying object access auditing are uncommon, so few if any object 
access audit records will be produced at this point . 
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2. In an elevated command prompt window, enter the following command: 

C:\> auditpol /resourceSACL 

This will produce a summary of the commands for setting and querying global audit 
policy . 

3. In the same elevated command prompt window, enter the following commands: 

C:\> auditpol /resourceSACL /type:File /view 
C:\> auditpol /resourceSACL /type:Key /view

On a typical system, each of these commands will report that no Global SACL exists 
for the respective resource type . (Note that the keywords “File” and “Key” are case-
sensitive .)

4. In the same elevated command prompt window, enter the following command:

C:\> auditpol /resourceSACL /set /type:File /user:yourusername /success /failure 
/access:FW

This will set a global audit policy such that all attempts to open files for write access 
(FW) by the indicated user will result in audit records, whether the open attempts suc-
ceed or fail. The user name can be a specific user name on the system, a group such 
as Everyone, a domain-qualified user name such as domainname\username, or a SID. 

5. While running under the user name indicated, use Explorer or other tools to open a 
file. Then look at the security log in the system Event Log to find the audit records. 

6. At the end of the experiment, use the auditpol command to remove the global SACL 
you created in step 4, as follows:

C:\> auditpol /resourceSACL /remove /type:File /user:yourusername

The global audit policy is stored in the registry as a pair of system access control lists in  
HKEY_LOCAL_MACHINE\SECURITY\Policy\GlobalSaclNameFile and HKEY_LOCAL_MACHINE 
\SECURITY\Policy\GlobalSaclNameKey. These keys can be examined by running Regedit.exe under the 
System account, as described earlier in the “Security System Components” section . These keys will not 
exist until the corresponding global SACLs have been set at least once .

The global audit policy cannot be overridden by SACLs on objects, but object-specific SACLs  can 
allow for additional auditing . For example, global audit policy could require auditing of read access 
by all users to all files, but SACLs on individual files could add auditing of write access to those files by 
specific users or by more specific user groups. 

Global audit policy can also be configured via the Local Security Policy Editor in the Advanced 
Audit Policy settings, described in the next subsection . 
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Advanced Audit Policy Settings
In addition to the Audit Policy settings described previously, the Local Security Policy Editor  offers 
a much more fine-grained set of audit controls under the Advanced Audit Policy Configuration 
 heading, as shown in Figure 6-12 . 

FIGURE 6-12 Local Security Policy Editor Advanced Audit Policy Configuration settings

Each of the nine audit policy settings under Local Policies, as illustrated previously in Figure 6-10, 
maps to a group of settings here that provide more detailed control . For example, while the Audit 
Object Access settings under Local Policies allow access to all objects to be audited, the settings here 
allow auditing of access to various types of objects to be controlled individually . Enabling one of the 
audit policy settings under Local Policies implicitly enables all of the corresponding advanced audit 
policy events, but if finer control over the contents of the audit log is desired, the advanced settings 
can be set individually . The standard settings then become a product of the advanced settings; how-
ever, this is not visible in the Local Security Policy Editor . Attempts to specify audit settings by using 
both the basic and the advanced options can cause unexpected results . 

The Global Object Access Auditing option under the Advanced Audit Policy Configuration item can 
be used to configure the Global SACLs described in the previous section, using a graphical interface 
identical to that seen in Explorer or the Registry Editor for security descriptors in the file system or the 
registry . 
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Logon

Interactive logon (as opposed to network logon) occurs through the interaction of the logon process 
(Winlogon), the logon user interface process (LogonUI) and its credential providers, LSASS, one or 
more authentication packages, and the SAM or Active Directory . Authentication packages are DLLs 
that perform authentication checks . Kerberos is the Windows authentication package for interactive 
logon to a domain, and MSV1_0 is the Windows authentication package for interactive logon to a 
local computer, for domain logons to trusted pre–Windows 2000 domains, and for times when no 
domain controller is accessible .

Winlogon is a trusted process responsible for managing security-related user interactions . It 
coordinates logon, starts the user’s first process at logon, handles logoff, and manages various other 
operations relevant to security, including launching LogonUI for entering passwords at logon, chang-
ing passwords, and locking and unlocking the workstation . The Winlogon process must ensure that 
operations relevant to security aren’t visible to any other active processes . For example, Winlogon 
guarantees that an untrusted process can’t get control of the desktop during one of these operations 
and thus gain access to the password .

Winlogon relies on the credential providers installed on the system to obtain a user’s account 
name or password . Credential providers are COM objects located inside DLLs . The default providers 
are %SystemRoot%\System32\authui.dll and %SystemRoot%\System32\SmartcardCredentialProvider.
dll, which support both password and smartcard PIN authentication . Allowing other credential pro-
viders to be installed allows Windows to use different user-identification mechanisms. For example, a 
third party might supply a credential provider that uses a thumbprint recognition device to identify 
users and extract their passwords from an encrypted database .

To protect Winlogon’s address space from bugs in credential providers that might cause the 
 Winlogon process to crash (which, in turn, will result in a system crash, because Winlogon is consid-
ered a critical system process), a separate process, LogonUI .exe, is used to actually load the credential 
providers and display the Windows logon interface to users . This process is started on demand when-
ever Winlogon needs to present a user interface to the user, and it exits after the action has finished. 
It also allows Winlogon to simply restart a new LogonUI process should it crash for any reason .

Winlogon is the only process that intercepts logon requests from the keyboard, which are sent 
through an RPC message from Win32k .sys . Winlogon immediately launches the LogonUI application 
to display the user interface for logon . After obtaining a user name and password from credential 
providers, Winlogon calls LSASS to authenticate the user attempting to log on . If the user is authen-
ticated, the logon process activates a logon shell on behalf of that user . The interaction between the 
components involved in logon is illustrated in Figure 6-13 .
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FIGURE 6-13 Components involved in logon

In addition to supporting alternative credential providers, LogonUI can load additional network 
provider DLLs that need to perform secondary authentication . This capability allows multiple network 
providers to gather identification and authentication information all at one time during normal logon. 
A user logging on to a Windows system might simultaneously be authenticated on a UNIX server . 
That user would then be able to access resources of the UNIX server from the Windows machine 
 without requiring additional authentication . Such a capability is known as one form of single sign-on .

Winlogon Initialization
During system initialization, before any user applications are active, Winlogon performs the following 
steps to ensure that it controls the workstation once the system is ready for user interaction:

1. Creates and opens an interactive window station (for example, \Sessions\1\Windows 
\ WindowStations\WinSta0 in the object manager namespace) to represent the keyboard, 
mouse, and monitor . Winlogon creates a security descriptor for the station that has one and 
only one ACE containing only the System SID . This unique security descriptor ensures that no 
other process can access the workstation unless explicitly allowed by Winlogon .

2. Creates and opens two desktops: an application desktop (\Sessions\1\Windows\WinSta0 
\Default, also known as the interactive desktop) and a Winlogon desktop (\Sessions\1 
\Windows\WinSta0\Winlogon, also known as the secure desktop). The security on the 
 Winlogon desktop is created so that only Winlogon can access that desktop . The other 
 desktop allows both Winlogon and users to access it . This arrangement means that any 
time the Winlogon desktop is active, no other process has access to any active code or data 
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 associated with the desktop . Windows uses this feature to protect the secure operations that 
involve passwords and locking and unlocking the desktop .

3. Before anyone logs on to a computer, the visible desktop is Winlogon’s . After a user logs 
on, pressing Ctrl+Alt+Delete switches the desktop from Default to Winlogon and launches 
 LogonUI . (This explains why all the windows on your interactive desktop seem to disappear 
when you press Ctrl+Alt+Delete, and then return when you dismiss the Windows Security 
dialog box .) Thus, the SAS always brings up a secure desktop controlled by Winlogon .

4. Establishes an ALPC connection with LSASS’s LsaAuthenticationPort . This connection will be 
used for exchanging information during logon, logoff, and password operations and is made 
by calling LsaRegisterLogonProcess .

5. Registers the Winlogon RPC message server, which listens for SAS, logoff, and workstation 
lock notifications from Win32k. This measure prevents Trojan horse programs from gaining 
control of the screen when the SAS is entered .

Note The Wininit process performs steps similar to steps 1 and 2 to allow legacy 
 interactive services running on session 0 to display windows, but it does not perform any 
other steps because session 0 is not available for user logon . (See Chapter 3 for more 
 information on Wininit and session isolation .)

How SAS Is Implemented
The SAS is secure because no application can intercept the Ctrl+Alt+Delete keystroke 
 combination or prevent Winlogon from receiving it . Win32k .sys reserves the Ctrl+Alt+Delete 
key combination so that whenever the Windows input system (implemented in the raw input 
thread in Win32k) sees the combination, it sends an RPC message to Winlogon’s message 
server, which listens for such notifications. The keystrokes that map to a registered hot key are 
otherwise not sent to any process other than the one that registered it, and only the thread 
that registered a hot key can unregister it, so a Trojan horse application cannot deregister 
 Winlogon’s ownership of the SAS .

A Windows function, SetWindowsHook, enables an application to install a hook procedure 
that’s invoked every time a keystroke is pressed, even before hot keys are processed, and it 
allows the hook to squash keystrokes . However, the Windows hot key processing code contains 
a special case for Ctrl+Alt+Delete that disables hooks so that the keystroke sequence can’t be 
intercepted . In addition, if the interactive desktop is locked, only hot keys owned by Winlogon 
are processed .

Once the Winlogon desktop is created during initialization, it becomes the active desktop . When 
the Winlogon desktop is active, it is always locked . Winlogon unlocks its desktop only to switch to the 
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application desktop or the screen-saver desktop . (Only the Winlogon process can lock or unlock a 
desktop .)

User Logon Steps
Logon begins when a user presses the SAS (Ctrl+Alt+Delete) . After the SAS is pressed, Winlogon starts 
LogonUI, which calls the credential providers to obtain a user name and password . Winlogon also 
creates a unique local logon SID for this user that it assigns to this instance of the desktop (keyboard, 
screen, and mouse) . Winlogon passes this SID to LSASS as part of the LsaLogonUser call . If the user is 
successfully logged on, this SID will be included in the logon process token—a step that protects ac-
cess to the desktop . For example, another logon to the same account but on a different system will be 
unable to write to the first machine’s desktop because this second logon won’t be in the first logon’s 
desktop token .

When the user name and password have been entered, Winlogon retrieves a handle to a package 
by calling the LSASS function LsaLookupAuthenticationPackage . Authentication packages are listed in 
the registry under HKLM\SYSTEM\CurrentControlSet\Control\Lsa. Winlogon passes logon informa-
tion to the authentication package via LsaLogonUser . Once a package authenticates a user, Winlogon 
continues the logon process for that user . If none of the authentication packages indicates a success-
ful logon, the logon process is aborted .

Windows uses two standard authentication packages for interactive logons: Kerberos and MSV1_0 . 
The default authentication package on a stand-alone Windows system is MSV1_0 (%SystemRoot% 
\System32\Msv1_0.dll), an authentication package that implements LAN Manager 2 protocol. LSASS 
also uses MSV1_0 on domain-member computers to authenticate to pre–Windows 2000 domains and 
computers that can’t locate a domain controller for authentication . (Computers that are disconnected 
from the network fall into this latter category .) The Kerberos authentication package, %SystemRoot% 
\System32\Kerberos.dll, is used on computers that are members of Windows domains. The  Windows 
Kerberos package, with the cooperation of Kerberos services running on a domain  controller, 
 supports the Kerberos protocol . This protocol is based on Internet RFC 1510 . (Visit the  Internet 
 Engineering Task Force [IETF] website, www.ietf.org, for detailed information on the Kerberos 
 standard .)

The MSV1_0 authentication package takes the user name and a hashed version of the password 
and sends a request to the local SAM to retrieve the account information, which includes the hashed 
password, the groups to which the user belongs, and any account restrictions. MSV1_0 first checks the 
account restrictions, such as hours or type of accesses allowed . If the user can’t log on because of the 
restrictions in the SAM database, the logon call fails and MSV1_0 returns a failure status to the LSA .

MSV1_0 then compares the hashed password and user name to that obtained from the SAM . 
In the case of a cached domain logon, MSV1_0 accesses the cached information by using LSASS 
 functions that store and retrieve “secrets” from the LSA database (the SECURITY hive of the registry) . 
If the information matches, MSV1_0 generates a LUID for the logon session and creates the logon ses-
sion by calling LSASS, associating this unique identifier with the session and passing the  information 
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needed to ultimately create an access token for the user . (Recall that an access token includes the 
user’s SID, group SIDs, and assigned privileges .)

Note MSV1_0 does not cache a user’s entire password hash in the registry because that 
would enable someone with physical access to the system to easily compromise a user’s 
domain account and gain access to encrypted files and to network resources the user is 
 authorized to access. Instead, it caches half of the hash. The cached half-hash is sufficient 
to verify that a user’s password is correct, but it isn’t sufficient to gain access to EFS keys 
and to authenticate as the user on a domain because these actions require the full hash .

If MSV1_0 needs to authenticate using a remote system, as when a user logs on to a trusted 
pre–Windows 2000 domain, MSV1_0 uses the Netlogon service to communicate with an instance of 
Netlogon on the remote system . Netlogon on the remote system interacts with the MSV1_0 authenti-
cation package on that system, passing back authentication results to the system on which the logon 
is being performed .

The basic control flow for Kerberos authentication is the same as the flow for MSV1_0. However, 
in most cases, domain logons are performed from member workstations or servers (rather than on 
a  domain controller), so the authentication package must communicate across the network as part 
of the authentication process . The package does so by communicating via the Kerberos TCP/IP port 
(port 88) with the Kerberos service on a domain controller . The Kerberos Key Distribution Center 
 service (%SystemRoot%\System32\Kdcsvc.dll), which implements the Kerberos authentication  
protocol, runs in the LSASS process on domain controllers .

After validating hashed user name and password information with Active Directory’s user account 
objects (using the Active Directory server %SystemRoot%\System32\Ntdsa.dll), Kdcsvc returns domain 
credentials to LSASS, which returns the result of the authentication and the user’s domain logon 
credentials (if the logon was successful) across the network to the system where the logon is taking 
place .

Note This description of Kerberos authentication is highly simplified, but it highlights the 
roles of the various components involved . Although the Kerberos authentication protocol 
plays a key role in distributed domain security in Windows, its details are outside the scope 
of this book .

After a logon has been authenticated, LSASS looks in the local policy database for the user’s 
 allowed access, including interactive, network, batch, or service process . If the requested logon 
doesn’t match the allowed access, the logon attempt will be terminated . LSASS deletes the newly 
created logon session by cleaning up any of its data structures and then returns failure to Winlogon, 
which in turn displays an appropriate message to the user . If the requested access is allowed, LSASS 
adds the appropriate additional security IDs (such as Everyone, Interactive, and the like) . It then checks 
its policy database for any granted privileges for all the SIDs for this user and adds these privileges to 
the user’s access token .
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When LSASS has accumulated all the necessary information, it calls the executive to create the 
access token . The executive creates a primary access token for an interactive or service logon and 
an impersonation token for a network logon . After the access token is successfully created, LSASS 
duplicates the token, creating a handle that can be passed to Winlogon, and closes its own handle . If 
necessary, the logon operation is audited . At this point, LSASS returns success to Winlogon along with 
a handle to the access token, the LUID for the logon session, and the profile information, if any, that 
the authentication package returned .

EXPERIMENT: Listing Active Logon Sessions
As long as at least one token exists with a given logon session LUID, Windows considers the 
logon session to be active . You can use the LogonSessions tool from Sysinternals, which uses 
the LsaEnumerateLogonSessions function (documented in the Windows SDK) to list the active 
logon sessions:

C:\>logonsessions 
Logonsesions v1.21 
Copyright (C) 2004-2010 Bryce Cogswell and Mark Russinovich 
Sysinternals - wwww.sysinternals.com 
 
[0] Logon session 00000000:000003e7: 
    User name:    KERNELS\LAPT8$ 
    Auth package: NTLM 
    Logon type:   (none) 
    Session:      0 
    Sid:          S-1-5-18 
    Logon time:   2012-01-16 22:03:38 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[1] Logon session 00000000:0000cf19: 
    User name: 
    Auth package: NTLM 
    Logon type:   (none) 
    Session:      0 
    Sid:          (none) 
    Logon time:   2012-01-16 22:03:38 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[2] Logon session 00000000:000003e4: 
    User name:    KERNELS\LAPT8$ 
    Auth package: Negotiate 
    Logon type:   Service 
    Session:      0 
    Sid:          S-1-5-20 
    Logon time:   2012-01-16 22:03:40 
    Logon server: 
    DNS Domain: 
    UPN: 
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[3] Logon session 00000000:000003e5: 
    User name:    NT AUTHORITY\LOCAL SERVICE 
    Auth package: Negotiate 
    Logon type:   Service 
    Session:      0 
    Sid:          S-1-5-19 
    Logon time:   2012-01-16 22:03:40 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[4] Logon session 00000000:00021ed2: 
    User name:    NT AUTHORITY\ANONYMOUS LOGON 
    Auth package: NTLM 
    Logon type:   Network 
    Session:      0 
    Sid:          S-1-5-7 
    Logon time:   2012-01-16 22:03:46 
    Logon server: 
    DNS Domain: 
    UPN: 
 
[5] Logon session 00000000:000882c2: 
    User name:    LAPT8\jeh 
    Auth package: NTLM 
    Logon type:   Interactive 
    Session:      1 
    Sid:          S-1-5-21-1488595123-1430011218-1163345924-1000 
    Logon time:   2012-01-17 01:34:46 
    Logon server: LAPT8 
    DNS Domain: 
    UPN: 
 
[6] Logon session 00000000:000882e3: 
    User name:    LAPT8\jeh 
    Auth package: NTLM  
    Logon type:   Interactive 
    Session:      1 
    Sid:          S-1-5-21-1488595123-1430011218-1163345924-1000 
    Logon time:   2012-01-17 01:34:46 
    Logon server: LAPT8 
    DNS Domain: 
    UPN:

Information reported for a session includes the SID and name of the user associated 
with the session, as well as the session’s authentication package and logon time . Note that 
the  Negotiate authentication package, seen in logon session 2 in the preceding output, will 
 attempt to  authenticate via Kerberos or NTLM, depending on which is most appropriate for the 
 authentication request .

The LUID for a session is displayed on the “Logon Session” line of each session block, and 
 using the Handle utility (also from Sysinternals), you can find the tokens that represent a 

`
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 particular logon session. For example, to find the tokens for logon session 5 in the example 
output just shown, you could enter this command:

C:\Windows\system32>handle -a 882c2 
 
Handle v3.46 
Copyright (C) 1997-2011 Mark Russinovich 
Sysinternals - www.sysinternals.com 
 
System             pid: 4      type: Directory      D60: \Sessions\0\DosDevices\00000000-
000882c2 
winlogon.exe       pid: 440    type: Event           DC: 
 \BaseNamedObjects\00000000000882c2_WlballoonSmartCardUnlockNotificationEventName 
winlogon.exe       pid: 440    type: Event           E4:  
 \BaseNamedObjects\00000000000882c2_WlballoonKerberosNotificationEventName 
winlogon.exe       pid: 440    type: Event          1D4:  
 \BaseNamedObjects\00000000000882c2_WlballoonAlternateCredsNotificationEventName 
lsass.exe          pid: 492    type: Token          508: LAPT8\jeh:882c2 
lsass.exe          pid: 492    type: Token          634: LAPT8\jeh:882c2 
svchost.exe        pid: 892    type: Token          7C4: LAPT8\jeh:882c2 
svchost.exe        pid: 960    type: Token          E70: LAPT8\jeh:882c2 
svchost.exe        pid: 960    type: Token         1034: LAPT8\jeh:882c2 
svchost.exe        pid: 960    type: Token         1194: LAPT8\jeh:882c2 
svchost.exe        pid: 960    type: Token         1384: LAPT8\jeh:882c2

Winlogon then looks in the registry at the value HKLM\SOFTWARE\Microsoft\Windows NT 
\Current Version\Winlogon\Userinit and creates a process to run whatever the value of that string is. 
(This value can be several  .EXEs separated by commas .) The default value is Userinit .exe, which loads 
the user profile and then creates a process to run whatever the value of HKCU\SOFTWARE\Microsoft 
\Windows NT\Current Version\Winlogon\Shell is, if that value exists. That value does not exist by 
 default . If it doesn’t exist, Userinit.exe does the same for HKLM\SOFTWARE\Microsoft\Windows NT 
\Current Version\Winlogon\Shell, which defaults to Explorer .exe . Userinit then exits (which is why 
Explorer .exe shows up as having no parent when examined in Process Explorer) . For more informa-
tion on the steps followed during the user logon process, see Chapter 13, “Startup and Shutdown,” in 
Part 2 .

Assured Authentication
A fundamental problem with password-based authentication is that passwords can be revealed, 
or stolen, and used by malicious third parties . New in Windows 7 and Windows Server 2008/R2 is 
a mechanism that tracks the authentication strength of how a user authenticated with the system, 
which allows objects to be protected from access if a user did not authenticate securely . (Smartcard 
authentication is considered to be a stronger form of authentication than password authentication .) 

On systems that are joined to a domain, the domain administrator can specify a mapping between 
an Object Identifier (OID), which is a unique numeric string representing a specific object type, on a 
certificate used for authenticating a user (such as on a smartcard or hardware security token) and a 
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Security ID (SID) that is placed into the user’s access token when the user successfully authenticates 
with the system . An ACE in a DACL on an object can specify such a SID be part of a user’s token in 
order for the user to gain access to the object . Technically, this is known as a group claim . In other 
words, the user is claiming membership in a particular group, which is allowed certain access rights on 
specific objects, with the claim based upon the authentication mechanism. This feature is not enabled 
by default, and it must be configured by the domain administrator in a domain with certificate-based 
authentication .

Assured Authentication builds upon existing Windows security features in a way that provides a 
great deal of flexibility to IT administrators and anyone concerned with enterprise IT security. The 
 enterprise decides which OIDs to embed in the certificates it uses for authenticating users and the 
mapping of particular OIDs to Active Directory universal groups (SIDs) . A user’s group membership 
can be used to identify whether a certificate was used during the logon operation. Different certifi-
cates can have different issuance policies and, thus, different levels of security, which can be used to 
protect highly sensitive objects (such as files or anything else that might have a security descriptor).

Authentication protocols (APs) retrieve OIDs from certificates during certificate-based 
 authentication . These OIDs must be mapped to SIDs, which are in turn processed during group 
 membership expansion, and placed in the access token . The mapping of OID to universal group is 
specified in Active Directory.

As an example, an organization might have several certificate issuance policies with the names 
Contractor, Full Time Employee, and Senior Management, which map to the universal groups 
 Contractor-Users, FTE-Users, and SM-Users, respectively . A user named Abby has a smartcard with 
a certificate issued using the Senior Management issuance policy, and when she logs in using her 
smartcard, she receives an additional group membership (which is represented by a SID in her access 
token) indicating that she is a member of the SM-Users group . Permissions can be set on objects 
(using an ACL) such that only members of the FTE-Users or SM-Users group (identified by their SIDs 
within an ACE) are granted access . If Abby logs in using her smartcard, she can access those objects, 
but if she logs in with just her user name and password (without the smartcard), she cannot access 
those objects because she will not have either the FTE-Users or SM-Users group in her access token . 
A user named Toby who logs in with a smartcard that has a certificate issued using the  Contractor 
 issuance policy would not be able to access an object that has an ACE requiring FTE-Users or 
 SM-Users group membership . 

Biometric Framework for User Authentication
Windows provides a standardized mechanism for supporting certain types of biometric devices— 
specifically, fingerprint scanners—to support user identification via a fingerprint swipe. Like many 
other such frameworks, the Windows Biometric Framework was developed to isolate the various 
 functions involved in supporting such devices, so as to minimize the code required to implement a 
new device . 
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The primary components of the Windows Biometric Framework are shown in Figure 6-14 . Except 
as noted in the following list, all of these components are supplied by Windows:

 ■ The Windows Biometric Service (%SystemRoot%\System32\Wbiosrvc .dll This provides 
the process execution environment in which one or more biometric service providers can 
execute . 

 ■ The Windows Biometric API This allows existing Windows components such as  WinLogon 
and LoginUI to access the biometric service . Third-party applications have access to the 
 biometric API and can use the biometric scanner for functions other than logging in to 
 Windows . An example of a function in this API is WinBioEnumServiceProviders . The Biometric 
API is exposed by %SystemRoot%\System32\Winbio.dll. 

 ■ The Fingerprint Biometric Service Provider This wraps the functions of biometric- type-
specific adapters so as to present a common interface, independent of the type of biometric, 
to the Windows Biometric Service . In the future, additional types of biometrics, such as retinal 
scans or voiceprint analyzers, might be supported by additional Biometric Service Providers . 
The Biometric Service Provider in turn uses three adapters, which are user-mode DLLs:

• The sensor adapter exposes the data-capture functionality of the scanner . The  sensor 
adapter will usually use Windows I/O calls to access the scanner hardware . Windows 
 provides a sensor adapter that can be used with simple sensors, those for which a Windows 
Biometric Device Interface (WBDI) driver exists . For more complex sensors, the sensor 
adapter is written by the sensor vendor . 

• The engine adapter exposes processing and comparison functionality specific to the scan-
ner’s raw data format and other features . The actual processing and comparison might be 
performed within the engine adapter DLL, or the DLL might communicate with some other 
module . The engine adapter is always provided by the sensor vendor . 

• The storage adapter exposes a set of secure storage functions . These are used to store and 
retrieve templates against which scanned biometric data is matched by the engine adapter . 
Windows provides a storage adapter using Windows cryptography services and standard 
disk file storage. A sensor vendor might provide a different storage adapter. 

 ■ The Windows Biometric Driver Interface This is a set of interface definitions (IRP  major 
function codes, DeviceIoControl codes, and so forth) to which any driver for a biometric 
 scanner device must conform if it is to be compatible with the Windows Biometric Service . 
WBDI is described in the Windows Driver Kit documentation . The Windows Driver Kit includes 
a sample WBDI driver . 

 ■ The functional device driver for the actual biometric scanner device This exposes the 
WBDI at its upper edge, and it usually uses the services of a lower-level bus driver, such as the 
USB bus driver, to access the scanner device . It can be a User-Mode Driver Framework (UMDF) 
driver, a Kernel-Mode Driver Framework (KMDF) driver, or a Windows Driver Model (WDM) 
driver . This driver is always provided by the sensor vendor . Microsoft recommends the use of 
UMDF and a USB hardware interface for the scanner . 
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FIGURE 6-14 Windows Biometric Framework components and architecture

A typical sequence of operations to support logging in via a fingerprint scan might be as follows: 

1. After initialization, the sensor adapter receives from the service provider a request for capture 
data . The sensor adapter in turn sends a DeviceIoControl request with the IOCTL_BIOMETRIC_
CAPTURE_DATA control code to the WBDI driver for the fingerprint scanner device.  

2. The WBDI driver puts the scanner into capture mode and queues the IOCTL_BIOMETRIC_ 
CAPTURE_DATA request until a fingerprint scan occurs. 

3. A prospective user swipes a finger across the scanner. The WBDI driver receives notification of 
this, obtains the raw scan data from the sensor, and returns this data to the sensor driver in a 
buffer associated with the IOCTL_BIOMETRIC_CAPTURE_DATA request . 

4. The sensor adapter provides the data to the Fingerprint Biometric Service Provider, which in 
turn passes the data to the engine adapter . 

5. The engine adapter processes the raw data into a form compatible with its template storage .

6. The Fingerprint Biometric Service Provider uses the storage adapter to obtain templates and 
corresponding security IDs from secure storage . It invokes the engine adapter to compare 
each template to the processed scan data . The engine adapter returns a status indicating 
whether it’s a match or not a match .

7.  If a match is found, the Biometric Service notifies WinLogon, via a credential provider DLL, of a 
successful login and passes it the security ID of the identified user. This notification is sent via 
an Advanced Local Procedure Call message, providing a path that cannot be spoofed
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User Account Control and Virtualization

UAC is meant to enable users to run with standard user rights, as opposed to administrative rights . 
Without administrative rights, users cannot accidentally (or deliberately) modify system settings, 
malware can’t normally alter system security settings or disable antivirus software, and users can’t 
compromise the sensitive information of other users on shared computers . Running with standard 
user rights can thus mitigate the impact of malware and protect sensitive data on shared computers .

UAC had to address several problems to make it practical for a user to run with a standard user 
 account . First, because the Windows usage model has been one of assumed administrative rights, 
software developers assumed their programs would run with those rights and so could access and 
modify any file, registry key, or operating system setting. The second problem UAC had to  address 
was that users sometimes need administrative rights to perform such operations as installing 
 software, changing the system time, and opening ports in the firewall. 

The UAC solution to these problems is to run most applications with standard user rights, even 
though the user is logged in to an account with administrative rights; but at the same time, UAC 
makes it possible for standard users to access administrative rights when they need them—whether 
for legacy applications that require them or for changing certain system settings . 

As described previously, UAC accomplishes this by creating a filtered admin token as well as the 
normal admin token when a user logs in to an administrative account . All processes created under the 
user’s session will normally have the filtered admin token in effect so that applications that can run 
with standard user rights will do so . However, the administrative user can run a program or perform 
other functions that require full administrator rights by performing UAC Elevation . 

Windows also allows certain tasks that were previously considered reserved for administrators 
to be performed by standard users, enhancing the usability of the standard user environment . For 
example, Group Policy settings exist that can enable standard users to install printer and other device 
drivers approved by IT administrators and to install ActiveX controls from administrator-approved 
sites . 

Finally, when software developers test in the UAC environment, they are encouraged to develop 
applications that can run without administrative rights . Fundamentally, nonadministrative programs 
should not need to run with Administrator privileges; programs that often require Administrator 
 privileges are typically legacy programs using old APIs or techniques, and they should be updated .

Together, these changes obviate the need for users to run with administrative rights all the time .

File System and Registry Virtualization
Although some software legitimately requires administrative rights, many programs needlessly store 
user data in system-global locations . When an application executes, it can be running in different user 
accounts, and it should therefore store user-specific data in the per-user %AppData% directory and 
save per-user settings in the user’s registry profile under HKEY_CURRENT_USER\Software. Standard 
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user accounts don’t have write access to the %ProgramFiles% directory or HKEY_LOCAL_MACHINE 
\Software, but because most Windows systems are single-user and most users have been administra-
tors until UAC was implemented, applications that incorrectly saved user data and settings to these 
locations worked anyway .

Windows enables these legacy applications to run in standard user accounts through the help of 
file system and registry namespace virtualization. When an application modifies a system-global loca-
tion in the file system or registry and that operation fails because access is denied, Windows redirects 
the operation to a per-user area . When the application reads from a system-global location, Windows 
first checks for data in the per-user area and, if none is found, permits the read attempt from the 
global location .

Windows will always enable this type of virtualization unless

 ■ The application is 64-bit . Because virtualization is purely an application-compatibility 
 technology meant to help legacy applications, it is enabled only for 32-bit applications . The 
world of 64-bit applications is relatively new and developers should follow the development 
guidelines for creating standard user-compatible applications .

 ■ The application is already running with administrative rights . In this case, there is no need for 
any virtualization .

 ■ The operation came from a kernel-mode caller .

 ■ The operation is being performed while the caller is impersonating . For example, any 
 operations not originating from a process classified as legacy according to this definition, 
including network file-sharing accesses, are not virtualized.

 ■ The executable image for the process has a UAC-compatible manifest (specifying a 
 requestedExecutionLevel setting, described in the next section) . 

 ■ The administrator does not have write access to the file or registry key. This exception exists to 
enforce backward compatibility, because the legacy application would have failed before UAC 
was implemented even if the application was run with administrative rights .

 ■ Services are never virtualized .

You can see the virtualization status (as discussed previously, the process’ virtualization status is 
stored as a flag in its token) of a process by adding the UAC Virtualization column to Task  Manager’s 
Processes page, as shown in Figure 6-15 . Most Windows components—including the Desktop 
 Window Manager (Dwm .exe), the Client Server Run-Time Subsystem (Csrss .exe), and Explorer—have 
virtualization disabled because they have a UAC-compatible manifest or are running with admin-
istrative rights and so do not allow virtualization . Internet Explorer (Iexplore .exe) has virtualization 
enabled because it can host multiple ActiveX controls and scripts and must assume that they were not 
written to operate correctly with standard user rights .

In addition to file system and registry virtualization, some applications require additional help to 
run correctly with standard user rights . For example, an application that tests the account in which 
it’s running for membership in the Administrators group might otherwise work, but it won’t run if 
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it’s not in that group. Windows defines a number of application-compatibility shims to enable such 
 applications to work anyway . The shims most commonly applied to legacy applications for opera-
tion with standard user rights are shown in Table 6-10 . Note that, if required, virtualization can be 
 completely disabled for a system using a local security policy setting .

FIGURE 6-15 Using Task Manager to view virtualization status

TABLE 6-10 UAC Virtualization Shims

Flag Meaning 

ElevateCreateProcess Changes CreateProcess to handle ERROR_ELEVATION_REQUIRED errors by 
calling the application information service to prompt for elevation

ForceAdminAccess Spoofs queries of Administrator group membership

VirtualizeDeleteFile Spoofs successful deletion of global files and directories

LocalMappedObject Forces global section objects into the user’s namespace

VirtualizeHKCRLite Redirects global registration of COM objects to a per-user location

VirtualizeRegisterTypeLib Converts per-machine typelib registrations to per-user registrations

File Virtualization
The file system locations that are virtualized for legacy processes are %ProgramFiles%,  
%ProgramData%, and %SystemRoot%, excluding some specific subdirectories. However, any 
file with an executable extension—including  .exe,  .bat,  .scr,  .vbs, and others—is excluded from 
 virtualization . This means that programs that update themselves from a standard user account 
fail  instead of creating private versions of their executables that aren’t visible to an administrator 
 running a global updater .
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Note To add additional extensions to the exception list, enter them in the HKEY_LOCAL_
MACHINE\System\CurrentControlSet\Services\Luafv\Parameters\ExcludedExtensionsAdd 
registry key and reboot . Use a multistring type to delimit multiple extensions, and do not 
include a leading dot in the extension name .

Modifications to virtualized directories by legacy processes are redirected to the user’s virtual 
root directory, %LocalAppData%\VirtualStore. The Local component of the path highlights the fact 
that virtualized files don’t roam with the rest of the profile when the account has a roaming pro-
file. If you navigate in Explorer to a directory containing virtualized files, Explorer displays a button 
labeled Compatibility Files in its toolbar, as shown in Figure 6-16 . Clicking the button takes you to the 
 corresponding VirtualStore subdirectory to show you the virtualized files.

FIGURE 6-16 Virtualized files are displayed here

The UAC File Virtualization Filter Driver (%SystemRoot%\System32\Drivers\Luafv.sys)  implements 
file system virtualization. Because this is a file system filter driver, it sees all local file system 
 operations, but it implements functionality only for operations from legacy processes . As shown in 
Figure 6-17, the filter driver changes the target file path for a legacy process that creates a file in a 
system-global location but does not for a nonvirtualized process with standard user rights . Default 
permissions on the \Windows directory deny access to the application written with UAC support, but 
the legacy process acts as though the operation succeeds, when it really created the file in a location 
fully accessible by the user .
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User mode

Kernel mode

Luafv.sys
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Windows Vista 
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Write to
\Users\<user>\AppData\

Local\VirtualStore\
Windows\App.ini

Write to 
\Windows\App.ini

Write to
\Windows\App.ini

Access
denied!!

FIGURE 6-17 UAC File Virtualization Filter Driver operation

EXPERIMENT: File Virtualization Behavior
In this experiment, we will enable and disable virtualization on the command prompt and see 
several behaviors to demonstrate UAC file virtualization:

1. Open a nonelevated command prompt (you must have UAC enabled for this to work), 
and enable virtualization for it . You can change the virtualization status of a process by 
selecting UAC Virtualization from the shortcut menu that appears when you right-click 
the process in Task Manager .

2. Navigate to the C:\Windows directory, and use the following command to write a file:

echo hello-1 > test.txt

3. Now list the contents of the directory:

dir test.txt

You’ll see that the file appears.

4. Now disable virtualization by right-clicking on the process on the Processes page in 
Task Manager and deselecting UAC Virtualization, and then list the directory as in step 
3. Notice that the file is gone. However, a directory listing of the VirtualStore directory 
will reveal the file:

dir %LOCALAPPDATA%\VirtualStore\Windows\test.txt
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5. Enable virtualization again for this process .  

6. To take a look at a more complex scenario, create a new command prompt window, 
but elevate it this time, and then repeat steps 2 and 3 using the string “hello-2” .

7. Examine the text inside these files by using the following command in both command 
prompts:

echo test.txt

The following two screen shots show the expected output .

8. Finally, from your elevated command prompt, delete the test.txt file:

del test.txt

9. Repeat step 6 of the experiment . Notice that the elevated command prompt  cannot 
find the file anymore, while the standard user command prompt shows the old con-
tents of the file again. This demonstrates the failover mechanism described  earlier—
read operations will look in the per-user virtual store location first, but if the file 
doesn’t exist, read access to the system location will be granted .

Registry Virtualization
Registry virtualization is implemented slightly differently from file system virtualization. Virtualized 
registry keys include most of the HKEY_LOCAL_MACHINE\Software branch, but there are numerous 
exceptions, such as the following:

 ■ HKLM\Software\Microsoft\Windows
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 ■ HKLM\Software\Microsoft\Windows NT

 ■ HKLM\Software\Classes

Only keys that are commonly modified by legacy applications, but that don’t introduce 
 compatibility or interoperability problems, are virtualized. Windows redirects modifications of 
 virtualized keys by a legacy application to a user’s registry virtual root at HKEY_ CURRENT_USER 
\Software\Classes\VirtualStore. The key is located in the user’s Classes hive, %LocalAppData% 
\Microsoft\Windows\UsrClass.dat, which, like any other virtualized file data, does not roam with a 
roaming user profile. Instead of maintaining a fixed list of virtualized locations as Windows does 
for the file system, the virtualization status of a key is stored as a combination of flags, shown in 
Table 6-11 .

TABLE 6-11 Registry Virtualization Flags

Flag Meaning 

REG_KEY_DONT_VIRTUALIZE Specifies whether virtualization is enabled for this key. If the flag is set, virtualization 
is disabled .

REG_KEY_DONT_SILENT_FAIL If the REG_KEY_DONT_VIRTUALIZE flag is set (virtualization is disabled), this key 
specifies that a legacy application that would be denied access performing an 
 operation on the key is instead granted MAXIMUM_ALLOWED rights to the key (any 
access the account is granted), instead of the rights the application requested . If this 
flag is set, it implicitly disables virtualization as well.

REG_KEY_RECURSE_FLAG Determines whether the virtualization flags will propagate to the child keys (subkeys) 
of this key .

You can use the Reg.exe utility included in Windows, with the flags option, to display the  current 
virtualization state for a key or to set it. In Figure 6-18, note that the HKLM\Software key is fully 
 virtualized, but the Windows subkey (and all its children) have only silent failure enabled .

FIGURE 6-18 UAC registry virtualization flags on the Software and Windows keys

Unlike file virtualization, which uses a filter driver, registry virtualization is implemented in the 
configuration manager. (See Chapter 4 for more information on the registry and the configuration 
manager.) As with file system virtualization, a legacy process creating a subkey of a virtualized key is 
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redirected to the user’s registry virtual root, but a UAC-compatible process is denied access by default 
permissions . This is shown in Figure 6-19 .

User mode

Kernel mode

HKLM\Software\App

Virtualized
process

Ntoskrnl.exe

Registry

Non-virtualized
process

Access denied

HKCU\Software\Classes\VirtualStore\
Machine\Software\App

FIGURE 6-19 UAC registry virtualization operation

Elevation
Even if users run only programs that are compatible with standard user rights, some operations still 
require administrative rights . For example, the vast majority of software installations require admin-
istrative rights to create directories and registry keys in system-global locations or to install services 
or device drivers . Modifying system-global Windows and application settings also requires admin-
istrative rights, as does the parental controls feature . It would be possible to perform most of these 
 operations by switching to a dedicated administrator account, but the inconvenience of doing so 
would likely result in most users remaining in the administrator account to perform their daily tasks, 
most of which do not require administrative rights . 

It’s important to be aware that UAC elevations are conveniences and not security boundaries . A 
security boundary requires that security policy dictate what can pass through the boundary . User 
accounts are an example of a security boundary in Windows, because one user can’t access the data 
belonging to another user without having that user’s permission .

Because elevations aren’t security boundaries, there’s no guarantee that malware running on a 
 system with standard user rights can’t compromise an elevated process to gain administrative rights . 
For example, elevation dialog boxes only identify the executable that will be elevated; they say 
 nothing about what it will do when it executes .
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Running with Administrator Rights
Windows includes enhanced “run as” functionality so that standard users can conveniently launch 
processes with administrative rights . This functionality requires giving applications a way to identify 
operations for which the system can obtain administrative rights on behalf of the application, as 
 necessary . (We’ll say more on this topic shortly .)

To enable users acting as system administrators to run with standard user rights but not have 
to enter user names and passwords every time they want to access administrative rights, Windows 
makes use of a mechanism called Admin Approval Mode (AAM) . This feature creates two identities for 
the user at logon: one with standard user rights and another with administrative rights . Since every 
user on a Windows system is either a standard user or acting for the most part as a standard user in 
AAM, developers must assume that all Windows users are standard users, which will result in more 
 programs working with standard user rights without virtualization or shims .

Granting administrative rights to a process is called elevation . When elevation is performed by 
a standard user account (or by a user who is part of an administrative group but not the actual 
 Administrators group), it’s referred to as an over-the-shoulder (OTS) elevation because it requires the 
entry of credentials for an account that’s a member of the Administrators group, something that’s 
usually completed by a user typing over the shoulder of a standard user . An elevation performed by 
an AAM user is called a consent elevation because the user simply has to approve the assignment of 
his administrative rights .

Stand-alone systems, which are typically home computers, and domain-joined systems treat AAM 
access by remote users differently because domain-connected computers can use domain adminis-
trative groups in their resource permissions. When a user accesses a stand-alone computer’s file share, 
Windows requests the remote user’s standard user identity, but on domain-joined systems, Windows 
honors all the user’s domain group memberships by requesting the user’s administrative identity . 
Executing an image that requests administrative rights causes the application information service  
(AIS, contained in %SystemRoot%\System32\Appinfo.dll), which runs inside a service host process 
(%SystemRoot%\System32\Svchost.exe), to launch Consent.exe (%SystemRoot%\System32 
\Consent.exe). Consent captures a bitmap of the screen, applies a fade effect to it, switches to a 
desktop that’s accessible only to the local system account (the secure desktop), paints the bitmap as 
the background, and displays an elevation dialog box that contains information about the execut-
able . Displaying this dialog box on a separate desktop prevents any application present in the user’s 
account from modifying the appearance of the dialog box .

If an image is a Windows component digitally signed by Microsoft and the image is in the 
 Windows system directory, the dialog box displays a blue stripe across the top, as shown at the top of 
Figure 6-20, with a blue and gold shield at the left end of the stripe . If the image is signed by some-
one other than Microsoft, or if it is signed by Microsoft but resides in a directory tree other than the 
Windows directory tree, the shield becomes solid blue with a question mark over it . If the image is 
unsigned, the shield background and the stripe both become orange, the shield has an exclamation 
point over it, and the prompt stresses the unknown origin of the image . The elevation dialog box 
shows the image’s icon, description, and publisher for digitally signed images, but it shows only the 
file name and “Unknown publisher” for unsigned images. This difference makes it harder for malware 
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to mimic the appearance of legitimate software . The Details button at the bottom of the dialog box 
expands it to show the command line that will be passed to the executable if it launches .

FIGURE 6-20 AAC UAC elevation dialog boxes based on image signature

The OTS consent dialog box, shown in Figure 6-21, is similar, but prompts for administrator 
 credentials . It will list any accounts with administrator rights . 

FIGURE 6-21 OTS consent dialog box
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If a user declines an elevation, Windows returns an access-denied error to the process that initiated 
the launch . When a user agrees to an elevation by either entering administrator credentials or clicking 
Continue, AIS calls CreateProcessAsUser to launch the process with the appropriate administrative 
identity . Although AIS is technically the parent of the elevated process, AIS uses new support in the 
CreateProcessAsUser API that sets the process’ parent process ID to that of the process that origi-
nally launched it . (See Chapter 5, “Processes and Threads,” for more information on processes and 
this mechanism .) That’s why elevated processes don’t appear as children of the AIS service-hosting 
process in tools such as Process Explorer that show process trees . Figure 6-22 shows the operations 
involved in launching an elevated process from a standard user account .

AppInfo service Consent.exe

Admin.exe

Explorer

Standard user

Local system

Administrator

ShellExecute 
(Admin.exe)

Re
pa

re
nt

ed

CreateProcessAsUser 
(Admin.exe)

FIGURE 6-22 Launching an administrative application as a standard user

Requesting Administrative Rights
There are a number of ways the system and applications identify a need for administrative rights . One 
that shows up in the Explorer user interface is the Run As Administrator context menu command and 
shortcut option . These items also include a blue and gold shield icon that should be placed next to 
any button or menu item that will result in an elevation of rights when it is selected . Choosing the Run 
As Administrator command causes Explorer to call the ShellExecute API with the “runas” verb .

The vast majority of installation programs require administrative rights, so the image loader, 
which initiates the launch of an executable, includes installer-detection code to identify likely legacy 
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installers . Some of the heuristics it uses are as simple as detecting internal version information or 
whether the image has the words setup, install, or update in its file name. More sophisticated means 
of detection involve scanning for byte sequences in the executable that are common to third-party 
installation wrapper utilities . The image loader also calls the application compatibility library to see if 
the target executable requires administrator rights . The library looks in the application compatibility 
database to see whether the executable has the RequireAdministrator or RunAsInvoker compatibility 
flag associated with it.

The most common way for an executable to request administrative rights is for it to include a 
requestedExecutionLevel tag in its application manifest file. The element’s level attribute can have one 
of the three values shown in Table 6-12 .

TABLE 6-12 Requested Elevation Levels

Elevation Level Meaning Usage

As Invoker No need for administrative rights; never ask 
for elevation .

Typical user applications that don’t need 
 administrative privileges—for example, Notepad .

Highest Available Request approval for highest rights  available . 
If the user is logged on as a standard user, 
the process will be launched as invoker; 
otherwise, an AAM elevation prompt will 
appear, and the process will run with full 
 administrative rights .

Applications that can function without full 
 administrative rights but expect users to want 
full access if it’s easily accessible . For example, 
the Registry Editor, Microsoft Management 
Console, and the Event Viewer use this level .

Require 
Administrator

Always request administrative rights—an OTS 
elevation dialog box prompt will be shown for 
standard users; otherwise, AAM .

Applications that require administrative rights to 
work, such as the Firewall Settings editor, which 
affects systemwide security .

The presence of the trustInfo element in a manifest (which you can see in the excerpted string 
dump of eventvwr .exe discussed next) denotes an executable that was written with support for UAC 
and the requestedExecutionLevel element nests within it . The uiAccess attribute is where accessibility 
applications can use the UIPI bypass functionality mentioned earlier .

C:\>strings c:\Windows\System32\eventvwr.exe 
... 
<trustInfo xmlns="urn:schemas-microsoft-com:asm.v3"> 
    <security> 
        <requestedPrivileges> 
            <requestedExecutionLevel 
                level="highestAvailable" 
                uiAccess="false" 
            /> 
        </requestedPrivileges> 
    </security> 
</trustInfo> 
<asmv3:application> 
   <asmv3:windowsSettings xmlns="http://schemas.microsoft.com/SMI/2005/WindowsSettings"> 
        <autoElevate>true</autoElevate> 
   </asmv3:windowsSettings> 
</asmv3:application> 
...
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An easier way to determine the values specified by an executable is to view its manifest with the 
Sysinternals Sigcheck utility, like this:

sigcheck –m <executable>

EXPERIMENT: Using Application-Compatibility Flags
In this experiment, we will use an application-compatibility flag to run the Registry Editor as 
a standard user process . This will bypass the RequireAdministrator manifest flag and force 
 virtualization on Regedit .exe, allowing you to make changes to the virtualized registry directly .

1. Navigate to your %SystemRoot% directory, and copy the Regedit.exe file to another 
path on your system (such as C:\ or your Desktop folder).

2. Go to the HKLM\Software\Microsoft\Windows NT\CurrentVersion\AppCompatFlags 
\Layers registry key, and create a new string value whose name is the path where you 
copied Regedit.exe, such as c:\regedit.exe

3. Set the value of this key to RUNASINVOKER .

4. Now start Regedit .exe from its location . (Be sure to close any running copies of the 
Registry Editor first.) You will not see the typical AAM dialog box, and Regedit.exe 
will now run with standard user rights . You will also be subject to the virtualized view 
of the registry, meaning you can now see what legacy applications see when accessing 
the registry .

Auto-Elevation
In the default configuration (see the next section for information on changing this), most Windows 
executables and control panel applets do not result in elevation prompts for administrative users, 
even if they need administrative rights to run . This is because of a mechanism called auto-elevation . 
Auto-elevation is intended to preclude administrative users from seeing elevation prompts for most 
of their work; the programs will automatically run under the user’s full administrative token .  

Auto-elevation has several requirements . The executable in question must be considered as a 
 Windows executable . This means it must be signed by the Windows publisher (not just by Microsoft), 
and it must be in one of several directories considered secure: %SystemRoot%\System32 and most of 
its subdirectories, %Systemroot%\Ehome, and a small number of directories under %ProgramFiles%—
for example, those containing Windows Defender and Windows Journal . 

There are additional requirements, depending on the type of executable . 

.exe files other than Mmc.exe auto-elevate if they are requested via an autoElevate element in their 
manifest . The string dump of EventVwr .exe in the previous section illustrates this . 
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Windows also includes a short internal list of executables that are auto-elevated without the 
autoElevate element . Two examples are Spinstall .exe, the service pack installer, and Pkgmgr .
exe, the package manager . They are handled this way because they are also supplied external to 
 Windows 7; they must be able to run on earlier versions of Windows where the autoExecute element 
in their  manifest might cause an error . These executables must still meet the signing and directory 
 requirements for Windows executables as described previously . 

Mmc .exe is treated as a special case, because whether it should auto-elevate or not depends on 
which system management snap-ins it is to load . Mmc .exe is normally invoked with a command line 
specifying an .msc file, which in turn specifies which snap-ins are to be loaded. When Mmc.exe is run 
from a protected administrator account (one running with the limited administrator token), it asks 
Windows for administrative rights . Windows validates that Mmc .exe is a Windows executable and 
then checks the  .msc . The  .msc must also pass the tests for a Windows executable, and furthermore 
must be on an internal list of auto-elevate .msc’s. This list includes nearly all .msc files in Windows.  

Finally, COM objects can request administrative rights within their registry key . To do so requires 
a subkey named Elevation with a REG_DWORD value named Enabled, having a value of 1 . Both the 
COM object and its instantiating executable must meet the Windows executable requirements, 
though the executable need not have requested auto-elevation . 

Controlling UAC Behavior
UAC can be modified via the dialog box shown in Figure 6-23. This dialog box is available under 
 Control Panel, Action Center, Change User Account Control Settings . Figure 6-23 shows the control in 
its default position for Windows 7 .

 
FIGURE 6-23 User Account Control settings
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The four possible settings have the effects described in Table 6-13 . 

TABLE 6-13 User Account Control Options

Slider Position When administrative user not running with administrative 
rights…

Remarks

…attempts to change 
Windows settings, for ex-
ample, use certain Control 
Panel applets

…attempts to install software, 
or run a program whose mani-
fest calls for elevation, or uses 
Run As Administrator

Highest position 
(“Always notify”)

UAC elevation prompt appears 
on the secure desktop

UAC elevation prompt appears on 
the secure desktop

This was the Windows 
Vista behavior

Second position UAC elevation occurs 
 automatically with no prompt 
or notification

UAC elevation prompt appears on 
the secure desktop

Windows 7 default 
 setting

Third position UAC elevation occurs 
 automatically with no prompt 
or notification

UAC elevation prompt appears on 
the user’s normal desktop

Not recommended

Lowest position 
(“Never notify”)

UAC is turned off for 
 administrative users

UAC is turned off for 
 administrative users

Not recommended . 

The third position is not recommended because the UAC elevation prompt appears not on the 
secure desktop but on the normal user’s desktop . This could allow a malicious program running in the 
same session to change the appearance of the prompt . It is intended for use only in systems where 
the video subsystem takes a long time to dim the desktop or is otherwise unsuitable for the usual 
UAC display .  

The lowest position is strongly discouraged because it turns UAC off completely as far as 
 administrative accounts are concerned . All processes run by a user with an administrative account will 
be run with the user’s full administrative rights in effect; there is no filtered admin token. Registry and 
file system virtualization are disabled as well for these accounts, and the Protected mode of Internet 
Explorer is disabled . However, virtualization is still in effect for nonadministrative accounts, and non-
administrative accounts will still see an OTS elevation prompt when they attempt to change Windows 
settings, run a program that requires elevation, or use the Run As Administrator context menu option 
in Explorer . 

The UAC setting is stored in four values in the registry under HKEY_LOCAL_MACHINE 
\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System, as shown in Table 6-14. 
 ConsentPromptBehaviorAdmin controls the UAC elevation prompt for administrators running with a 
filtered admin token, and ConsentPromptBehaviorUser controls the UAC prompt for users other than 
administrators . 
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TABLE 6-14 User Account Control Registry Values

Slider Position
ConsentPrompt 
BehaviorAdmin

ConsentPrompt 
BehaviorUser EnableLUA PromptOnSecureDesktop

Highest position 
(“Always notify”)

2 (display AAC UAC 
elevation prompt)

3 (display OTS UAC 
 elevation prompt)

1 (enabled) 1 (enabled)

Second position 5 (display AAC UAC 
elevation prompt, 
except for changes to 
Windows settings)

3 1 1

Third position 5 3 1 0 (disabled; UAC prompt 
appears on user’s normal 
desktop)

Lowest position 
(“Never notify”)

0 3 0 (disabled . 
Logins to 
admin-
istrative 
 accounts do 
not create 
a restricted 
admin ac-
cess token)

0

Application Identification (AppID)

Historically, security decisions in Windows have been based upon a user’s identity (in the form of the 
user’s SID and group membership), but a growing number of security components (AppLocker, fire-
wall, antivirus, antimalware, Rights Management Services, and others) need to make security decisions 
based upon what code is to be run . In the past, each of these security components used their own 
proprietary method for identifying applications, which led to inconsistent and overly-complicated 
policy authoring . The purpose of AppID is to bring consistency to how the security components 
 recognize applications by providing a single set of APIs and data structures .

Note This is not the same as the AppID used by DCOM/COM+ applications, where a GUID 
represents a process that is shared by multiple CLSIDs, nor is it the AppID used by Windows 
Live applications .

Just as a user is identified when she logs in, an application is identified just before it is started 
by generating the main program’s AppID . An AppID can be generated from any of the follow-
ing  attributes of the application: Fields within a code-signing certificate embedded within the file 
 allow for different combinations of publisher name, product name, file name, and version.  
APPID://FQBN is a Fully Qualified Binary Name, and it is a string in the following form:  
{Publisher\Product\Filename,Version}. The Publisher name is the Subject field of the x.509 certificate 
used to sign the code, using the following fields: O = Organization, L = Locality, S = State or Province, 
and C = Country.
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File hash . There are several methods that can be used for hashing . The default is  
APPID://SHA256HASH. However, for backward compatibility with SRP and most x.509 certificates, 
SHA-1 (APPID://SHA1HASH) is still supported. APPID://SHA256HASH specifies the SHA-256 hash of 
the file. 

The partial or complete path to the file. APPID://Path specifies a path with optional wildcard 
 characters (“*”) . 

Note An AppID does not serve as a means for certifying the quality or security of an 
 application . An AppID is simply a way of identifying an application so that administrators 
can reference the application in security policy decisions .

The AppID is stored in the process’s access token, allowing any security component to make 
 authorization decisions based upon a single, consistent identification. AppLocker uses conditional 
ACEs (described earlier) for specifying whether a particular program is allowed to be run by the user . 

When an AppID is created for a signed file, the certificate from the file is cached and verified to a 
trusted root certificate. The certificate path is re-verified daily to ensure the certificate path remains 
valid. Certificate caching and verification are recorded in the system event log. See Figure 6-24.

FIGURE 6-24 Event Viewer showing AppID service verifying signature of a program . 
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AppLocker

New to Windows 7 and Windows Server 2008/R2 (Enterprise and Ultimate editions) is a feature 
known as AppLocker, which allows an administrator to lockdown a system to prevent unauthorized 
programs from being run . Windows XP introduced Software Restriction Policies (SRP), which was the 
first step toward this capability, but SRP suffered from being difficult to manage, and it couldn’t be 
applied to specific users or groups. (All users were affected by SRP rules.) AppLocker is a replacement 
for SRP, and yet coexists alongside SRP, with AppLocker’s rules being stored separately from SRP’s 
rules . If both AppLocker and SRP rules are in the same Group Policy object (GPO), only the AppLocker 
rules will be applied . Another feature that makes AppLocker superior to SRP is AppLocker’s auditing 
mode, which allows an administrator to create an AppLocker policy and examine the results (stored 
in the system event log) to determine whether the policy will perform as expected—without actually 
performing the restrictions . AppLocker auditing mode can be used to monitor which applications are 
being used by one, or more, users on a system .

AppLocker allows an administrator to restrict the following types of files from being run:

 ■ Executable images ( .EXE and  .COM)

 ■ Dynamic-Link Libraries ( .DLL and  .OCX)

 ■ Microsoft Software Installer ( .MSI and  .MSP) for both install and uninstall

 ■ Scripts

 ■ Windows PowerShell ( .PS1)

 ■ Batch ( .BAT and  .CMD)

 ■ VisualBasic Script ( .VBS)

 ■ Java Script ( .JS)

AppLocker provides a simple GUI rule-based mechanism, which is very similar to network firewall 
rules, for determining which applications or scripts are allowed to be run by specific users and groups, 
using conditional ACEs and AppID attributes . There are two types of rules in AppLocker:

 ■ Allow the specified files to run, denying everything else.

 ■ Deny the specified files from being run, allowing everything else. “Deny” rules take 
 precedence over “allow” rules .

Each rule can also have a list of exceptions to exclude files from the rule. Using an exception, you 
could create a rule to “Allow everything in the C:\Windows or C:\Program Files directories to be run, 
except the built-in games .”

AppLocker rules can be associated with a specific user or group. This allows an administrator to 
support compliance requirements by validating and enforcing which users can run specific applica-
tions . For example, you can create a rule to “Allow users in the Finance security group to run the 
finance line-of-business applications.” This blocks everyone who is not in the Finance security group 
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from running finance applications (including administrators) but still provides access for those that 
have a business need to run the applications . Another useful rule would be to prevent users in the 
Receptionists group from installing or running unapproved software .

AppLocker rules depend upon conditional ACEs and attributes defined by AppID. Rules can be 
 created using the following criteria:

 ■ Fields within a code-signing certificate embedded within the file, allowing for different 
 combinations of publisher name, product name, file name, and version. For example, a 
rule could be created to “Allow all versions greater than 9 .0 of Contoso Reader to run” or 
“Allow anyone in the graphics group to run the installer or application from Contoso for 
 GraphicsShop as long as the version is 14 .*” . For example, the following SDDL string de-
nies execute access to any signed programs published by Contoso for the user account 
 RestrictedUser (identified by the user’s SID):

D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;((Exists APPID://FQBN)  
&& ((APPID://FQBN) >= ({"O=CONTOSO, INCORPORATED, L=REDMOND,  
S=CWASHINGTON, C=US\*\*",0}))))

 ■ Directory path, allowing only files within a particular directory tree to run. This can also be 
used to identify specific files. For example, the following SDDL string denies execute access to 
the programs in the directory C:\Tools for the user account RestrictedUser (identified by the 
user’s SID):

D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;(APPID://PATH  
Contains "%OSDRIVE%\TOOLS\*"))

 ■ File hash. Using a hash will also detect if a file has been modified and prevent it from running, 
which can also be a weakness if files are changed frequently, because the hash rule will need 
to be updated frequently . File hashes are often used for scripts because few scripts are signed . 
For example, this SDDL string denies execute access to programs with the specified hash 
 values for the user account RestrictedUser (identified by the user’s SID):

D:(XD;;FX;;;S-1-5-21-3392373855-1129761602-2459801163-1028;(APPID://SHA256HASH  
Any_of {#7a334d2b99d48448eedd308dfca63b8a3b7b44044496ee2f8e236f5997f1b647,  
#2a782f76cb94ece307dc52c338f02edbbfdca83906674e35c682724a8a92a76b}))

AppLocker rules can be defined on the local machine using the Security Policy MMC snap-in 
(%SystemRoot%\System32\secpol.msc) or a Windows PowerShell script, or they can be pushed to 
machines within a domain using group policy . AppLocker rules are stored in multiple locations within 
the registry:

 ■ HKLM\Software\Policies\Microsoft\Windows\SrpV2 This key is also mirrored to  
HKLM\SOFTWARE\Wow6432Node\Policies\Microsoft\Windows\SrpV2. The rules are stored in 
XML format .
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 ■ HKLM\SYSTEM\CurrentControlSet\Control\Srp\Gp\Exe The rules are stored as SDDL and 
a binary ACE .

 ■ HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Group Policy 
 Objects\{GUID}Machine\Software\Policies\Microsoft\Windows\SrpV2 AppLocker 
policy pushed down from a domain as part of a Group Policy Object (GPO) are stored here in 
XML format .

Certificates for files that have been run are cached in the registry under the key HKLM\SYSTEM 
\CurrentControlSet\Control\AppID\CertStore. AppLocker also builds a certificate chain (stored in 
HKLM\SYSTEM\CurrentControlSet\Control\AppID\CertChainStore) from the certificate found in a file 
back to a trusted root certificate. See Figure 6-25.

FIGURE 6-25 AppLocker configuration page in Local Security Policy

There are also AppLocker-specific PowerShell commands (also known as cmdlets) to enable 
 deployment and testing via scripting . Figure 6-26 demonstrates using PowerShell commands to 
determine which files in a directory tree have been signed, saving the current AppLocker policy in 
an XML file, and displaying which executable files in a directory tree could be run by a user named 
RestrictedUser .
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FIGURE 6-26 Powershell cmdlets used to examine executables for signatures, save AppLocker policies in an XML 
file, and test the ability of a user to run the executables

The AppID and SRP services co-exist in the same binary (%SystemRoot%\System32\AppIdSvc.dll), 
which runs within an SvcHost process . The service requests a registry change notification to monitor 
any changes under that key, which is written by either a GPO or the AppLocker UI in the Local Secu-
rity Policy MMC snap-in . When a change is detected, the AppID service triggers a user-mode task 
( %SystemRoot%\System32\AppIdPolicyConverter.exe), which reads the new XML rules and translates 
them into binary format ACEs and SDDL strings, which are understandable by both the user-mode 
and kernel-mode AppID and AppLocker components . The task stores the translated rules under 
HKLM\SYSTEM\CurrentControlSet\Control\Srp\Gp. This key is writable only by SYSTEM and Adminis-
trators, and it is marked read-only for authenticated users . Both user-mode and kernel-mode AppID 
components read the translated rules from the registry directly . The service also monitors the local 
machine trusted root certificate store, and it invokes a user-mode task (%SystemRoot%\System32 
\AppIdCertStoreCheck.exe) to reverify the certificates at least once per day and whenever there is a 
change to the certificate store. The AppID kernel-mode driver (%SystemRoot%\System32\drivers 
\AppId.sys) is notified about rule changes by the AppID service through an APPID_POLICY_CHANGED 
DeviceIoControl request . See Figure 6-27 .
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FIGURE 6-27 Scheduled task that runs every day to convert software restriction policies stored in XML to 
 binary format

An administrator can track which applications are being allowed or denied by looking at the 
 system Event Log using the event viewer (once AppLocker has been configured and the service 
started) . See Figure 6-28 .

FIGURE 6-28 Event Viewer showing AppLocker allowing and denying access to various applications . Event ID 
8004 is “denied”; 8002 is “allowed .”
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The implementations of AppID, AppLocker, and SRP are somewhat blurred and violate strict 
 layering, with various logical components co-existing within the same executables, and the naming is 
not as consistent as one would like .

The AppID service runs as LocalService so that it has access to the Trusted Root Certificate Store on 
the system . This also enables it to perform certificate verification. The AppID service is responsible for 
the following:

 ■ Verification of publisher certificates

 ■ Adding new certificates to the cache

 ■ Detecting AppLocker rule updates, and notifying the AppID driver

The AppID driver performs the majority of the AppLocker functionality and relies upon 
 communication (via DeviceIoControl requests) from the AppID service, so its device object is 
 protected by an ACL, granting access only to the NT SERVICE\AppIDSvc, NT SERVICE\LOCAL SERVICE 
and BUILTIN\Administrators groups. Thus, the driver cannot be spoofed by malware. 

When the AppID driver is first loaded, it requests a process creation  callback 
( CreateProcessNotifyEx) by calling PsSetCreateProcessNotifyRoutineEx . When the 
 CreateProcessNotifyEx routine is called, it is passed a PPS_CREATE_NOTIFY_INFO structure 
( describing the process being created) . It then gathers the AppID attributes that identify the 
 executable image and writes them to the process’ access token . Then it calls the undocumented 
 routine SeSrpAccessCheck, which examines the process token and the conditional ACE AppLocker 
rules, and determines whether the process should be allowed to run . If the process should not be 
allowed to run, the driver writes STATUS_ACCESS_DISABLED_BY_POLICY_OTHER to the Status field of 
the PPS_CREATE_NOTIFY_INFO structure, which causes the process creation to be canceled (and sets 
the process’ final completion status).

To perform DLL restriction, the image loader will send a DeviceIoControl request to the AppID 
driver whenever it loads a DLL into a process . The driver then checks the DLL’s identity against the 
 AppLocker conditional ACEs, just like it would for an executable . 

Note Performing these checks for every DLL load is time consuming and might be 
 noticeable to end users . For this reason, DLL rules are normally disabled, and they must be 
specifically enabled via the Advanced tab in the AppLocker properties page in the Local 
Security Policy snap-in . 

The scripting engines and the MSI installer have been modified to call the user-mode SRP APIs 
whenever they open a file, to check whether a file is allowed to be opened. The user-mode SRP APIs 
call the AuthZ APIs to perform the conditional ACE access check .
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Software Restriction Policies

Windows also contains a user-mode mechanism called Software Restriction Policies that enables 
administrators to control what images and scripts execute on their systems . The Software Restriction 
Policies node of the Local Security Policy Editor, shown in Figure 6-29, serves as the management 
interface for a machine’s code execution policies, although per-user policies are also possible using 
domain group policies .

Several global policy settings appear beneath the Software Restriction Policies node:

 ■ The Enforcement policy configures whether restriction policies apply to libraries, such as DLLs, 
and whether policies apply to users only or to administrators as well .

 ■ The Designated File Types policy records the extensions for files that are considered 
 executable code .

 ■ Trusted Publishers control who can select which certificate publishers are trusted.

 
FIGURE 6-29 Software Restriction Policy configuration

When configuring a policy for a particular script or image, an administrator can direct the system 
to recognize it using its path, its hash, its Internet Zone (as defined by Internet Explorer), or its cryp-
tographic certificate, and she can specify whether it is associated with the Disallowed or Unrestricted 
security policy .

Enforcement of Software Restriction Policies takes place within various components where files are 
treated as containing executable code . Some of these components are listed here:

 ■ The user-mode Windows CreateProcess function in %SystemRoot%\System32\Kernel32.dll 
enforces it for executable images .

 ■ The DLL loading code of Ntdll (%SystemRoot%\System32\Ntdll.dll) enforces it for DLLs.

 ■ The Windows command prompt (%SystemRoot%\System32\Cmd.exe) enforces it for batch 
file execution.
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 ■ Windows Scripting Host components that start scripts—%SystemRoot%\System32\Cscript.exe 
(for command-line scripts), %SystemRoot%\System32\Wscript.exe (for UI scripts), and  
%SystemRoot%\System32\Scrobj.dll (for script objects)—enforce it for script execution.

Each of these components determines whether the restriction policies are enabled by reading the 
registry value HKEY_LOCAL_MACHINE\Software\Microsoft\Policies\Windows\Safer\CodeIdentifiers 
\TransparentEnabled, which if set to 1 indicates that policies are in effect. Then it determines whether 
the code it’s about to execute matches one of the rules specified in a subkey of the CodeIdentifiers 
key and, if so, whether or not the execution should be allowed . If there is no match, the default policy, 
as specified in the DefaultLevel value of the CodeIdentifiers key, determines whether the execution is 
allowed .

Software Restriction Policies are a powerful tool for preventing the unauthorized access of code 
and scripts, but only if properly applied . Unless the default policy is set to disallow execution, a user 
can make minor changes to an image that’s been marked as disallowed so that he can bypass the rule 
and execute it . For example, a user can change an innocuous byte of a process image so that a hash 
rule fails to recognize it, or copy a file to a different location to avoid a path-based rule.

EXPERIMENT: Watching Software Restriction Policy Enforcement
You can indirectly see Software Restriction Policies being enforced by watching accesses to the 
registry when you attempt to execute an image that you’ve disallowed .

1. Run secpol .msc to open the Local Security Policy Editor, and navigate to the Software 
Restriction Policies node .

2. Choose Create New Policies from the context menu if no policies are defined.

3. Create a path-based disallow restriction policy for %SystemRoot%\System32\Notepad.exe.

4. Run Process Monitor, and set an include filter for Safer. (See Chapter 4 for a description 
of Process Monitor .)

5. Open a command prompt, and run Notepad from the prompt .

Your attempt to run Notepad should result in a message telling you that you cannot execute 
the specified program, and Process Monitor should show the command prompt (cmd.exe) 
 querying the local machine restriction policies .

Conclusion

Windows provides an extensive array of security functions that meet the key requirements of both 
government agencies and commercial installations . In this chapter, we’ve taken a brief tour of the 
internal components that are the basis of these security features . In the next chapter, we’ll look at the 
I/O system .
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C H A P T E R  7

Networking

Microsoft Windows was designed with networking in mind, and it includes broad networking 
 support that is integrated with the I/O system and the Windows APIs . The four basic types of 

network software components are services, APIs, protocols, and drivers for network adapters—with 
each component layered on top of the next to form a network stack. Windows has well-defined 
 interfaces for each layer, so in addition to using the wide variety of APIs, protocols, and network 
adapter device drivers that ship with Windows, third parties can extend the operating system’s 
 networking capabilities by developing their own components .

In this chapter, we take you from the top of the Windows networking stack to the bottom . First, we 
present the mapping between the Windows networking software components and the Open Systems 
Interconnection (OSI) reference model. Then we briefly describe the networking APIs available on 
Windows and explain how they are implemented . You’ll learn how multiple redirector support and 
name resolution work, see how to access and cache remote files, and learn how a multitude of drivers 
interact to form a network protocol stack . After looking at the implementation of network adapter 
device drivers, we examine binding, which is the glue that connects services, protocol stacks, and 
network adapters .

Windows Networking Architecture

The goal of network software is to take a request (in the form of an I/O request) from an  application 
on one machine, pass it to another machine, execute the request on the remote machine, and  
return the results to the first machine. In the course of this process, the request must be  transformed 
several times . A high-level request, such as “read x number of bytes from file y on machine z,” 
requires software that can determine how to get to machine z and what communication software 
that machine understands . Then the request must be altered for transmission across a network—for 
example,  divided into short packets of information . When the request reaches the other side, it must 
be checked for completeness, decoded, and sent to the correct operating system component for 
 execution . Finally, the reply must be encoded for sending back across the network .
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The OSI Reference Model
To help different computer manufacturers standardize and integrate their networking software, in 
1984 the International Organization for Standardization (ISO) defined a software model for sending 
messages between machines . The result was the Open Systems Interconnection (OSI) reference model . 
The model defines six layers of software and one physical layer of hardware, as shown in Figure 7-1.
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FIGURE 7-1 OSI reference model

The OSI reference model is an idealized scheme that few systems implement precisely, but it’s 
often used to frame discussions of networking principles . Each layer on one machine assumes that 
it is “talking to” the same layer on the other machine . Both machines “speak” the same language, or 
protocol, at the same level . In reality, however, a network transmission must pass down each layer on 
the client machine, be transmitted across the network, and then pass up the layers on the destination 
machine until it reaches a layer that can understand and implement the request .

The purpose of each layer in the OSI model is to provide services to higher layers and to abstract 
how the services are implemented at lower layers . Describing the details of each layer is beyond the 
scope of this book, but following is a brief description of each layer in the OSI model . 

Note Most network descriptions start with the top-most layer and work down to the 
 lowest layer; however, here the description of the layers will start at the bottom and work 
toward the top, to demonstrate how each layer builds upon the services provided by the 
layer beneath it .

 ■ Physical This is the lowest layer in the OSI model, and it exchanges signals between 
 cooperating network entities over some physical medium (wire, radio, fiber, or other type). 
The physical layer specifies the mechanical, electrical, functional, and procedural standards for 
accessing the medium, such as connectors, cabling, signaling, and so on . Common examples 
are Ethernet (IEEE 802 .3) and Wi-Fi (IEEE 802 .11) .

 ■ Datalink This layer exchanges data frames (also called packets) between physically adjacent 
network entities (known as stations) using the services provided by the physical layer . By its na-
ture, the datalink layer is tightly tied to the physical layer and is really more of an architectural 
abstraction than the other layers within the model . The datalink layer provides each station 
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with its own unique address on the network, and it provides point-to-point  communications 
between stations (such as between two systems connected to the same Ethernet) . The capa-
bilities of the datalink layer vary considerably, depending upon the physical layer . Typically, 
transmit and receive errors are detected by the datalink layer, and in some instances, the error 
might be corrected . A datalink layer can be connection oriented, which is typically used in 
wide area networks (WANs), or connectionless, which is typically used in local area networks 
(LANs) . The IEEE (Institute of Electrical and Electronics Engineers) 802 committee is respon-
sible for the majority of the LAN architectures used throughout the world, and they specify 
the physical and datalink layers of most networking equipment . They divide the datalink layer 
into two sublayers: the Logical Link Control (LLC) and the Medium Access Control (MAC) . The 
LLC layer provides a single access method for the network layer to communicate with any 
802 .x MAC, insulating the network layer from the physical LAN type . The MAC layer provides 
access-control functions to the shared network medium, and it specifies signaling, the sharing 
protocol, address recognition, frame generation, CRC generation, and so on . The datalink layer 
does not guarantee that frames will be delivered to their destination .

 ■ Network The network layer implements node addresses and routing functions to allow 
packets to traverse multiple datalinks . This layer understands the network topology (hiding it 
from the transport layer) and knows how to direct packets to the nearest router . Any network 
entity containing the network, datalink, and physical layers is considered to be a node, and the 
network layer can transfer data between any two nodes on the network . There are two types 
of nodes implemented by the network layer: end nodes, which are the source or destination of 
data, and intermediate nodes (usually referred to as routers), which route packets between end 
nodes . Network-layer service can be either connection oriented, where all packets traveling 
between the end nodes follow the same path through the network, or connectionless, where 
each packet is routed independently . The network layer does not guarantee that packets will 
be delivered to their destination .

 ■ Transport The transport layer provides a transparent data-transfer mechanism between end 
nodes . On the sending side, the transport layer receives an unstructured stream of data from 
the layer above and segments the data into discrete packets, which can be sent across the 
network, using the services of the network layer beneath it . On the receiving side, the trans-
port layer reassembles the packets received from the network layer into a stream of data and 
provides it to the layer above . This layer provides reliable data transfer and will re-transmit lost 
or corrupted packets to ensure that the data stream received is identical to the data stream 
that was sent . 

 ■ Session This layer implements a connection or pipe between cooperating applications . Each 
connection endpoint has its own address (often called a port), which is unique on that system . 
There are a variety of communications services provided by session layers, such as two-way 
simultaneous (full-duplex), two-way alternate (single-duplex), or one-way . Once a connection 
is established, the systems typically send periodic messages to each other to ensure that each 
end of the connection is functioning . If an uncorrectable transmission error is detected over a 
connection, the connection is typically terminated and disconnected . 
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 ■ Presentation The presentation layer is responsible for preserving the information content of 
data sent over the network . It handles data formatting, including issues such as whether lines 
end in a carriage return/line feed (CR/LF) or just a carriage return (CR), whether data is to be 
compressed or encrypted, converting binary data from little-endian to big-endian, and so on . 
This layer is not present in most network protocol stacks, so its functionality is implemented at 
the application layer .

 ■ Application This is a layer that handles the information transfer between two network 
applications, including functions such as security checks, identification of the participat-
ing machines, and initiation of the data exchange . This is the protocol that is used by two 
 communicating applications, and is application specific.

The gray lines in Figure 7-1 represent protocols used in transmitting a request to a remote 
 machine . As stated earlier, each layer of the hierarchy assumes that it is speaking to the same layer on 
another machine and uses a common protocol . The collection of protocols through which a request 
passes on its way down and back up the layers of the network is called a protocol stack .

Not all network protocol suites implement all the layers in the OSI model . (The presentation layer 
is rarely provided .) In particular, the TCP/IP protocol stack (which predates the OSI model) matches 
poorly to the abstractions of OSI . As data travels down the network stack, each layer adds a header 
(and possibly a trailer) to the data payload, building up a structure that is very similar to the layers 
of an onion . When this structure is received on a remote node, it travels up the network stack, with 
each layer stripping off its header (and trailer) until the data payload is delivered to the receiving 
 application .

Windows Networking Components
Figure 7-2 provides an overview of the components of Windows networking, showing how each 
 component fits into the OSI reference model and which protocols are used between layers. The 
 mapping between OSI layers and networking components isn’t precise, which is the reason that some 
components cross layers . The various components include the following:

 ■ Networking APIs provide a protocol-independent way for applications to communicate across 
a network . Networking APIs can be implemented in user mode or in both user mode and ker-
nel mode . In some cases, they are wrappers around another networking API that implements 
a specific programming model or provides additional services. (Note that the term networking 
API also describes any programming interfaces provided by networking-related software .)

 ■ Transport Driver Interface (TDI) clients are legacy kernel-mode device drivers that usually 
implement the kernel-mode portion of a networking API’s implementation . TDI clients get 
their name from the fact that the I/O request packets (IRPs) they send to protocol drivers are 
formatted according to the Windows Transport Driver Interface standard (documented in the 
Windows Driver Kit). This standard specifies a common programming interface for kernel-
mode device drivers . (See Chapter 8, “I/O System,” in Part 2 for more information about IRPs .) 
The TDI interface is deprecated and will be removed in a future version of Windows . The TDI 
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interface is now being exported by the TDI Extension (TDX) Driver . Kernel-mode network 
clients should now use the Winsock Kernel (WSK) interface for accessing the network stack .

 ■ TDI transports (also known as transports) and Network Driver Interface Specification (NDIS) 
protocol drivers (or protocol drivers) are kernel-mode network protocol drivers . They ac-
cept IRPs from TDI clients and process the requests these IRPs represent . This processing 
might  require network communications with a peer, prompting the TDI transport to add 
protocol-specific headers (for example, TCP, UDP, and/or IP) to data passed in the IRP, and to 
communicate with adapter drivers using NDIS functions (also documented in the Windows 
Driver Kit) . TDI transports generally facilitate application network communications by trans-
parently performing message operations such as segmentation and reassembly, sequencing, 
 acknowledgment, and retransmission . 

 ■ Microsoft has decided that TCP/IP has won the network protocol wars, so it has re-architected 
the network protocol portion of the network stack from being protocol-neutral to being  
TCP/IP-centric . The interface between the TCP/IP protocol driver and Winsock is known as the 
Transport Layer Network Provider Interface (TLNPI) and is currently undocumented .

 ■ Winsock Kernel (WSK) is a transport-independent, kernel-mode networking API that replaces 
the legacy TDI . WSK provides network communication by using socket-like programming 
 semantics similar to user-mode Winsock, while also providing unique features such as asyn-
chronous I/O operations built on IRPs and event callbacks . WSK also natively supports IP 
 version 6 (IPv6) functionality in the Next Generation TCP/IP network stack in Windows .

 ■ The Windows Filtering Platform (WFP) is a set of APIs and system services that provide the 
ability to create network filtering applications. The WFP allows applications to interact with 
packet processing at different levels of the Windows networking stack, much like file system 
filters. Similarly, network data can be traced, filtered, and also modified before it reaches its 
destination .

 ■ WFP callout drivers are kernel-mode drivers that implement one or more callouts, which 
 extend the capabilities of the WFP by processing TCP/IP-based network data in ways that 
extend the basic functionality provided by the WFP .

 ■ The NDIS library (Ndis .sys) provides an abstraction mechanism that encapsulates Network 
Interface Card (NIC) drivers (also known as NDIS miniports), hiding from them the specifics of 
the Windows kernel-mode environment . The NDIS library exports functions for use by TCP/IP 
and legacy TDI transports .

 ■ NDIS miniport drivers are kernel-mode drivers that are responsible for interfacing the  network 
stack to a particular NIC . NDIS miniport drivers are written so that they are wrapped by the 
Windows NDIS library . NDIS miniport drivers don’t process IRPs; rather, they register a call-
table interface to the NDIS library that contains pointers to functions that perform simple 
operations on the NIC, such as sending a packet or querying properties . NDIS miniport drivers 
communicate with network adapters by using NDIS library functions that resolve to hardware 
abstraction layer (HAL) functions .
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As Figure 7-2 shows, the OSI layers don’t correspond to actual software . WSK transport providers, 
for example, frequently cross several boundaries . In fact, the bottom three layers of software and the 
hardware layer are often referred to collectively as the transport . Software components residing in the 
upper three layers are referred to as users or clients of the transport .”
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FIGURE 7-2 OSI model and Windows networking components

In the remainder of this chapter, we’ll examine the networking components shown in Figure 7-2 
(as well as others not shown in the figure), looking at how they fit together and how they relate to 
Windows as a whole .



 CHAPTER 7 Networking 597

Networking APIs

Windows implements multiple networking APIs to provide support for legacy applications and 
compatibility with industry standards. In this section, we’ll briefly look at the networking APIs and 
describe how applications use them . Keep in mind that the decision about which API an application 
uses depends on characteristics of the API, such as which protocols the API can layer over, whether 
the API supports reliable (or bidirectional) communication, and the API’s portability to other Windows 
platforms the application might run on . We’ll discuss the following networking APIs:

 ■ Windows Sockets (Winsock)

 ■ Winsock Kernel (WSK)

 ■ Remote procedure call (RPC)

 ■ Web access APIs

 ■ Named pipes and mailslots

 ■ NetBIOS

 ■ Other networking APIs

Windows Sockets
The original Windows Sockets (Winsock) (version 1 .0) was Microsoft’s implementation of BSD 
( Berkeley Software Distribution) Sockets, a programming API that became the standard by which 
UNIX systems have communicated over the Internet since the 1980s . Support for sockets on  Windows 
makes the task of porting UNIX networking applications to Windows relatively straightforward . 
The modern versions of Winsock include most of the functionality of BSD Sockets but also include 
Microsoft-specific enhancements, which continue to evolve. Winsock supports reliable, connection-
oriented communication as well as unreliable, connectionless communication . (“Reliable,” in this 
sense, indicates whether the sender is notified of any problems in the delivery of data to the receiver.) 
Windows provides Winsock 2.2, which adds numerous features beyond the BSD Sockets specification, 
such as functions that take advantage of Windows asynchronous I/O, to offer far better performance 
and scalability than straight BSD Sockets programming .

Winsock includes the following features:

 ■ Support for scatter-gather and asynchronous application I/O .

 ■ Quality of Service (QoS) conventions so that applications can negotiate latency and bandwidth 
requirements when the underlying network supports QoS .

 ■ Extensibility so that Winsock can be used with third-party protocols (deprecated) .

 ■ Support for integrated namespaces with third-party namespace providers . A server can 
 publish its name in Active Directory, for example, and by using namespace extensions, a client 
can look up the server’s address in Active Directory .
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 ■ Support for multicast messages, where messages transmit from a single source to multiple 
receivers .

We’ll examine typical Winsock operation and then describe ways that Winsock can be extended .

Winsock Client Operation
The first step a Winsock application takes is to initialize the Winsock API with a call to an initialization 
function . A Winsock application’s next step is to create a socket that will represent a communications 
endpoint . The application obtains the address of the server to which it wants to connect by calling 
getaddrinfo (and later calling freeaddrinfo to release the information) . The getaddrinfo function returns 
the list of protocol-specific addresses assigned to the server, and the client attempts to connect to 
each one in turn until it is able to establish a connection with one of them . This ensures that a client 
that supports both IP version 4 (IPv4) and IPv6 will connect to the appropriate and/or most efficient 
address on a server that might have both IPv4 and IPv6 addresses assigned to it . (IPv6 is preferred 
over IPv4.) Winsock is a protocol-independent API, so an address can be specified for any protocol in-
stalled on the system over which Winsock operates . After obtaining the server address, a connection-
oriented client attempts to connect to the server by using connect and specifying the server address .

When a connection is established, the client can send and receive data over its socket using the 
recv and send APIs . A connectionless client specifies the remote address with connectionless APIs, 
such as the connectionless equivalents of send and recv, and sendto and recvfrom . Clients can also use 
the select and WSAPoll APIs to wait on or poll multiple sockets for synchronous I/O operations, or to 
check their state .

Winsock Server Operation
The sequence of steps for a server application differs from that of a client . After initializing the 
Winsock API, the server creates a socket and then binds it to a local address by using bind . Again, the 
address family specified—whether it’s TCP/IPv4, TCP/IPv6, or some other address family—is up to the 
server application .

If the server is connection oriented, it performs a listen operation on the socket, indicating the 
backlog, or the number of connections the server asks Winsock to hold until the server is able to 
 accept them . Then it performs an accept operation to allow a client to connect to the socket . If there 
is a pending connection request, the accept call completes immediately; otherwise, it completes 
when a connection request arrives . When a connection is made, the accept function returns a new 
socket that represents the server’s end of the connection . (The original socket used for listening 
is not used for communications, only for receiving connection requests .) The server can perform 
receive and send operations by using functions such as recv and send . Like Winsock clients, servers 
can use the select and WSAPoll functions to query the state of one or more sockets; however, the 
Winsock  WSAEventSelect function and overlapped (asynchronous) I/O extensions are preferred for 
better  scalability . Figure 7-3 shows connection-oriented communication between a Winsock client 
and  server .
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FIGURE 7-3 Connection-oriented Winsock operation

After binding an address, a connectionless server is no different from a connectionless client: it can 
send and receive data over the socket simply by specifying the remote address with each operation . 
Most connectionless protocols are unreliable and, in general, will not know whether the destination 
actually received the sent data packets (which are known as datagrams) . Datagram protocols are ideal 
for quick message passing, where the overhead of establishing a connection is too much and reliabil-
ity is not required (although an application can build reliability on top of the protocol) .

Winsock Extensions
In addition to supporting functions that correspond directly to those implemented in BSD Sockets, 
Microsoft has added a handful of functions that aren’t part of the BSD standard . Two of these func-
tions, AcceptEx (the Ex suffix is short for Extended) and TransmitFile, are worth describing because 
many Web servers on Windows use them to achieve high performance . AcceptEx is a version of the 
accept function that, in the process of establishing a connection with a client, returns the client’s ad-
dress and the client’s first message. AcceptEx allows the server application to queue multiple accept 
operations so that high volumes of incoming connection requests can be handled . With this function, 
a web server avoids executing multiple Winsock functions that would otherwise be required .

After establishing a connection with a client, a web server frequently sends a file, such as a web 
page, to the client . The TransmitFile function’s implementation is integrated with the Windows cache 
manager so that a file can be sent directly from the file system cache. Sending data in this way is 
called zero-copy because the server doesn’t have to read the file data to send it; it simply specifies 
a handle to a file and the byte range (offset and length) of the file to send. In addition, TransmitFile 
 allows a server to add prefix or suffix data to the file’s data so that the server can send header infor-
mation, trailer information, or both, which might include the name of the web server and a field that 
indicates to the client the size of the message the server is sending . Internet Information Services (IIS), 
which is included with Windows, uses both AcceptEx and TransmitFile to achieve better performance .

Windows also supports a handful of other multifunction APIs, including ConnectEx, DisconnectEx, 
and TransmitPackets . ConnectEx establishes a connection and sends the first message on the connec-
tion . DisconnectEx closes a connection and allows the socket handle representing the connection to 
be reused in a call to AcceptEx or ConnectEx . Finally, TransmitPackets is similar to TransmitFile, except 
that it allows for the sending of in-memory data in addition to, or in lieu of, file data. Finally, by using 
the WSAImpersonateSocketPeer and WSARevertImpersonation functions, Winsock servers can perform 
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impersonation (described in Chapter 6, “Security”) to perform authorization or to gain access to 
 resources based on the client’s security credentials .

Extending Winsock
Winsock is an extensible API on Windows because third parties can add a transport service  provider 
that interfaces Winsock with other protocols, or layers on top of existing protocols, to provide 
functionality such as proxying . Third parties can also add a namespace service provider to augment 
 Winsock’s name-resolution facilities . Service providers plug in to Winsock by using the Winsock 
service provider interface (SPI) . When a transport service provider is registered with Winsock,  Winsock 
uses the transport service provider to implement socket functions, such as connect and accept, 
for the address types that the provider indicates it implements . There are no restrictions on how 
the  transport service provider implements the functions, but the implementation usually involves 
 communicating with a transport driver in kernel mode . 

Note Layered service providers are not secure and can be bypassed; secure network 
 protocol layering must be done in kernel mode . Installing itself as a Winsock layered 
 service provider (LSP) is a technique used frequently by malware and spyware .

A requirement of any Winsock client/server application is for the server to make its address 
 available to clients so that the clients can connect to the server . Standard services that execute on 
the TCP/IP protocol use well-known addresses to make their addresses available . As long as a browser 
knows the name of the computer a Web server is running on, it can connect to the web server by 
specifying the well-known web server address (the IP address of the server concatenated with :80, 
the port number used for HTTP) . Namespace service providers make it possible for servers to register 
their presence in other ways . For example, one namespace service provider might on the server side 
register the server’s address in Active Directory and on the client side look up the server’s address in 
Active Directory . Namespace service providers supply this functionality to Winsock by implementing 
standard Winsock name-resolution functions such as getaddrinfo and getnameinfo .

EXPERIMENT: Looking at Winsock Service and Namespace Providers
The Network Shell (Netsh .exe) utility included with Windows is able to show the  registered 
 Winsock transport and namespace providers by using the netsh winsock show catalog 
 command. For example, if there are two TCP/IP transport service providers, the first one listed 
is the default provider for Winsock applications using the TCP/IP protocol . Here’s sample output 
from Netsh showing the registered transport service providers:

C:\Users\Toby>netsh winsock show catalog 
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Winsock Catalog Provider Entry 
------------------------------------------------------ 
Entry Type: Base Service Provider 
Description: MSAFD Tcpip [TCP/IP] 
Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192} 
Provider Path: %SystemRoot%\system32\mswsock.dll 
Catalog Entry ID: 1001 
Version: 2 
Address Family: 2 
Max Address Length: 16 
Min Address Length: 16 
Socket Type: 1 
Protocol: 6 
Service Flags: 0x20066 
Protocol Chain Length: 1 
 
Winsock Catalog Provider Entry 
------------------------------------------------------ 
Entry Type: Base Service Provider 
Description: MSAFD Tcpip [UDP/IP] 
Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192} 
Provider Path: %SystemRoot%\system32\mswsock.dll 
Catalog Entry ID: 1002 
Version: 2 
Address Family: 2 
Max Address Length: 16 
Min Address Length: 16 
Socket Type: 2 
Protocol: 17 
Service Flags: 0x20609 
Protocol Chain Length: 1 
 
Winsock Catalog Provider Entry 
------------------------------------------------------ 
Entry Type: Base Service Provider 
Description: MSAFD Tcpip [RAW/IP] 
Provider ID: {E70F1AA0-AB8B-11CF-8CA3-00805F48A192} 
Provider Path: %SystemRoot%\system32\mswsock.dll 
Catalog Entry ID: 1003 
Version: 2 
Address Family: 2 
Max Address Length: 16 
Min Address Length: 16 
Socket Type: 3 
Protocol: 0 
Service Flags: 0x20609 
Protocol Chain Length: 1 
. 
. 
. 
Name Space Provider Entry 
------------------------------------------------------ 
Description: Network Location Awareness Legacy (NLAv1) Namespace 
Provider ID: {6642243A-3BA8-4AA6-BAA5-2E0BD71FDD83} 
Name Space: 15 
Active: 1 
Version: 0 
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Name Space Provider Entry 
------------------------------------------------------ 
Description: E-mail Naming Shim Provider 
Provider ID: {964ACBA2-B2BC-40EB-8C6A-A6DB40161CAE} 
Name Space: 37 
Active: 1 
Version: 0 
 
 
Name Space Provider Entry 
------------------------------------------------------ 
Description: PNRP Cloud Namespace Provider 
Provider ID: {03FE89CE-766D-4976-B9C1-BB9BC42C7B4D} 
Name Space: 39 
Active: 1 
Version: 0 
. 
. 
. 

You can also use the Autoruns utility from Windows Sysinternals (www.microsoft.com 
/technet/sysinternals) to view namespace and transport providers, as well as to disable or delete 
those that might be causing problems or unwanted behavior on the system .

Winsock Implementation
Winsock’s implementation is shown in Figure 7-4 . Its application interface consists of an API DLL, 
Ws2_32.dll (%SystemRoot%\System32\Ws2_32.dll), which provides applications access to Winsock 
functions . Ws2_32 .dll calls on the services of namespace and transport service providers to carry out 
name and message operations . The Mswsock.dll (%SystemRoot%\System32\mswsock.dll) library acts 
as a transport service provider for the protocols supported by Microsoft and uses Winsock Helper 
libraries that are protocol specific to communicate with kernel-mode protocol drivers. For example, 
Wshtcpip.dll (%SystemRoot%\System32\wshtcpip.dll) is the TCP/IP helper. Mswsock.dll implements the 
Microsoft Winsock extension functions, such as TransmitFile, AcceptEx, and WSARecvEx . 

Windows ships with helper DLLs for TCP/IPv4, TCPv6, Bluetooth, NetBIOS, IrDA (Infrared Data 
 Association), and PGM (Pragmatic General Multicast) . It also includes namespace service providers 
for DNS (TCP/IP), Active Directory (NTDS), NLA (Network Location Awareness), PNRP (Peer Name 
 Resolution Protocol), and Bluetooth .

Like the named-pipe and mailslot APIs (described later in this chapter), Winsock integrates with 
the Windows I/O model and uses file handles to represent sockets. This support requires the aid 
of a kernel-mode driver, so Msafd.dll (%SystemRoot%\System32\msafd.dll) uses the services of the 
 Ancillary Function Driver (AFD—%SystemRoot%\System32\Drivers\Afd.sys) to implement socket-
based functions . AFD is a Transport Layer Network Provider Interface (TLNPI) client and executes 
network socket operations, such as sending and receiving messages . TLNPI is the undocumented 
interface between AFD and the TCP/IP protocol stack . If a legacy protocol driver is installed, Windows 
will use the TDI-TLNPI translation driver TDX (%SystemRoot%\System32\Drivers\tdx.sys) to map TDI 
IRPs to TLNPI requests .
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FIGURE 7-4 Winsock implementation 

Winsock Kernel
To enable kernel-mode drivers and modules to have access to networking API interfaces similar 
to those available to user-mode applications, Windows implements a socket-based networking 
 programming interface called Winsock Kernel (WSK) . WSK replaces the legacy TDI API interface 
 present on older versions of Windows but maintains the TDI API interface for transport provid-
ers . Compared to TDI, WSK provides better performance, better security, better scalability, and a 
much easier programming paradigm, because it relies less on internal kernel behavior and more on 
socket-based semantics . Additionally, WSK was written to take full advantage of the latest technolo-
gies in the Windows TCP/IP stack, which TDI was not originally anticipated to support . As shown in 
Figure 7-5, WSK makes use of the Network Module Registrar (NMR) component of Windows (part of 
 %SystemRoot%\System32\drivers\NetIO.sys) to attach and detach from transport protocols, and it 
can be used, just like Winsock, to support many types of network clients—for example, the Http .sys 
driver for the HTTP Server API (mentioned later in the chapter) is a WSK client . Using NMR with WSK 
is rather complicated, so registration-support APIs are provided to register with WSK (WskRegister, 
WskDeregister, WskCaptureProviderNPI, and WskReleaseProviderNPI) . 

Note The Raw transport protocol is not really a protocol and does not perform any 
 encapsulation of the user data . This allows the client to directly control the contents of the 
frames transmitted and received by the network interface .
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WSK enhances security by restricting address sharing—which allows multiple sockets to use the 
same transport (TCP/IP) address—through the use of nondefault sharing and security descriptors on 
addresses. WSK uses the security descriptor specified by the first socket for an address, and it checks 
the owning process and thread for each subsequent attempt to use that address .

I/O manager

Kernel-mode networking client applications

Winsock Kernel (WSK)

Transport
(TCP/IPv4)

Network
Module
Registrar
(NMR)

Transport
(TCP/IPv6)

Transport
(Raw)

FIGURE 7-5 WSK overview

WSK Implementation
WSK’s implementation is shown in Figure 7-6 . At its core is the WSK subsystem itself, which uses the 
Next Generation TCP/IP Stack (%SystemRoot%\System32\Drivers\Tcpip.sys) and the NetIO sup-
port library (%SystemRoot%\System32\Drivers\NetIO.sys) but is actually implemented in AFD. The 
 subsystem is responsible for the provider side of the WSK API . The subsystem interfaces with the  
TCP/IP transport protocols (shown at the bottom of Figure 7-5) . Attached to the WSK subsystem 
are WSK clients, which are kernel-mode drivers that implement the client-side WSK API in order to 
perform network operations . The WSK subsystem calls WSK clients to notify them of asynchronous 
events .

WSK
client

WSK
provider NPI

WSK
subsystem

WSK
client NPI

WSK
registration
functions

FIGURE 7-6 WSK implementation

WSK clients are bound to the WSK subsystem through the NMR or through the WSK’s registration 
functions, which allow WSK clients to dynamically detect when the WSK subsystem becomes avail-
able and then load their own dispatch table to describe the provider and client-side implementations 
of the WSK API . These implementations provide the standard WSK socket-based functions, such as 
WskSocket, WskAccept, WskBind, WskConnect, WskReceive, and WskSend, which have similar semantics 
(but not necessarily similar parameters) as their user-mode Winsock counterparts . However, unlike 
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user-mode Winsock, the WSK subsystem defines four kinds of socket categories, which identify which 
functions and events are available:

 ■ Basic sockets, which are used only to get and set information on the transport . They cannot be 
used to send or receive data or be bound to an address .

 ■ Listening sockets, which are used for sockets that accept only incoming connections .

 ■ Datagram sockets, which are used solely for sending and receiving datagrams .

 ■ Connection-oriented sockets, which support all the functionality required to send and receive 
network traffic over an established connection.

Apart from the socket functions described, WSK also provides events through which clients 
are notified of network status . Unlike the model for socket functions, in which a client controls 
the  connection, events allow the subsystem to control the connection and merely notify the 
 client . These include the WskAcceptEvent, WskInspectEvent, WskAbortEvent, WskReceiveFromEvent, 
 WskReceiveEvent, WskDisconnectEvent, and WskSendBacklogEvent routines .

Finally, like user-mode Winsock, WSK can be extended through extension interfaces that clients can 
associate with sockets . These extensions can enhance the default functionality provided by the WSK 
subsystem .

Remote Procedure Call
Remote procedure call (RPC) is a network programming standard originally developed in the early 
1980s . The Open Software Foundation (now The Open Group) made RPC part of the distributed com-
puting environment (DCE) distributed computing standard . Although there is a second RPC standard, 
SunRPC, the Microsoft RPC implementation is compatible with the OSF/DCE standard . RPC builds on 
other networking APIs, such as named pipes or Winsock, to provide an alternate programming model 
that in some respects hides the details of networking programming from an application developer . 
Fundamentally, RPC provides a mechanism for creating programs that are distributed across a net-
work, with portions of the application running transparently on one or more systems .

RPC Operation
An RPC facility is one that allows a programmer to create an application consisting of any number of 
procedures, some that execute locally and others that execute on remote computers via a network . 
It provides a procedural view of networked operations rather than a transport-centered view, thus 
simplifying the development of distributed applications .

Networking software is traditionally structured around an I/O model of processing . In Windows, 
for example, a network operation is initiated when an application issues an I/O request . The operating 
system processes the request accordingly by forwarding it to a redirector, which acts as a remote file 
system by making the client interaction with the remote file system invisible to the client. The redirec-
tor passes the operation to the remote file system, and after the remote system fulfills the request 
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and returns the results, the local network card interrupts . The kernel handles the interrupt, and the 
original I/O operation completes, returning results to the caller .

RPC takes a different approach altogether . RPC applications are like other structured applications, 
with a main program that calls procedures or procedure libraries to perform specific tasks. The differ-
ence between RPC applications and regular applications is that some of the procedure libraries in an 
RPC application are stored and execute on remote computers, as shown in Figure 7-7, whereas others 
execute locally .

To the RPC application, all the procedures appear to execute locally . In other words, instead of 
making a programmer actively write code to transmit computational or I/O-related requests across a 
network, handle network protocols, deal with network errors, wait for results, and so forth, RPC soft-
ware handles these tasks automatically . And the Windows RPC facility can operate over any available 
transport protocols loaded into the system .

RPC client application

ServerFunction()

RPC stub libraryRPC stub library

RPC server application

ServerFunction() {

}

Network

...

FIGURE 7-7 RPC operation

To write an RPC application, the programmer decides which procedures will execute locally and 
which will execute remotely . For example, suppose an ordinary workstation has a network connection 
to a supercomputer (a very fast machine usually designed for high-speed vector operations) . If the 
programmer were writing an application that manipulated large matrices, it would make sense from 
a performance perspective to offload the mathematical calculations to the supercomputer by writing 
the program as an RPC application .

RPC applications work like this: As an application runs, it calls local procedures as well as 
 procedures that aren’t present on the local machine . To handle the latter case, the application is 
linked to a local library or DLL that contains stub procedures, one for each remote procedure . For 
simple applications, the stub procedures are statically linked with the application, but for bigger 
components the stubs are included in separate DLLs . In DCOM, covered later in the chapter, the latter 
method is typically used . The stub procedures have the same name and use the same interface as the 
remote procedures, but instead of performing the required operations, the stub takes the parameters 
passed to it and marshals them for transmission across the network . Marshaling parameters means 
ordering and packaging them in a particular way to suit a network link, such as resolving references 
and picking up a copy of any data structures that a pointer refers to .
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The stub then calls RPC run-time procedures that locate the computer where the remote 
 procedure resides, determines which network transport mechanisms that computer uses, and sends 
the request to it using local transport software . When the remote server receives the RPC request, it 
unmarshals the parameters (the reverse of marshaling), reconstructs the original procedure call, and 
calls the procedure with the parameters passed from the calling system. When the server finishes, it 
performs the reverse sequence to return results to the caller .

In addition to the synchronous function-call-based interface described here, Windows RPC also 
supports asynchronous RPC . Asynchronous RPC lets an RPC application execute a function but not 
wait until the function completes to continue processing . Instead, the application can execute other 
code and later, when a response has arrived from the server, the RPC runtime notifies the client 
that the operation has completed. The RPC runtime uses the notification mechanism requested by 
the client. If the client uses an event synchronization object for notification, it waits for the signal-
ing of the event object by calling either WaitForSingleObject or WaitForMultipleObjects . If the client 
provides an asynchronous procedure call (APC), the runtime queues the execution of the APC to 
the thread that executed the RPC function . (The APC will not be delivered until the requesting 
thread enters an alertable wait state . See Chapter 3, “System Mechanisms,” for more information on 
APCs.) If the client program uses an I/O completion port as its notification mechanism, it must call 
 GetQueuedCompletionStatus to learn of the function’s completion . Alternatively, a client can poll for 
completion by calling RpcAsyncGetCallStatus .

In addition to the RPC runtime, Microsoft’s RPC facility includes a compiler, called the Microsoft 
Interface Definition Language (MIDL) compiler. The MIDL compiler simplifies the creation of an RPC 
application by generating the necessary stub routines . The programmer writes a series of ordinary 
function prototypes (assuming a C or C++ application) that describe the remote routines and then 
places the routines in a file. The programmer then adds some additional information to these pro-
totypes, such as a network-unique identifier for the package of routines and a version number, plus 
attributes that specify whether the parameters are input, output, or both . The embellished prototypes 
form the developer’s Interface Definition Language (IDL) file.

Once the IDL file is created, the programmer compiles it with the MIDL compiler, which produces 
client-side and server-side stub routines (mentioned previously), as well as header files to be included 
in the application. When the client-side application is linked to the stub routines file, all remote pro-
cedure references are resolved . The remote procedures are then installed, using a similar process, on 
the server machine . A programmer who wants to call an existing RPC application need only write the 
client side of the software and link the application to the local RPC run-time facility .

The RPC runtime uses a generic RPC transport provider interface to talk to a transport protocol . 
The provider interface acts as a thin layer between the RPC facility and the transport, mapping RPC 
 operations onto the functions provided by the transport . The Windows RPC facility implements 
transport provider DLLs for named pipes, HTTP, TCP/IP, and UDP . In a similar fashion, the RPC facility is 
designed to work with different network security facilities .

Most of the Windows networking services are RPC applications, which means that both local 
 applications and applications on remote computers might call them . Thus, a remote client computer 
might call the server service to list shares, open files, write to print queues, or activate users on your 
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server, all subject to security constraints, of course . The majority of client-management APIs are 
implemented using RPC .

Server name publishing, which is the ability of a server to register its name in a location accessible 
for client lookup, is in RPC and is integrated with Active Directory . If Active Directory isn’t installed, 
the RPC name locator services fall back on NetBIOS broadcast . This behavior allows RPC to function 
on stand-alone servers and workstations .

RPC Security
Windows RPC includes integration with security support providers (SSPs) so that RPC clients and 
servers can use authenticated or encrypted communications . When an RPC server wants secure 
 communication, it tells the RPC runtime what authentication service to add to the list of available 
 authentication services . When a client wants to use secure communication, it binds to the server . At 
that time, it must tell the RPC runtime the authentication service and authentication level it wants . 
Various authentication levels exist to ensure that only authorized clients connect to a server, verify 
that each message a server receives originates at an authorized client, check the integrity of RPC 
messages to detect manipulation, and even encrypt RPC message data . Obviously, higher authentica-
tion levels require more processing . The client can also optionally specify the server principal name . A 
principal is an entity that the RPC security system recognizes. The server must register its SSP-specific 
principal name with an SSP .

An SSP handles the details of performing network communication authentication and  encryption, 
not only for RPC but also for Winsock . Windows includes a number of built-in SSPs, including a 
Kerberos SSP to implement Kerberos version 5 authentication (including AES support) and Secure 
Channel (SChannel), which implements Secure Sockets Layer (SSL) and the Transport Layer Security 
(TLS) protocols . SChannel also supports TLS and SSL extensions, which allow you to use the AES cipher 
as well as elliptic curve cryptographic (ECC) ciphers on top of the protocols . Also, because it supports 
an open cryptographic interface (OCI) and crypto-agile capabilities, SChannel allows an administra-
tor to replace or add to the existing cryptographic algorithms. In the absence of a specified SSP, RPC 
software uses the built-in security of the underlying transport . Some transports, such as named pipes 
or local RPC, have built-in security . Others, like TCP, do not, and in this case RPC makes unsecure calls 
in the absence of a specified SSP. 

Note The use of unencrypted RPC might pose serious security issues for your organization .

Another feature of RPC security is the ability of a server to impersonate the security identity of a 
client with the RpcImpersonateClient function. After a server has finished performing impersonated 
operations on behalf of a client, it returns to its own security identity by calling RpcRevertToSelf or 
RpcRevertToSelfEx . (See Chapter 6 for more information on impersonation .)
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RPC Implementation
RPC implementation is depicted in Figure 7-8, which shows that an RPC-based application links 
with the RPC run-time DLL (%SystemRoot%\System32\Rpcrt4.dll). The RPC run-time DLL provides 
 marshaling and unmarshaling functions for use by an application’s RPC function stubs as well as 
functions for sending and receiving marshaled data . The RPC run-time DLL includes support rou-
tines to handle RPC over a network as well as a form of RPC called local RPC . Local RPC can be used 
for communication between two processes located on the same system, and the RPC run-time DLL 
uses the advanced local procedure call (ALPC) facilities in kernel mode as the local networking API . 
(See  Chapter 3 for more information on ALPCs .) When RPC is based on nonlocal communication 
 mechanisms, the RPC run-time DLL uses the Winsock or named pipe APIs .
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Application
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stubs
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Winsock Named pipes LPC

Svchost.exe Rpcss.dll

Ntdll.dll
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FIGURE 7-8 RPC implementation

The RPC subsystem (RPCSS—%SystemRoot%\System32\Rpcss.dll) is implemented as a Windows 
service . RPCSS is itself an RPC application that communicates with instances of itself on other systems 
to perform name lookup, registration, and dynamic endpoint mapping . (For clarity, Figure 7-8 doesn’t 
show RPCSS linked with the RPC run-time DLL .)

Windows also includes support for RPC in kernel mode through the kernel-mode RPC driver 
(%SystemRoot%\System32\Drivers\Msrpc.sys). Kernel-mode RPC is for internal use by the system and 
is implemented on top of ALPC . Winlogon includes an RPC server with a documented set of interfaces 
that user-mode RPC clients might call, while Win32k .sys includes an RPC client that communicates 
with Winlogon for internal notifications, such as the secure attention sequence (SAS). (See Chapter 6 
for more information .) The TCP/IP stack in Windows (as well as the WFP) also uses kernel-mode RPC to 
communicate with the Network Storage Interface (NSI) service, which handles network  configuration 
information .



610 Windows Internals, Sixth Edition, Part 1

Web Access APIs
To ease the development of Internet applications, Windows provides both client and server  Internet 
APIs . By using the APIs, applications can provide HTTP services and use FTP and HTTP services with-
out knowledge of the intricacies of the corresponding protocols . The client APIs include Windows 
Internet, also known as WinInet, which enables applications to interact with the FTP and HTTP proto-
cols, and WinHTTP, which enables applications to interact with the HTTP protocol and is more suitable 
than WinInet in certain situations (Windows services and middle-tier applications) . HTTP Server is a 
server-side API that enables the development of web server applications .

WinInet
WinInet supports the HTTP, FTP, and Gopher protocols. The APIs break down into sub-API sets specific 
to each protocol . Using the FTP-related APIs—such as InternetConnect to connect to an HTTP server, 
followed by HttpOpenRequest to open an HTTP request handle, HttpSendRequestEx to send a request 
to the sever and receive a response, InternetWriteFile to send a file, and InternetReadFileEx to receive 
a file—an application developer avoids the details of establishing a connection and formatting TCP/IP 
messages to the various protocols . The HTTP-related APIs also provide cookie persistence, client-side 
file caching, and automatic credential dialog handling. WinInet is used by core Windows components 
such as Windows Explorer and Internet Explorer . 

Note WinINet does not support server implementations or use by services . For these types 
of usage, use WinHTTP instead .

WinHTTP provides an abstraction of the HTTP v1 .1 protocol for HTTP client applications similar 
to what the WinInet HTTP-related APIs provide . However, whereas the WinInet HTTP API is intended 
for user-interactive, client-side applications, the WinHTTP API is designed for server applications that 
communicate with HTTP servers . Server applications are often implemented as Windows services that 
do not provide a user interface and so do not desire the dialog boxes that WinInet APIs display . In 
addition, the WinHTTP APIs are more scalable (such as supporting uploads of greater than 4 GB) and 
offer security functionality, such as thread impersonation, that is not available from the WinInet APIs . 

HTTP 
Using the HTTP Server API implemented by Windows, server applications can register to receive HTTP 
requests for particular URLs, receive HTTP requests, and send HTTP responses . The HTTP Server API 
includes SSL support so that applications can exchange data over secure HTTP connections . The API 
includes server-side caching capabilities, synchronous and asynchronous I/O models, and both IPv4 
and IPv6 addressing . The HTTP server APIs are used by IIS and other Windows services that rely on 
HTTP as a transport .

The HTTP Server API, which applications access through %SystemRoot%\System32\Httpapi.dll,  relies on 
the kernel-mode %SystemRoot%\System32\Drivers\Http.sys driver. Http.sys starts on demand the first 
time any application on the system calls HttpInitialize . Applications then call  HttpCreateServerSession 
to initialize a server session for the HTTP Server API . Next they use  HttpCreateRequestQueue to create 



 CHAPTER 7 Networking 611

a private request queue and HttpCreateUrlGroup to create a URL group, specifying the URLs that they 
want to handle requests for with HttpAddUrlToUrlGroup . Using the request queues and their regis-
tered URLs (which they associate by using HttpSetUrlGroupProperty), Http .sys allows more than one 
application to service HTTP requests on a given port (port 80 for example), with each servicing HTTP 
requests to different parts of the URL namespace, as shown in Figure 7-9 .
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FIGURE 7-9 HTTP request queues and URL groups

HttpReceiveHttpRequest receives incoming requests directed at registered URLs, and 
 HttpSendHttpResponse sends HTTP responses . Both functions offer asynchronous operation so that an 
application can use GetOverlappedResult or I/O completion ports to determine when an operation is 
completed .

Applications can use Http .sys to cache data in nonpaged physical memory by calling 
 HttpAddFragmentToCache and associating a fragment name (specified as a URL prefix) with the 
cached data . Http .sys invokes the memory manager function MmAllocatePagesForMdlEx to allocate 
unmapped physical pages . (For large requests, Http .sys also attempts to use large pages to opti-
mize access to the buffered data .) When Http .sys requires a virtual address mapping for the physical 
 memory described by an entry in the cache—for instance, when it copies data to the cache or sends 
data from the cache—it uses MmMapLockedPagesSpecifyCache and then MmUnmapLockedPages 
 after it completes its access . Http .sys maintains cached data until an application invalidates it or an 
optional application-specified timeout associated with the data expires. Http.sys also trims cached 
data in a worker thread that wakes up when the low-memory notification event is signaled. (See 
Chapter 10, “Memory Management,” in Part 2 for information on the low-memory notification event.) 
When an application specifies one or more fragment names in a call to HttpSendHttpResponse,  
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Http .sys passes a pointer to the cached data in physical memory to the TCP/IP driver and avoids a 
copy operation . Http .sys also contains code for performing server-side authentication, including full 
SSL support, which removes the need to call back to the user-mode API to perform encryption and 
decryption of traffic.

Finally, the HTTP Server API contains many configuration options that clients can use to set 
 functionality, such as authentication policies, bandwidth throttling, logging, connection limits, server 
state, response caching, and SSL certificate binding.

Named Pipes and Mailslots
Named pipes and mailslots are programming APIs for interprocess communication . Named pipes 
provide for reliable bidirectional communications, whereas mailslots provide unreliable, unidirectional 
data transmission . An advantage of mailslots is that they support broadcast capability . In Windows, 
both APIs make use of standard Windows security authentication and authorization mechanisms, 
which allow a server to control precisely which clients can connect to it .

The names that servers assign to named pipes and clients conform to the Windows Universal 
Naming Convention (UNC), which is a protocol-independent way to identify resources on a Windows 
network . The implementation of UNC names is described later in the chapter .

Named-Pipe Operation
Named-pipe communication consists of a named-pipe server and a named-pipe client . A named-pipe 
server is an application that creates a named pipe to which clients can connect . A named pipe’s name 
has the format \\Server\Pipe\PipeName. The Server component of the name specifies the computer 
on which the named-pipe server is executing . (A named-pipe server can’t create a named pipe on a 
remote system .) The name can be a DNS name (for example, mspress.microsoft.com), a NetBIOS name 
(mspress), or an IP address (131 .107 .0 .1) . The Pipe component of the name must be the string “Pipe”, 
and PipeName is the unique name assigned to a named pipe . The unique portion of the named pipe’s 
name can include subdirectories; an example of a named-pipe name with a subdirectory is  
\\MyComputer\Pipe\MyServerApp\ConnectionPipe.

A named-pipe server uses the CreateNamedPipe Windows function to create a named pipe . One of 
the function’s input parameters is a pointer to the named-pipe name, in the form \\.\Pipe\PipeName. 
The “\\.\” is a Windows-defined alias for “this system,” because a pipe must be created on the local 
system (although it can be accessed from a remote system) . Other parameters the function accepts 
include an optional security descriptor that protects access to the named pipe, a flag that specifies 
whether the pipe should be bidirectional or unidirectional, a value indicating the maximum num-
ber of simultaneous connections the pipe supports, and a flag specifying whether the pipe should 
 operate in byte mode or message mode .

Most networking APIs operate only in byte mode, which means that a message sent with one send 
function might require the receiver to perform multiple receive operations, building up the complete 
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message from fragments. A named pipe operating in message mode simplifies the implementation 
of a receiver because there is a one-to-one correspondence between send and receive requests . A 
receiver therefore obtains an entire message each time it completes a receive operation and doesn’t 
have to concern itself with keeping track of message fragments .

The first call to CreateNamedPipe for a particular name creates the first instance of that name and 
establishes the behavior of all named-pipe instances having that name . A server creates additional 
instances, up to the maximum specified in the first call, with additional calls to CreateNamedPipe . 
After creating at least one named-pipe instance, a server executes the ConnectNamedPipe Windows 
function, which enables the named pipe the server created to establish connections with clients . 
 ConnectNamedPipe can be executed synchronously or asynchronously, and it doesn’t complete until a 
client establishes a connection with the instance (or an error occurs) .

A named-pipe client uses the Windows CreateFile or CallNamedPipe function, specifying 
the name of the pipe a server has created, to connect to a server . If the server has performed a 
 ConnectNamedPipe call, the client’s security profile and the access it requests to the pipe (read, 
write) are validated against the named pipe’s security descriptor . (See Chapter 6 for more informa-
tion on the security-check algorithms Windows uses .) If the client is granted access to a named pipe, 
it receives a handle representing the client side of a named-pipe connection and the server’s call to 
 ConnectNamedPipe completes .

After a named-pipe connection is established, the client and server can use the ReadFile and 
 WriteFile Windows functions to read from and write to the pipe . Named pipes support both syn-
chronous and asynchronous operations for message transmittal, depending upon how the handle to 
the pipe was opened . Figure 7-10 shows a server and client communicating through a named-pipe 
instance .

Server 
application

Client 
application

\\Server\Pipe\AppPipe

Named pipe 
instances

Client named pipe 
endpoint

FIGURE 7-10 Named-pipe communications

Another characteristic of the named-pipe networking API is that it allows a server to  impersonate 
a client by using the ImpersonateNamedPipeClient function . See the “Impersonation” section in 
 Chapter 6 for a discussion of how impersonation is used in client/server applications . A second 
 advanced area of functionality of the named-pipe API is that it allows for atomic send and receive 
operations through the TransactNamedPipe API, which behaves according to a simple transactional 
model in which a message is both sent and received in the same operation . In other words, it com-
bines a write operation and a read operation into a single operation by not completing a write 
request until it has been read by the recipient .
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Mailslot Operation
Mailslots provide an unreliable, unidirectional, multicast network transport . Multicast is a term used 
to describe a sender sending a message on the network to one or more specific listeners, which is dif-
ferent from a broadcast, which all systems would receive . One example of an application that can use 
this type of communication is a time-synchronization service, which might send a source time across 
the domain every few seconds . Such a message would be received by all applications listening on the 
particular mailslot . Receiving the source-time message isn’t crucial for every computer on the network 
(because time updates are sent relatively frequently); therefore, a source-time message is a good 
example for the use of mailslots, because the loss of a message will not cause any harm .

Like named pipes, mailslots are integrated with the Windows API . A mailslot server creates a 
mailslot by using the CreateMailslot function . CreateMailslot accepts a UNC name of the form  
“\\.\Mailslot\MailslotName” as an input parameter. Again like named pipes, a mailslot server can 
create mailslots only on the machine it’s executing on, and the name it assigns to a mailslot can 
include subdirectories . CreateMailslot also takes a security descriptor that controls client access to 
the mailslot . The handles returned by CreateMailslot are overlapped, which means that operations 
performed on the handles, such as sending and receiving messages, are asynchronous .

Because mailslots are unidirectional and unreliable, CreateMailslot doesn’t take many of the 
 parameters that CreateNamedPipe does . After it creates a mailslot, a server simply listens for incom-
ing client messages by executing the ReadFile function on the handle representing the mailslot .

Mailslot clients use a naming format similar to that used by named-pipe clients but with  variations 
that make it possible to send messages to all the mailslots of a given name within the client’s  domain 
or a specified domain. To send a message to a particular instance of a mailslot, the client calls 
 CreateFile, specifying the computer-specific name. An example of such a name is “\\Server\Mailslot 
\MailslotName”. (The client can specify “\\.\” to represent the local computer.) If the client wants to 
obtain a handle representing all the mailslots of a given name on the domain it’s a member of, it 
specifies the name in the format “\\*\Mailslot\MailslotName”, and if the client wants to broadcast to 
all the mailslots of a given name within a different domain, the format it uses is “\\DomainName 
\Mailslot\MailslotName”.

After obtaining a handle representing the client side of a mailslot, the client sends messages by 
calling WriteFile . Because of the way mailslots are implemented, only messages smaller than 424 
bytescan be sent . If a message is larger than 424 bytes, the mailslot implementation uses a reliable 
communications mechanism that requires a one-to-one client/server connection, which precludes 
multicast capability . This limitation makes mailslots generally unsuitable for messages larger than 
424 bytes . Figure 7-11 shows an example of a client broadcasting to multiple mailslot servers within 
a domain .
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FIGURE 7-11 Mailslot broadcast

Named Pipe and Mailslot Implementation
As evidence of their tight integration with Windows, named-pipe and mailslot functions are all 
implemented in the Kernel32 .dll Windows client-side DLL . ReadFile and WriteFile, which are the func-
tions applications use to send and receive messages using named pipes or mailslots, are the primary 
Windows I/O routines . The CreateFile function, which a client uses to open either a named pipe or a 
mailslot, is also a standard Windows I/O routine. However, the names specified by named-pipe and 
mailslot applications specify file-system namespaces managed by the named-pipe file-system driver 
(%SystemRoot%\System32\Drivers\Npfs.sys) and the mailslot file-system driver (%SystemRoot% 
\System32\Drivers\Msfs.sys), as shown in Figure 7-12. 

The name- pipe file-system driver creates a device object named \Device\NamedPipe and a 
 symbolic link to that object named \Global??\Pipe. The mailslot file-system driver creates a device 
object named \Device\Mailslot and a symbolic link named “\Global??\Mailslot”, which points to 
that device object. (See Chapter 3 for an explanation of the \Global?? object manager directory.) 
Names passed to CreateFile of the form “\\.\Pipe\…” and “\\.\Mailslot\…” have their prefix of “\\.\” 
translated to “\Global??\” so that the names resolve through a symbolic link to a device object. 
The special  functions CreateNamedPipe and CreateMailslot use the corresponding native functions 
 NtCreateNamedPipeFile and NtCreateMailslotFile, which ultimately call IoCreateFile .

NtReadFile, NtWriteFile,
NtCreateFile, NtCreateNamedPipeFile, 
NtCreateMailslotFile

User mode

Kernel mode

Application

\Device\NamedPipe
Named pipe FSD

Kernel32.dll

Ntdll.dll

\Device\Mailslot
Mailslot FSD

FIGURE 7-12 Named-pipe and mailslot implementation
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Later in the chapter, we’ll discuss how the redirector file system driver is involved when a name 
that specifies a remote named pipe or mailslot resolves to a remote system. However, when a named 
pipe or mailslot is created by a server or opened by a client, the appropriate file-system driver (FSD) 
on the machine where the named pipe or mailslot is located is eventually invoked. The reason that 
named pipes and mailslots are implemented as FSDs is that they can take advantage of the existing 
infrastructure in the object manager, the I/O manager, the redirector (covered later in this chapter), 
and the Server Message Block (SMB) protocol. (For more information about SMB, see Chapter 12, “File 
Systems,” in Part 2.) This integration results in several benefits:

 ■ The FSDs use kernel-mode security functions to implement standard Windows security for 
named pipes and mailslots.

 ■ Applications can use CreateFile to open a named pipe or mailslot because FSDs integrate with 
the object manager namespace.

 ■ Applications can use Windows functions such as ReadFile and WriteFile to interact with named 
pipes and mailslots.

 ■ The FSDs rely on the object manager to track handle and reference counts for file objects 
representing named pipes and mailslots.

 ■ The FSDs can implement their own named pipe and mailslot namespaces, complete with 
 subdirectories.

EXPERIMENT: Listing the Named-Pipe Namespace and Watching   
Named-Pipe Activity
It’s not possible to use the Windows API to open the root of the named-pipe FSD and perform 
a directory listing, but you can do this by using native API services. The PipeList tool from 
Sysinternals shows you the names of the named pipes defined on a computer as well as the 
number of instances that have been created for a name and the maximum number of instances 
as defined by a server’s call to CreateNamedPipe. Here’s an example of PipeList output:

C:\>pipelist  
 
PipeList v1.01 
by Mark Russinovich 
http://www.sysinternals.com 
 
Pipe Name                                    Instances       Max Instances 
---------                                    ---------       ------------- 
InitShutdown                                      3               -1 
lsass                                             6               -1 
protected_storage                                 3               -1 
ntsvcs                                            3               -1 
scerpc                                            3               -1 
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net\NtControlPipe1                                1                1 
plugplay                                          3               -1 
net\NtControlPipe2                                1                1 
Winsock2\CatalogChangeListener-394-0              1                1 
epmapper                                          3               -1 
Winsock2\CatalogChangeListener-25c-0              1                1 
LSM_API_service                                   3               -1 
net\NtControlPipe3                                1                1 
eventlog                                          3               -1 
net\NtControlPipe4                                1                1 
Winsock2\CatalogChangeListener-3f8-0              1                1 
net\NtControlPipe5                                1                1 
net\NtControlPipe6                                1                1 
net\NtControlPipe0                                1                1 
atsvc                                             3               -1 
Winsock2\CatalogChangeListener-438-0              1                1 
Winsock2\CatalogChangeListener-2c8-0              1                1 
net\NtControlPipe7                                1                1 
net\NtControlPipe8                                1                1 
net\NtControlPipe9                                1                1 
net\NtControlPipe10                               1                1 
net\NtControlPipe11                               1                1 
net\NtControlPipe12                               1                1 
142CDF96-10CC-483c-A516-3E9057526912              1                1 
net\NtControlPipe13                               1                1 
net\NtControlPipe14                               1                1 
TSVNCache-000000000001b017                       20               -1 
TSVNCacheCommand-000000000001b017                 2               -1 
Winsock2\CatalogChangeListener-2b0-0              1                1 
Winsock2\CatalogChangeListener-468-0              1                1 
TermSrv_API_service                               3               -1 
Ctx_WinStation_API_service                        3               -1 
PIPE_EVENTROOT\CIMV2SCM EVENT PROVIDER            2               -1 
net\NtControlPipe15                               1                1 
keysvc                                            3               -1      

It’s clear from this output that several system components use named pipes as their 
 communications mechanism . For example, the InitShutdown pipe is created by WinInit to accept 
remote shutdown commands, and the Atsvc pipe is created by the Task Scheduler service to en-
able applications to communicate with it to schedule tasks . You can determine what process has 
each of these pipes open by using the object search facility in Process Explorer .

Note A Max Instances value of –1 means that there is no upper limit on the 
number of instances .
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NetBIOS
Until the 1990s, the Network Basic Input/Output System (NetBIOS) programming API had been the 
most widely used network programming API on PCs . NetBIOS allows for both reliable connection-
oriented and unreliable connectionless communication . Windows supports NetBIOS for its legacy 
applications . Microsoft discourages application developers from using NetBIOS because other APIs, 
such as named pipes and Winsock, are much more flexible and portable. NetBIOS is supported by the 
TCP/IP protocol on Windows .

NetBIOS Names
NetBIOS relies on a naming convention whereby computers and network services are assigned a  
16-byte NetBIOS name. The sixteenth byte of a NetBIOS name is treated as a modifier that can 
specify a name as unique or as part of a group . Only one instance of a unique NetBIOS name can be 
assigned to a network, but multiple applications can assign the same group name . A client can send 
multicast messages by sending them to a group name .

To support interoperability with Windows NT 4 systems as well as Windows 9x/Me, Windows 
 automatically defines a NetBIOS name for a domain that includes up to the first 15 bytes of the left-
most Domain Name System (DNS) name that an administrator assigns to the domain . For example, if 
a domain were named mspress.microsoft.com, the NetBIOS name of the domain would be mspress . 

Another concept used by NetBIOS is that of LAN adapter (LANA) numbers . A LANA number is 
assigned to every NetBIOS-compatible protocol that layers above a network adapter . For example, if 
a computer has two network adapters and TCP/IP and NWLink can use either adapter, there would 
be four LANA numbers . LANA numbers are important because a NetBIOS application must explicitly 
assign its service name to each LANA through which it’s willing to accept client connections . If the 
application listens for client connections on a particular name, clients can access the name only via 
protocols on the network adapters for which the name is registered .

NetBIOS Operation
A NetBIOS server application uses the NetBIOS API to enumerate the LANAs present on a system and 
assign a NetBIOS name representing the application’s service to each LANA . If the server is connec-
tion oriented, it performs a NetBIOS listen command to wait for client connection attempts . After a 
client is connected, the server executes NetBIOS functions to send and receive data . Connectionless 
communication is similar, but the server simply reads messages without establishing connections .

A connection-oriented client uses NetBIOS functions to establish a connection with a NetBIOS 
server and then executes further NetBIOS functions to send and receive data . An established NetBIOS 
connection is also known as a session . If the client wants to send connectionless messages, it simply 
specifies the NetBIOS name of the server with the send function.
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NetBIOS consists of a number of functions, but they all route through the same interface: Netbios . 
This routing scheme is the result of a legacy left over from the time when NetBIOS was implemented 
on MS-DOS as an MS-DOS interrupt service . A NetBIOS application would execute an MS-DOS 
 interrupt and pass a data structure to the NetBIOS implementation that specified every aspect of the 
command being executed . As a result, the Netbios function in Windows takes a single parameter, 
which is a data structure that contains the parameters specific to the service the application requests.

EXPERIMENT: Using Nbtstat to See NetBIOS Names
You can use the Nbtstat command, which is included with Windows, to list the active sessions 
on a system, the NetBIOS-to-TCP/IP name mappings cached on a computer, and the NetBIOS 
names defined on a computer. Here’s an example of the Nbtstat command with the –n option, 
which lists the NetBIOS names defined on the computer:

C:\Users\Toby>nbtstat -n 
 
Local Area Connection: 
Node IpAddress: [192.168.0.193] Scope Id: [] 
 
                NetBIOS Local Name Table 
 
       Name               Type         Status 
    --------------------------------------------- 
    WIN-NLRTEOW2ILZ<00>  UNIQUE      Registered 
    WORKGROUP      <00>  GROUP       Registered 
    WIN-NLRTEOW2ILZ<20>  UNIQUE      Registered

NetBIOS API Implementation
The components that implement the NetBIOS API are shown in Figure 7-13 . The Netbios function 
is exported to applications by %SystemRoot%\System32\Netbios.dll. Netbios.dll opens a handle to 
the kernel-mode driver named the NetBIOS emulator (%SystemRoot%\System32\Drivers\Netbios.
sys) and issues Windows DeviceIoControl file commands on behalf of an application. The NetBIOS 
emulator translates NetBIOS commands issued by an application into TDI commands that it sends to 
 protocol drivers .
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FIGURE 7-13 NetBIOS API implementation

If an application wants to use NetBIOS over the TCP/IP protocol, the NetBIOS emulator requires 
the presence of the NetBT driver (%SystemRoot%\System32\Drivers\Netbt.sys). NetBT is known as the 
NetBIOS over TCP/IP driver and is responsible for supporting NetBIOS semantics that are inherent to 
the NetBIOS Extended User Interface (NetBEUI) protocol (included in previous versions of Windows) 
but not the TCP/IP protocol . For example, NetBIOS relies on NetBEUI’s message-mode transmission 
and NetBIOS name-resolution facilities, so the NetBT driver implements them on top of the TCP/IP 
protocol . 

Other Networking APIs
Windows includes other networking APIs that are used less frequently or are layered on the APIs 
 already described (and outside the scope of this book) . Five of these, however—Background 
 Intelligent Transfer Service (BITS), Distributed Component Object Model (DCOM), Message  Queuing 
(MSMQ), Peer-to-Peer Infrastructure (P2P), and Universal Plug and Play (UPnP) with Plug and 
Play Extensions (PnP-X)—are important enough to the operation of a Windows system and many 
 applications to merit brief descriptions .
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Background Intelligent Transfer Service
BITS is a service and an API that provides reliable asynchronous transfer of files between systems, 
using either the SMB, HTTP, or HTTPS protocol . BITS normally runs in the background, making use of 
unutilized network bandwidth by monitoring network utilization and throttling itself so that it con-
sumes only resources that would otherwise be unused; however, BITS transfers might also take place 
in the foreground and compete for resources with other processes running on the system .

BITS keeps track of ongoing, or scheduled, transfers in what are known as transfer jobs (not to be 
confused with jobs and job objects as described in Chapter 5, “Processes and Threads”) for each user . 
Each job is an entry in a queue and describes the files to transfer, the security context (access tokens) 
to run under, and the priority of the job . BITS version 4 .0 is integrated into BranchCache (described 
later in this chapter) to further reduce network bandwidth .

BITS is used by many other components in Windows, such as Microsoft Update, Windows Update, 
Internet Explorer (version 9 and later, for downloading files), Microsoft Outlook (for downloading 
 address books), Microsoft Security Essentials (for downloading daily virus signature updates), and 
 others, making BITS the most widely used network file-transfer system in use today.

BITS provides the following capabilities:

 ■ Seamless data transfer Components create BITS transfer jobs that will then run until the 
files are transferred. When a user logs out, the system restarts, or the system loses network 
connectivity, BITS pauses the transfer . The transfer resumes from where it left off once the 
user logs in again or network connectivity is restored . The application that created a transfer 
job does not need to remain running, but the user must remain logged in, while the transfer 
is taking place . Transfer jobs created under service accounts (such as Windows Update) are 
always considered to be logged on, allowing those jobs to run continuously .

 ■ Multiple transfer types BITS supports three transfer types: download (server to client), 
upload (client to server), and upload-reply (client to server, with a notification receipt from the 
server) .

 ■ Prioritization of transfers When a transfer job is created, the priority is specified 
( either Foreground, Background High, Background Normal, or Background Low) . All back-
ground  priority jobs make use only of unutilized network resources, while jobs with fore-
ground  priority compete with applications for network resources . If there are multiple 
jobs, BITS processes them in priority order, using a round-robin scheduling system within a 
 particular priority so that all jobs make progress on their transfers .

 ■ Secure data transfer BITS normally runs the transfer job using the security context of the 
job’s creator, but you can also use the BITS API to specify the credentials to use for imperson-
ating a user . For privacy across the network, you should use the HTTPS protocol .

 ■ Management The BITS API consists of methods for creating, starting, stopping,  monitoring, 
enumerating, modifying, or requesting notification of transfer-job status changes . Tools 
include BITSAdmin (which is deprecated and will be removed in a future version of Windows), 
and Windows PowerShell cmdlets (the preferred management mechanism) .
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When downloading files, BITS writes the file to a temporary hidden file in the destination 
 directory. Of course, BITS will impersonate the user to ensure that file-system security and quotas 
are  enforced properly . When the application calls the IBackgroundCopyJob::Complete method (or the 
 Complete-BitsTransfer cmdlet in PowerShell), BITS renames the temporary files to their destination 
names, and the files are available to the client. If there is already a file in the destination directory with 
the same name, BITS overwrites the file.

When uploading files, by default, BITS does not allow overwriting an existing file. When the 
 transfer is finished and BITS would overwrite the file, an error is returned to the client. To allow 
 overwrites, set the BITSAllowOverwrites property to True in the Internet Information Services (IIS) 
metabase using PowerShell or Windows Management Instrumentation (WMI) scripting .

The BITS server is a server-side component that lets you configure an IIS server to allow BITS 
clients to perform file transfers to IIS virtual directories. Upon completion of a file upload, the BITS 
server can notify a web application of the new file’s presence (via an HTTP POST message) so the web 
 application can process the uploaded files.

The BITS server extends IIS to support throttled, restartable uploads of files. To make use of the 
upload feature, you must create an IIS virtual directory on the server where you want the clients to 
upload their files. BITS adds properties to the IIS metabase for the virtual directory you create and 
uses these properties to determine how to upload the files. 

For security reasons, BITS will not permit uploading files to a virtual directory that has scripting 
and execute permissions enabled. If you upload a file to a virtual directory that has these permissions 
enabled, the job will fail . Also, BITS does not require the virtual directory to be write-enabled, so it 
is recommended that you turn off write access to the virtual directory; however, the user must have 
write access to the physical directory .

In some cases, the BITS Compact Server might be used instead of IIS . The Compact Server is 
 intended for use by enterprise and small business customers that meet the following conditions: 

 ■ The anticipated usage is a maximum of 25 URL groups, and each URL group supports up to 
three simultaneous file transfers

 ■ File transfers occur between systems in the same domain or mutually trusted domains

 ■ File transfers are not intended for Internet-facing clients

Figure 7-14 demonstrates how to load the BITS module within PowerShell, and some of the BITS 
PowerShell cmdlets .

Figure 7-15 demonstrates the use of the BITSAdmin tool, which is now deprecated in favor of 
 PowerShell for managing and using BITS .
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FIGURE 7-14 Using BITS from PowerShell

FIGURE 7-15 BitsAdmin tool
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Figure 7-16 shows BITS messages written to the event log .

FIGURE 7-16 BITS messages in the event log

Peer-to-Peer Infrastructure
Peer-to-Peer Infrastructure is a set of APIs that cover different technologies to enhance the Windows 
networking stack by providing flexible peer-to-peer (P2P) support for applications and services . The 
P2P infrastructure covers four major technologies, shown in Figure 7-17 .
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FIGURE 7-17 Peer-to-peer architecture
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Here are the major peer-to-peer components:

 ■ Peer-to-Peer Graphing Allows applications to pass data between peers efficiently and 
 reliably by using nodes and events .

 ■ Peer-to-Peer Namespace Provider Enables serverless name resolution of peers and their 
services (described later in the “Name Resolution” section) .

 ■ Peer-to-Peer Grouping Combines graphing and namespace technologies to group and 
isolate services and/or peers into a defined group and uniquely identify it.

 ■ Peer-to-Peer Identity Manager Enhances the services offered by the namespace provider 
to securely create, publish, and identify peer names, as well as to identify group members that 
are part of the grouping API .

The Peer-to-Peer Infrastructure in Windows is also paired with the Peer-to-Peer Collaboration 
Interface, which adds support for creating collaborative P2P applications (such as online games and 
group instant messaging) and supersedes the Real-Time Communications (RTC) architecture in ear-
lier versions of Windows . It also provides presence capabilities through the People Near Me (PNM) 
 architecture . 

DCOM
Microsoft’s COM API lets applications consist of different components, each component being a 
 replaceable, self-contained module . A COM object exports an object-oriented interface to  methods 
for manipulating the data within the object. Because COM objects present well-defined  interfaces, 
developers can implement new objects to extend existing interfaces and dynamically update 
 applications with the new support .

DCOM (Distributed Component Object Model) extends COM by letting an application’s 
 components reside on different computers, which means that applications don’t need to be 
 concerned that one COM object might be on the local computer and another might be across 
the network. DCOM thus provides location transparency, which simplifies developing distributed 
 applications . DCOM isn’t a self-contained API but relies on RPC to carry out its work .

Message Queuing
Message Queuing is a general-purpose platform for developing distributed applications that take 
advantage of loosely coupled messaging . Message Queuing is therefore an API and a messaging 
infrastructure. Its flexibility comes from the fact that its queues serve as message repositories in which 
senders can queue messages for receivers, and receivers can de-queue the messages at their discre-
tion . Senders and receivers do not need to establish connections to use Message Queuing, nor do 
they need to be executing at the same time, which allows for disconnected asynchronous message 
exchange .
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A notable feature of Message Queuing is that it is integrated with Microsoft Transaction Server 
(MTS) and SQL Server, so it can participate in Microsoft Distributed Transaction Coordinator  
(MS DTC) coordinated transactions . Using MS DTC with Message Queuing allows you to develop 
 reliable  transaction functionality for three-tier applications .

UPnP with PnP-X
Universal Plug and Play is an architecture for peer-to-peer network connectivity of intelligent 
 appliances, devices, and control points. It is designed to bring easy-to-use, flexible, standards-based 
connectivity to ad-hoc, managed, or unmanaged networks, whether these networks are in the home, 
in small businesses, or attached directly to the Internet . Universal Plug and Play is a distributed, open 
networking architecture that uses existing TCP/IP and Web technologies to enable seamless proximity 
networking in addition to control and data transfer among networked devices .

Universal Plug and Play supports zero-configuration, invisible networking, and automatic discovery 
for a range of device categories from a wide range of vendors . This enables a device to dynamically 
join a network, obtain an IP address, and convey its capabilities upon request . Then other control 
points can use the Control Point API with UPnP technology to learn about the presence and capabili-
ties of other devices . A device can leave a network smoothly and automatically when it is no longer in 
use .

Plug and Play Extensions (PnP-X), shown in Figure 7-18, is an additional component of Windows 
that allows network-attached devices to integrate with the Plug and Play manager in the kernel . With 
PnP-X, network-connected devices are shown in the Device Manager like locally attached devices 
and provide the same installation, management, and behavioral experience as a local device . (For 
 example, installation is performed through the standard Add New Hardware Wizard .) 

Function discovery API

IPBusEnum

Plug and Play

Device driver
Network discovery providers

Third partySSDPWSD

DevNode

Network Explorer user interface

FIGURE 7-18 PnP-X implementation

PnP-X uses a virtual network bus driver that uses an IP bus enumerator service (%SystemRoot% 
\System32\Ipbusenum.dll) to discover PnP-X compatible devices, which include UPnP devices 
(through the Simple Service Discovery Protocol) and the newer Device Profile for Web Services 
(DPWS) devices (using the WS-Discovery protocol) . The IP bus enumerator reports devices it  discovers 
to the Plug and Play manager, which uses user-mode Plug and Play manager services if needed (such 
as for driver installation) . It’s similar to wireless discovery (like Bluetooth) and unlike wired device 
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discovery (like USB), however, PnP-X enumeration and driver installation must be explicitly requested 
by a user from the Network Explorer .

Note DPWS v1 .1 became an OASIS standard in June 2009 and has goals similar to those 
of UPnP, but it is tightly integrated with web services standards and frameworks and allows 
greater extensibility than UPnP .

Multiple Redirector Support

Applications access file-system resources on remote systems (often called file shares) using UNC 
paths—for example, \\servername\sharename\file. Resources can be accessed directly using the 
UNC name if it is already known and the logged-on user’s credentials are sufficient. Optionally, the 
Windows Networking (WNet) API can be used to enumerate computers and resources that those 
computers export for sharing, map drive letters to UNC paths, and explicitly specify credentials . To 
access SMB servers from a client, Microsoft supplies an SMB client, which has a kernel-mode compo-
nent called the mini-redirector and a user-mode component called the Workstation service . (SMB is 
described in Chapter 12 in Part 2 .) Microsoft also makes available redirectors that can access WebDAV 
resources, NFS v2/v3 resources (Windows Professional and Enterprise editions only), and Terminal 
Services–shared drives . Third parties can add their own redirectors to Windows . In this section, we’ll 
examine the software that decides which redirector to invoke for file access using UNC paths . Here 
are the responsible components:

 ■ Multiple Provider Router (MPR) is a DLL (%SystemRoot%\System32\Mpr.dll) that determines 
which network to access when an application uses the Windows WNet API for browsing 
 remote file resources.

 ■ Multiple UNC Provider (MUP) is a driver (%SystemRoot%\System32\Drivers\Mup.sys) that 
determines which network to access when an application uses the Windows I/O APIs to open 
remote files through UNC paths or drive letters mapped to UNC paths .

Multiple Provider Router
The Windows WNet functions allow applications (including the Network and Sharing Center) to 
 connect to network resources, such as file servers and printers, and to browse the different share 
points . Because the WNet API can be called to work across different networks using different 
 transport protocols, software must be present to send the request to the correct network and to 
understand the results that the remote server returns . Figure 7-19 shows the redirector software 
responsible for these tasks .
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A provider is software that establishes Windows as a client of a remote network server . Some of the 
operations a WNet provider performs include making and breaking network connections, as well as 
supporting network printing . The built-in SMB WNet provider includes a DLL, the Workstation service, 
and the redirector . Other network vendors need to supply only a DLL and a redirector .

When an application calls a WNet routine, the call passes directly to the MPR DLL . MPR takes the 
call and determines which network provider recognizes the resource being accessed . Each  provider 
DLL beneath MPR supplies a set of standard functions collectively called the network provider 
 interface . This interface allows MPR to determine which network the application is trying to access 
and to direct the request to the appropriate WNet provider software . The SMB Workstation service’s 
provider is %SystemRoot%\System32\Ntlanman.dll, as specified by the ProviderPath value under the 
HKLM\SYSTEM\CurrentControlSet\Services\LanmanWorkstation\NetworkProvider registry key.

When called by the WNetAddConnection2 or WNetAddConnection3 API function to connect 
to a remote network resource, MPR checks the HKLM\SYSTEM\CurrentControlSet\Control 
\NetworkProvider\HwOrder\ProviderOrder registry value to determine which network provid-
ers are loaded . It polls them one at a time, in the order in which they’re listed in the registry, until a 
 provider recognizes the resource or until all available providers have been polled . You can change 
the  ProviderOrder by using the Advanced Settings dialog box shown in Figure 7-20 . You can access 
the dialog box by opening the Start menu, typing view network connections in the search box, and 
pressing Enter . This brings up the Network Connections dialog box . Press the Alt key on the keyboard, 
which will display the menus in the dialog box . Click on the Advanced drop-down menu, and choose 
Advanced Settings, and then click on the Provider Order tab .
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FIGURE 7-20 The provider order editor

The WNetAddConnection function can also assign a drive letter or device name to a remote 
resource . When called to do so, WNetAddConnection routes the call to the appropriate network 
provider . The provider, in turn, creates a symbolic-link object in the object manager’s namespace that 
maps the drive letter being defined to the redirector (that is, the remote FSD) for that network.

Figure 7-21 shows the Session 0 DosDevices directory corresponding to the LUID of the user who 
performed the drive-letter mapping, which is where connections to remote file shares are stored. 
The symbolic link created by network providers relies on MUP to serve as the connection between 
a network path and the corresponding redirector. The figure shows that MUP creates a device 
object named \Device\LanmanRedirector, which is itself a symbolic link to \Device\MUP (which is 
not shown in the figure because the symbolic link is in the \Device directory), with additional text 
included in the symbolic link’s value indicating to the MUP redirector which mini-redirector the drive 
 letter  corresponds to. The “\Global??” directory shows you the drive letters available to the system 
session— others will be mapped in the session-specific DosDevices directory.

Then, when the WNet or other API calls the object manager to open a resource on a  different 
 network, the object manager uses the device object as a jumping-off point into the remote file 
 system . It calls an I/O manager parse method associated with the device object to locate the 
 redirector FSD that can handle the request. (See Chapter 12 in Part 2 for more information on file 
system drivers .)
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FIGURE 7-21 Resolving a network resource name

Multiple UNC Provider
The Multiple UNC Provider (MUP, %SystemRoot%\System32\Drivers\mup.sys) is a file-system driver 
that exposes remote file systems to Windows. It is a single point where file system filter drivers can be 
layered to filter any and all I/O requests made to remote file systems. (Prior to Windows Vista, there 
were many inconsistencies and difficulties regarding filtering remote file systems.) MUP receives I/O 
requests for access to remote file systems (via UNC paths or drive letters mapped to them) and de-
termines which redirector will handle the request . The term redirector is used because it redirects an 
I/O request to a remote system . Before, and optionally after, calling the redirector, MUP will call any 
registered surrogate providers that might provide file caching and path rewriting.

MUP implements what is known as a prefix cache, which is a list of which remote file system paths 
(\\<server name>[\<share name>]) that are handled by each redirector. It is possible that multiple 
redirectors could handle a particular prefix, so there is a list in the registry (HKLM\System 
\CurrentControlSet\Control\NetworkProvider\Order\ProviderOrder) containing a comma-separated 
list of the priority order in which MUP forwards requests to the redirectors . This list is also used to 
load the providers . Under ProviderOrder, there are two subkeys (HwOrder and Order) containing 
 identical information in a value named ProviderOrder . A typical value is the following:

ProviderOrder     REG_SZ     RDPNP,LanmanWorkstation,webClient 
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Each entry specifies the name of a service in HKLM\System\CurrentControlSet\Services, where 
another subkey named NetworkProvider is found. For example, in the key HKLM\System 
\CurrentControlSet\Services\RDPNP\NetworkProvider are the following values:

DeviceName      REG_SZ         \Device\RdpDr 
DisplayName     REG_EXPAND_SZ     @%systemroot%\system32\drprov.dll,-100 
Name                 REG_SZ         Microsoft Terminal Services 
ProviderPath      REG_EXPAND_SZ    %SystemRoot%\System32\drprov.dll 

The DeviceName value is the name assigned to the kernel-mode redirector’s device object . 
 DisplayName is the formal name of the provider . (This can be either a string or the location of a string 
in the resource section of a DLL, as seen here .) Name is the name that will be displayed by net use to 
identify which redirector owns a particular drive . ProviderPath specifies the path where the provider 
DLL is located .

Note Not all redirectors are, or have to be, listed in provider order . (Typically, you will see 
only RDPNP, LanmanWorkstation, webclient listed .) The priority of the redirectors not listed 
in the registry follows those that are listed in decreasing order and is then based upon the 
order in which the mini-redirector registered with MUP via FsRtlRegisterUncProviderEx via 
RxRegisterMinirdr .

The components of a prefix (server name and share name) that are claimed by a redirector varies; 
most redirectors usually claim both the server name and the share name of a UNC path  
(\\<server name>\<share name>[\<path>]). For example, for the path \\Server\Users\Brian 
\Documents, a redirector might claim the prefix \\Server\Users, which would cause MUP to route all 
requests containing that prefix to that particular redirector, such as \\Server\Users\David\Documents 
\Chapter7.doc; however, a path with the prefix \\Server\Backups will have to be resolved by query-
ing the redirectors in priority order. If a redirector claims a prefix consisting of just a server name (for 
example, \\Server), MUP sends requests for all shares (for example, \\Server\Users, \\Server\WebDAV, 
and so on) on that server to the redirector . 

MUP uses the names found in ProviderOrder to look up the name of the device implementing 
the redirector, by looking in HKLM\System\CurrentControlSet\Services\<redirector name> 
\NetworkProvider\DeviceName. DeviceName is a symbolic link, pointing back to MUP—for example, 
\Device\MUP\;LanmanRedirector. (The semicolon identifies this as a “targeted open,” meaning that 
MUP will not look in the prefix cache.)

The relationships between MUP and the other components that are part of the remote file system 
are shown in Figure 7-22 .
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Surrogate Providers
Prior to Windows Vista, the caching of remote file systems (Offline Files) was implemented inside the 
SMB mini-redirector, and the DFS-N (Distributed File System Namespace) client was implemented 
inside MUP. A unified cache was needed, so the remote file system architecture was redesigned for 
Windows Vista . The DFS-N client was moved into a separate driver component known as a MUP 
surrogate provider, and Offline Files became a separate driver acting both as a mini-redirector and a 
surrogate provider . Currently, there are two surrogate providers:

 ■ Offline Files (%SystemRoot%\System32\Drivers\csc.sys), which determines whether a 
 requested file should be or has been cached locally. Offline Files is hardcoded to be the 
 highest priority surrogate .
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 ■ Distributed File System Client (%SystemRoot%\System32\Drivers\dfsc.sys), which determines 
whether the path to a requested file needs to be changed (rewritten) to point to another 
server or share . (The essence of DFS-N is that it collects one or more network shares in the 
same namespace .) DFSCDFS is hardcoded to be the second highest priority surrogate .

It might appear that having surrogates in the path between MUP and the redirectors would cause 
a performance penalty, but Offline Files does not process paths that are not enabled for offline 
 access, and after rejecting a path, MUP will not forward Offline Files further I/Os directed at the path. 
Likewise, DFS does not process non-DFS paths .

The list of surrogates is hardcoded, so MUP does not support the addition of additional surrogates .

Redirector
A network redirector consists of software components installed on a system that support access to 
various types of resources on remote systems, using various network file protocols. The types of 
resources a redirector supports depends upon the redirector and the capabilities of the protocol 
 system . Virtually all redirectors support UNC names, which allows the remote sharing of resources 
such as files, printers, named pipes, and mailslots (although a redirector might opt out of support-
ing pipes and mailslots, while still supporting printers and files). All redirectors shipping as part of 
 Windows include the following components:

 ■ A DLL loaded by MPR in user mode, to perform non-file-related operations such as 
 determining the capabilities of the network provider, enumerating remote network resources, 
logging on to a remote network, and mounting remote network shares .

 ■ A kernel-mode driver known as a mini-redirector that imports the RDBSS (Redirected Drive 
Buffering SubSystem) export driver (%SystemRoot%\System32\Drivers\rdbss.sys). The 
 mini-redirector services file I/O requests directed at remote systems.

Some redirectors require one or more of the following optional components:

 ■ A service process to assist the DLL and possibly store sensitive information or information 
that is global across client applications using a particular network or share . For example, 
the Workstation service (running in an SVCHOST process) keeps track of drive-letter to  
\\server\share mappings.

 ■ A network protocol driver that implements the legacy Transport Driver Interface (TDI) on its 
upper edge is required if the redirector uses a network protocol not supplied by Windows . 
(In essence, this means anything other than TCP/IP .) Such a protocol driver is responsible for 
implementing communications with the remote system .

 ■ A service process to assist the redirector . For example, the WebDav redirector forwards 
 file-access operations to the WebClient user-mode service, which in turn issues the actual 
WebDav network protocol requests using HTTP APIs .
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A redirector presents resources that are attached to remote systems as if they were attached to the 
local system. In Windows, there are no special file I/O APIs required to access resources on a remote 
system . When accessing a resource, an application generally does not know—nor does it care—
whether the resource is located on the local system or on a remote system . The name “redirector” is 
used because it redirects file system operations to the remote system and returns to the application 
the responses from the remote system . 

All redirectors that ship with Windows are implemented using the mini-redirector architecture, 
where protocol-specific code is implemented in a mini-redirector driver that imports the RDBSS 
library . RDBSS is implemented like a class driver, and the mini-redirectors are akin to port drivers . 
RDBSS registers with MUP by calling FsRtlRegisterUncProviderEx.

When a mini-redirector registers with RDBSS via RxRegisterMiniRdr, RDBSS in turn registers with 
MUP by calling FsRtlRegisterUncProviderEx. MUP routes requests (IRPs) to RDBSS, which performs 
processing that is common to all remote file systems, and then issues simplified requests via callback 
routines that mini-redirectors linked against it have registered . RDBSS provides common functionality 
such as a data structure and locking model, Cache Manager and Memory Manager integration, and 
handling of IRPs. This simplifies the implementation of the mini-redirectors, and it vastly reduces the 
amount of code that needs to be written and debugged .

Because RDBSS integrates with Cache Manager, RDBSS mini-redirectors might not directly see 
read and write requests on buffered handles (handles opened without specifying the FILE_FLAG_NO_ 
BUFFERING flag to the CreateFile API); changes are cached by the cache manager on the local system 
until they need to be written back to the remote system . This improves response time, and it saves 
network bandwidth by aggregating writes and eliminating duplicate reads . RDBSS relies on the 
mini-redirector to tell it when it is safe to cache data for read and/or write . For example, the SMB 
mini-redirector uses opportunistic locks (more commonly known as oplocks, which are discussed in 
Chapter 12 in Part 2) to manage caching. An oplock is a cache coherency mechanism that allows file-
system consumers to dynamically alter their caching state for a given file or stream (see Chapter 12 in 
Part 2 for more information about file system streams), while maintaining cache coherency between 
multiple concurrent users of a file. If the file (or stream) is not currently opened for read or write by 
another accessor (either locally or remotely), a client can locally cache reads, writes, and byte range 
locks. If the file is open by others but is not being written, writes and locks will not be locally cached, 
but reads can still be cached .

Mini-Redirectors
A mini-redirector implements a protocol necessary to contact a remote system and access its shared 
resources . The mini-redirector tries to make access to remote resources as transparent as possible 
to the local client application . For example, if there are network problems, a redirector might retry a 
request multiple times before it returns an error to the client application .



 CHAPTER 7 Networking 635

There are several mini-redirectors included with Windows:

 ■ RDPDR (Remote Desktop Protocol Device Redirection), which allows access from a Terminal 
Server system to the client system’s files and printers (%SystemRoot%\System32\Drivers 
\rdpdr.sys)

 ■ SMB (Server Message Block), which is the standard remote file system used by Windows (also 
known as CIFS, or Common Internet File System) (%SystemRoot%\System32\Drivers 
\MRxSMB.SYS). MRxSMB.SYS will load sub-redirectors, which are covered in the next section.

 ■ WebDAV (Web Differencing and Versioning), which enables access to files over the HTTP(S) 
protocol (%SystemRoot%\System32\Drivers\MRxDAV.SYS).

 ■ MailSlot (part of MRxSMB .SYS) . Mailslots are handled very differently from named pipes . The 
surrogates are not called for I/Os sent to a mailslot, and prefix caching is not used. (All paths 
having “mailslot” as the share name are targeted directly at the mailslot mini-redirector .) 
There can be, at most, one mailslot mini-redirector, and it is currently reserved for the SMB 
 redirector .

 ■ Network File System (NFS) is an optional component that was formerly installed with Services 
For Unix (SFU) and is now an optional Windows component (available on all Server editions, 
but only Enterprise and Ultimate editions of Windows client) that can be installed using the 
Programs and Features control panel . (Click Turn Windows Features On Or Off, and then select 
Services For NFS .) NFS protocol versions 2 and 3 are supported .

Offline Files, covered in a following section, optionally enables disk caching and offline access to 
files accessed through the SMB protocol. Offline Files also registers as a MUP surrogate provider. 

Server Message Block and Sub-Redirectors
The Server Message Block (SMB) protocol is the primary remote file-access protocol used by Windows 
clients and servers, and dates back to the 1980s . SMB version 1 .0 (generally referred to as just SMB) 
was designed to operate in a friendly LAN environment, where speeds were typically 10 Mb/s and no 
one was trying to steal your data . To accomplish many common tasks required a series of synchro-
nous messages between the client and the server . Little thought was given to WANs, because WANs 
were scarce at the time . In 1996, SMB was submitted to the IETF as the Common Internet File System 
(CIFS) . Microsoft documents the CIFS/SMB protocol in the MS-CIFS and MS-SMB protocol documents .

The SMB 2 .0 protocol was released in Windows Vista and Windows Server 2008, and it was a 
 complete redesign of the main remote file protocol for Windows. SMB 2.0 provides a number of 
 improvements over SMB, such as the following:

 ■ Greatly reduced complexity . The number of opcodes was reduced from over 100 to just 19 .

 ■ Reduced the chattiness of the protocol to make it more suitable for running across WANs, 
which generally have much longer latencies and lower bandwidth than LANs .
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 ■ Compound requests allow multiple requests to be sent in a single network packet .

 ■ Pipelining requests allow multiple requests and data to be sent before the answer to a previous 
request is received (also known as credit-based flow control) .

 ■ Larger reads and writes .

 ■ Caching of folder and file properties.

 ■ Improved message-signing algorithm (HMAC SHA-256 replaced MD5) .

 ■ Improved scalability of file sharing.

 ■ Works well with Network Address Translation (NAT) .

 ■ Support for symbolic links .

Version 2 .1 of the SMB protocol (released with Windows 7 and Windows Server 2008/R2) 
is a  minor release (documented in the MS-SMB2 protocol specification). It adds the following 
 improvements:

 ■ A new opportunistic lock (oplock) leasing model, which allows greater file and handle caching 
opportunities—without requiring changes to existing applications

 ■ Support for even larger transmission units (large MTU), from a previous maximum of 64 KB 
to 1 MB (by default, but configurable up to 8 MB via the registry).

To maintain backward compatibility with SMB servers, an SMB2 client uses the existing SMB 
 connection setup mechanisms, and then advertises that it supports a higher version of the protocol . 
The SMB mini-redirector contains all the functionality that is common between the different ver-
sions of the protocol, with a separate sub-redirector implementing each variant of the SMB protocol . 
An SMB2 client establishes a connection and sends an SMB negotiate request that contains both the 
supported SMB and SMB2 dialects . If the server supports SMB2, it responds with an SMB2 negotiate 
response, and the client hands the connection to the SMB2 sub-redirector . At that point, all messages 
on the connection are SMB2 . If the server does not support SMB2, it responds with an SMB negotiate 
response, and the client hands the connection to the SMB1 sub-redirector:

 ■ The common portions are implemented by %SystemRoot%\System32\Drivers\MRxSMB.sys. 

 ■ The SMB 1 protocol is implemented by %SystemRoot%\System32\Drivers\MRxSMB10.sys.

 ■ The SMB 2 protocol is implemented by %SystemRoot%\System32\Drivers\MRxSMB20.sys.
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Distributed File System Namespace

Distributed File System Namespace (DFS-N) is a namespace aggregation and availability feature 
of Windows. As organizations grow, the number of file servers tends to increase, and users find it 
increasingly difficult to find the files they need because the files might be spread over a number of 
different servers with completely unrelated names . DFS-N allows an administrator to create a new 
file share (also known as a root or namespace) that aggregates multiple file shares, from the same 
or  different servers, into a single namespace . For example, assume the Aura Corporation had the 
 following shares: \\Development\Projects, \\Accounting\FY2012, and \\Marketing\CoolStuff. These 
shares could be presented to users through a DFS-N namespace \\Aura\Teams containing DFS-N 
links called \\Aura\Teams\\Aura\Development, \\Aura\Teams\Accounting, and \\Aura\Teams 
\ Marketing. The redirection of a client accessing the path \\Aura\Teams\Marketing to the real share 
path \\Marketing\CoolStuff is invisible to the user. In this example, \\Marketing\CoolStuff is the  
link target of \\Aura\Teams\Marketing. Link targets can, in fact, refer to paths below the root of a 
share like \\Marketing\CoolStuff\Presentations.

Other benefits that DFS-N provides are redundancy and location-aware redirection. Another 
major capability of DFS is availability, through a feature known as DFS Replication (DFSR) .  Replication 
 provides two benefits: high availability in case of a failure, and load balancing. As an organization 
grows geographically, accessing file servers from remote offices with wide area network (WAN) 
 connections might be slow and inefficient. An administrator could create a replicated version of a 
file server within the remote office, providing high-speed access to the files from the users within 
the  remote office. A DFS-N link, such as \\Aura\Teams\Accounting in the preceding example, might 
have multiple link targets associated with it—for example, \\AccountingEurope\FY2012 and  
\\AccountingUS\FY2012. In this case, the DFS-N server returns to the client an ordered list of avail-
able target servers and takes into account the location of the client and the target servers (using 
Active  Directory site information) when ordering the list so that the client can access the closest 
target first. If access to one link target fails, DFS-N tries the next available target, if available. When 
a DFS-N link has multiple target shares, the targets should normally contain the same data because 
the  client accessing the namespace will access only one of the targets at a time . This can be accom-
plished  using DFS Replication (DFS-R), discussed in the next section . A server-side implementation 
of DFS-N consists of a Windows service (%SystemRoot%\System32\Dfssvc.exe) and a device driver 
( %SystemRoot%\System32\Drivers\Dfs.sys). The DFSSVC service is responsible for exporting DFS 
topology-management interfaces and maintaining the DFS topology in either the registry (on non–
Active Directory systems) or Active Directory . The DFS driver performs topology lookups when it 
receives a client request touching a link so that it can direct the client to the share where the file it is 
requesting resides .

On the client side, DFS-N support is implemented in a MUP surrogate provider driver 
( %SystemRoot%\System32\Drivers\Dfsc.sys) and an MPR/WNet provider implemented in 
% SystemRoot%\System32\Ntlanman.dll. The Distributed File System Client (DFSC) driver is  responsible 
for determining if a UNC path is a DFS namespace, and if so, it translates the specified path into the 
name of one or more target shares . Communication with DFS-N servers is accomplished using the 
SMB redirector. The DFS-N client is only part of the I/O path when a file or directory is being created 
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or opened . Once it returns the name of a target share to MUP, DFSC is not involved with subsequent 
I/O to the file. 

The DFS-N protocols are documented in the MS-DFSC and MS-DFSNM protocol documents .

Distributed File System Replication

Distributed File System Replication (DFS-R) provides bandwidth-efficient, asynchronous, multimaster 
replication of file-system changes between servers. In addition to general-purpose, file-system repli-
cation (for example, keeping data on multiple DFS-N link target shares in sync), DFS-R is also used for 
replicating a domain controller’s \SYSVOL directory, which is where Windows domain controllers store 
logon scripts and Group Policy files. (Group Policy permits administrators to define usage and security 
policies for the computers that belong to a domain .) Because DFS-R supports multimaster replication, 
file-system changes can occur on any server, potentially simultaneously, and DFS-R will automatically 
handle conflicts and maintain synchronization of the file-system contents. 

The fundamental unit of DFS replication is a DFS replicated folder, which is a directory tree whose 
contents will be synchronized across multiple servers according to an administratively defined sched-
ule and replication topology . Replication schedules allow administrators to restrict replication activity 
to specific windows of time or restrict the amount of bandwidth that DFS-R will use.  

Replication topologies allow administrators to define the network connections between a set of 
servers (called a replication group) . Arbitrary topologies are supported, including common topolo-
gies such as ring, star, or mesh. The replication topology configuration is stored in Active Directory. 
Only directories on NTFS volumes can be replicated because DFS-R relies on the NTFS USN journal to 
detect changes to the contents of a replicated folder . 

DFS-R uses several technologies to conserve network bandwidth, making it well-suited to 
 replication over WANs that might have high latency and low bandwidth . Remote Differential 
 Compression (RDC) allows DFS-R to identify and replicate only those pieces of a file that have 
changed, rather than the whole file. DFS-R also compresses content before sending it to a remote 
partner, providing additional bandwidth savings . On Enterprise or Datacenter SKUs, DFS-R makes 
use of an extended version of RDC called RDC Similarity to provide further bandwidth savings; if 
content is modified in a replicated folder on server A, and chunks of the modified content are similar 
to chunks of any file in partner server B’s replicated folder, server B satisfies the similar chunks of the 
update’s content locally from the similar files, rather than downloading all of the modified content 
from server A . 

New capabilities for DFS-R in Windows Server 2008 R2 include support for clustering and true 
read-only replicas .

DFS-R is implemented as a Windows service (%SystemRoot%\System32\DfsrS.exe) that uses 
authenticated RPC with encryption to communicate between instances of itself running on  different 
computers. There is also a WMI interface for configuration and management of the service, a file 
system minifilter used to protect read-only replicas from modification, and a cluster resource DLL for 
integration with MSCS. The DFS-R protocol is documented in the MS-FRS2 specification.
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Offline Files

Offline Files (also known internally as client-side caching, or CSC) transparently caches files from a 
remote system (a file server) on the local machine to make the files available when the local machine 
is not connected to the network. Offline Files caches files for remote files accessed over the SMB 
 protocol. Files can be cached by users by simply right-clicking on a remote file, folder, or drive and 
selecting Always Available Offline, thus pinning the selected files to the cache. Cached items can be 
viewed in the Sync Center control panel. Caching also can be specified administratively using Group 
Policy .

There is a single Offline Files cache on the system, which is shared by all users of the system. All 
cached files are stored in an ACL-protected directory, which by default is %SystemRoot%\CSC. If you 
choose, you can encrypt the files in the Offline Files cache (accessed by going to Control Panel, Sync 
Center, and then clicking Manage Offline Files, clicking on the Encryption tab, and clicking the  Encrypt 
button) . Access to the cache is permitted only by using Offline File tools and the IOfflineFilesXxx COM 
APIs . The easiest way to examine the contents of the cache is to use the Sync Center control panel 
interface (click Manage Offline Files, and then click the View Your Offline Files button).

Offline Files understands two types of objects: 

 ■ Files Includes files, folders, and symbolic links. Caching is not done at the NTFS level, so not 
all file NTFS attributes are cached or are cacheable . Cacheable attributes include the stan-
dard Win32 file attributes (metadata), such as the name, ACL, and the contents—only a file’s 
( unnamed) data stream will be cached . 

 ■ Scope A scope is the portion of a namespace that corresponds to a physical share . In a DFS 
namespace, the root of a scope is the object that is pointed to by a DFS link, which can contain 
additional DFS links to other scopes . If DFS is not being used, a scope and a share are the same 
thing .

Offline Files does not support complete NTFS semantics for cached files and has the following 
limitations:

 ■ Offline Files does not cache alternate data streams, which are therefore not available offline. 
When online, access to alternate data streams works because I/O requests for streams go 
directly to the server .

 ■ Offline Files does not cache Extended Attributes (EAs). An implication of this is that if a file 
containing EAs is cached and the cached version is modified while the server is offline, any EAs 
on the server are deleted when changes are written back to the server .

Offline Files consists of the following components, as shown in Figure 7-23:

 ■ A user-mode agent (%SystemRoot%\System32\cscsvc.dll) running as a service in an SVCHOST 
process . This service is primarily concerned with maintaining synchronization between the 
cache and remote file systems. It also implements the COM interfaces used to interact with the 
Offline Files cache.
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 ■ A remote file system driver (%SystemRoot%\System32\Drivers\csc.sys) that acts as both a MUP 
surrogate provider and a mini-redirector . This driver is responsible for controlling when I/O 
 requests are sent to the cache or to the remote file system. The driver also implements the 
 local cache, updating the cached data as appropriate based on the I/O requests seen .

 ■ An Explorer extension DLL (%SystemRoot%\System32\cscui.dll) for selecting which files, 
 folders, or drives to pin in the Offline Files cache, and for displaying icon overlays to identify 
offline (cached) files. CSCUI links against %SystemRoot%\System32\cscobj.dll, which provides 
the interface to the Offline Files service.

 ■ A DLL (%SystemRoot%\System32\cscapi.dll) containing publicly available Win32 APIs for 
 interacting with the Offline Files from applications.

 ■ An in-process COM object (%SystemRoot%\System32\cscobj.dll) used by application clients of 
Offline Files COM APIs.
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Multiple UNC
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Redirected Drive
Buffering

SubSystem
(RDBSS)
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Offline Files
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FIGURE 7-23 Offline Files architecture
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Caching Modes
Offline Files has five caching modes. The mode for an object is dependent upon the object’s 
 connection status, which is determined by whether or not the local system has a network connection 
to the file server.

Online
This is the default mode for objects cached by Offline Files. In this mode, the server is available. 
The file system metadata operations and write operations flow to the server, and the cache state is 
updated as required . Read operations are serviced from the cache . When working online, Offline Files 
attempt to cache data only if the SMB client has been granted at least read-caching privileges from 
the file server.

Offline (Slow Connection)
To isolate the user from fluctuations in network performance, Offline Files transition into Offline  
(Slow Connection) mode when the network performance meets the configured slow-link latency 
or bandwidth thresholds. In Windows 7, a default slow-link latency threshold is configured at 80 
 milliseconds (ms) . The latency and bandwidth thresholds can be controlled via the Group Policy editor 
(%SystemRoot%\gpedit.msc) via the Configure Slow-Link Mode policy.

When working in this mode, all file-system operations are serviced by the Offline Files cache. The 
data is synchronized back to the server every six hours by default, but this synchronization frequency 
can be controlled through Group Policy via the Configure Background Sync policy.

The Offline Files Service periodically checks the network performance of the shares in the  Offline 
Files cache. If the network latency improves to be less than half the configured slow-link latency 
threshold, the user will transition back to working online .

The slow-link behavior can be controlled via the Group Policy editor (%SystemRoot%\gpedit.msc) 
as shown in Figure 7-24 .



642 Windows Internals, Sixth Edition, Part 1

FIGURE 7-24 Offline Files Group Policy settings

Offline (Working Offline)
The user can force the client to work offline by clicking the Work Offline button in Explorer. When 
running in this mode, all file-system operations are satisfied from the cache. Periodic background 
 synchronization of the data can be enabled in this mode through the Configure Background Sync 
policy, but by default they are not enabled . If the user wants to work online again, he must click the 
Work Online button in Explorer .

Offline (Not Connected)
A cached object is in Offline (Not Connected) mode when the server is not accessible. The transition 
to offline is transparently satisfied through the Offline Files cache, without the application know-
ing. When the network connection to the server is re-established, any changes written to the file are 
synchronized back to the server by the Offline Files agent. If a file is modified on both the client and 
the remote system while the file was offline, the conflict must be resolved by the user through Sync 
Center .

Offline (Need to Sync)
When a user transitions back online after making changes to the version of the file in the local cache, 
the status of this file will be Offline (Need to Sync) until the changes are synchronized back to the 
server. Offline Files keep the user working offline for the affected files until that synchronization is 
complete to ensure that the user sees a consistent view of the files, include the changes made while 
working offline.
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Ghosts
When files are selected to be available offline, they must be copied from the server to the client. Until 
the transfer is complete, not all the files will be visible on the client. This can cause confusion for the 
user if the server drops offline and the user tries to access a file before it is in the cache. To address 
this case, Offline Files creates ghosts of the files and directories on the server within the cache as soon 
as caching is enabled. The ghosts are markers for files and directories that have not been copied and 
are unavailable in the cache . Explorer displays ghosted files with an overlay on the file’s icon. As the 
cache is filled, the ghost entries eventually disappear. If the user tries to access a ghosted file and the 
server is online, the file is copied immediately to the cache and the ghost overlay is removed.

When a subdirectory of a share is pinned into the Offline Files cache, ghosts are also used to 
provide the user context to the surrounding namespace that is not cached. When offline, the sibling 
files and directories appear in a ghosted state so that the user does not think that this other content 
somehow disappeared. When files and directories are ghosted for this purpose, they are neither 
cached by Offline Files nor are they available while working offline, unless they are explicitly pinned in 
the Offline Files cache.

Data Security
The goal of Offline Files is to provide the same file-access experience for remote files that the user 
experience for local files. To achieve that end, Offline Files caches the users and their effective access 
for each file and directory in the cache. This information is used by the Offline Files driver to enforce 
the appropriate access on the objects in the cache. Encrypted files using EFS on the server are also 
encrypted in the cache . 

Offline Files caches access for a given user as the data is accessed or synchronized on behalf of 
that user. For example, if two users, Able and Baker, share a laptop, and user Able marks a file on the 
server to be available offline, the file is copied to the cache and only Able’s access is cached. If the 
server drops offline, user Baker would not be able to access the file in the cache; however, when the 
server is online again, and Baker tries to access the file, Offline Files updates the cache to reflect user 
Baker’s access, allowing both users to access the file when working offline. 

Files protected with EFS remain protected but are encrypted in the security context of the first user 
to bring the data into the cache. When working offline, only this user will be able to access the data in 
the cache .

Cache Structure
By default, the root directory for the Offline Files cache is located in %SystemRoot%\CSC and is 
protected with a DACL that grants Administrators full control of the directory and everyone else read, 
Read & Execute, and List Folder Contents access . As shown in Figure 7-25, beneath the root directory 
is a subdirectory with a name equal to the current version of the database schema (currently, 2 .0 .6) 
and a security descriptor specifying an owner SID of S-1-5-12, which is used to indicate it is owned by 
restricted code and cannot be accessed by anyone other than the Offline Files service. This security 
descriptor is inherited by all files and subdirectories beneath the schema version directory.
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FIGURE 7-25 Default Offline Files directory structure

In the schema version directory are two files and two directories. The files consist of the Priority 
Queue (pq) and SID Map (sm) databases . The Priority Queue is a database that tracks the usage of 
the files within the cache and orders them from most recently used to least recently used. The Offline 
Files agent threads walk the queue tail to head when pushing files out of the cache when the cache’s 
disk quota has been exceeded. Within the Offline Files cache, an internal user ID is used to represent 
a user when storing that user’s access . The SID Map is used to map these internal user IDs to SIDs . This 
becomes important when the server is offline and Offline Files must validate the user’s access itself.

The namespace directory is the root of the cache and contains a directory for each server that 
 Offline Files is caching. The temp directory is for encryption and is also used as a temporary location 
for files that are removed from the namespace before they are deleted. The temp directory is used as 
a scratch area by Offline Files.

For every file in the Offline Files cache, Offline Files adds a sparse NTFS alternate data stream 
named CscBitmapStream, which contains a bitmap indicating which pages of the file have been modi-
fied while the file was “offline” (server not reachable). Each bit in the bitmap represents a 4-KB page 
within the file. This bitmap is not created until the first offline write to a file. Writes that extend the 
file are not included in the bitmap. If the file is truncated while offline, the bitmap is also truncated to 
match the new length of the file. When the server is next online, only the changed pages are written 
to the server .
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BranchCache

BranchCache is a generalized content-caching mechanism designed to reduce network bandwidth, 
especially over WANs . The name BranchCache comes from the concept of branch offices within a 
company connecting to the company’s centralized servers via WAN links, which are typically hun-
dreds of times slower than LAN links and caching content used by computers in the branch office 
within that branch office. Moving the content cache to the branch office drastically reduces the time 
to access the content because the data does not have to traverse the WAN .

Unlike Offline Files, which caches only files, BranchCache caches content, which is anything that can 
be identified by a URL, such as files, web pages, an HTTP video stream, or even a blob accessed from 
a database or cloud service . 

BranchCache does not access the files in the CSC cache, because CSC is a client of BranchCache. 
Instead, Offline Files uses BranchCache to populate its own cache.

A variety of protocols make use of BranchCache, including the following ones:

 ■ Server Message Block (SMB) Used to access files on file servers

 ■ HTTP(S) Web pages, video streams, and other content identified by a URL

 ■ Background Intelligent Transfer Service (BITS) Used to transfer files, and runs over  
HTTP/TLS 1 .1

Figure 7-26 depicts the BranchCache architecture .

SharePoint BITS WMP IEOfficeExplorerCopyFileOffice

SMB (CSC/SRV) HTTP (WebIO/http.sys)

BranchCache

3rd Party Applications

FIGURE 7-26 BranchCache architecture

BranchCache’s operation is transparent to the applications accessing the content being cached, as 
shown in Figure 7-26 . When BranchCache is enabled on a client, a request made by that client to a 
content server carries headers/metadata (the exact mechanism depends upon the protocol used) to 
let the remote content server know that the client has BranchCache enabled . In this case, the content 
server returns content information (CI) describing that content, rather than the requested content . 
The CI contains hashes of all the segments and blocks in which the content is chunked . (This is cov-
ered in more detail later .) The client uses the CI for retrieving part, or all, of the content from the local 
BranchCache . If any part of the content is not available locally, the client goes back to the remote 
content server to retrieve the data that was not present in the local BranchCache and, once the data 
is retrieved, offers the missing data to the local BranchCache so that the same data can be served to 
other clients in the future .
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BranchCache operates in two caching modes, as shown in Figure 7-27:

 ■ Hosted Cache A single server in a branch office (running Windows Server 2008/R2, or later), 
with the BranchCache feature enabled, contains the entire content cache for all BranchCache-
enabled systems within that branch office.

 ■ Distributed Cache Instead of a hosted cache server caching content for the remote office, 
the clients within the remote office cache the content files themselves. The cache is spread 
across all the clients on the same subnet . There is no effort to evenly distribute the contents 
of the cache among peers within a branch office. In general, until the maximum local cache 
size is reached, each client has a copy of all the content it has accessed (resulting in content 
being duplicated throughout the distributed cache) . This is desirable because it adds redun-
dancy and some resiliency to the cache, especially when clients join and leave the branch 
office  network frequently, as is often the case when the users are working on laptops. The 
 distributed cache is implemented using peer-to-peer networking, using the Web Services 
Discovery (WS-D) multicast protocol to locate which client has the content in its cache, with a 
300-millisecond timeout . 

Headquarters

Branch office Branch office

Distributed Cache Hosted Cache

FIGURE 7-27 Types of BranchCache caching

BranchCache is fully compatible with end-to-end encryption, such as IPsec . Just like with CSC, 
Windows’ existing security mechanisms are used to ensure that access to cached content operates the 
same way that it would if the content were not cached . 
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BranchCache is similar to Offline Files, but it differs in several important ways. The most important 
of which is that content in the BranchCache is not available if the WAN is down . This is because the 
content is identified by a hash list generated and stored on the server, which the client uses to locate 
the cached content within the BranchCache (distributed or hosted) . Some BranchCache features the 
following behaviors:

 ■ Data transfer uses AES encryption .

 ■ For content that is not file-based, BranchCache caches only content that is larger than 64 KB. 
(This can be changed by editing the registry value HKLM\System\CurrentControlSet\Services 
\PeerDistKM\Parameters\MinContentLength on the server.)  

Caching Modes
BranchCache maintains two different local caches on each BranchCache-enabled system (which 
can be BranchCache content servers on one side of the WAN link, and BranchCache clients and 
 BranchCache hosted cache servers on other side):

 ■ The publication cache stores content information metadata for content published using the 
BranchCache Server APIs (PeerDistServerXxx) . The content information structure contains 
hashes of the various segments and blocks in which BranchCache breaks up the content into 
chunks, along with the secret needed to generate public and private content identifiers and 
the encryption key . 

 ■ Publishing is usually thought of as a server-side operation, though any BranchCache client 
can publish content . With regard to publishing, BranchCache offers two different approaches 
to its client applications/protocols for generating/managing/storing BranchCache content 
 information metadata:

• An application and/or protocol that uses BranchCache acceleration can ask  BranchCache 
to store content information metadata on its behalf (in the BranchCache publication 
cache), allowing BranchCache to manage the lifetime of that metadata according to rules, 
 timelines, and limits shared across multiple applications using BranchCache . This is achieved 
by publishing via the PeerDistServerXxx APIs, and it is what the  HTTP- BranchCache and 
BITS-BranchCache integrations do . 

• Alternatively, an application/protocol that wants to use BranchCache acceleration can 
ask BranchCache to generate only content information metadata without storing it, and 
instead simply return the metadata to the application or protocols . In this case, the applica-
tion or protocol has to implement its own way to store or manage that metadata . This is 
what the SMB-BranchCache integrations does .

In both cases, the protocol integrated with BranchCache or the application using BranchCache 
directly is responsible for transporting that content information metadata through the WAN 
link from the publishing content server to the clients in the remote branches . BranchCache 
does not have, or control, a data channel crossing the WAN link . The transport of content 
information metadata is intentionally left to the protocol or application using BranchCache 
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acceleration, so that the metadata can be transported with the same level of security, 
 authentication, and authorization that would have been used for retrieving the actual content 
when BranchCache is not used . This is consistent with the fact that, from a security standpoint, 
owning a copy of the BranchCache content information for a given content is equivalent to 
owning the entire content and therefore being authorized to retrieve a copy of it from other 
BranchCache entities (clients, hosted cache servers, or third-party implementations) .

The publication cache does not store any actual data of the published content; it stores only 
content information metadata . Publications tend to last for long periods of time, though the 
actual length of time is determined by the application that publishes the content . By default, 
the publication cache is constrained to consume no more than one percent of the volume on 
which it is located, which is specified by %SystemRoot%\ServiceProfiles\NetworkService 
\AppData\Local\PeerDistPub. The size and location of the publication cache can be changed 
using NetSh:

• netsh branchcache set publicationcache directory=C:\PublicationCacheFolder

• netsh branchcache set publicationcachesize size=20 percent=TRUE

 ■ The republication cache contains both metadata (but no secrets) and actual data (chunked 
in segments and blocks) for the BranchCache content retrieved by the local BranchCache 
client . It is stored with the purpose of making those chunks of content available to other 
 BranchCache clients . Republished content is stored for up to 28 days, but it can be flushed out 
earlier if the republication cache has reached its limit and space is needed for newer content 
to be republished . By default, the republication cache is constrained to consume no more than 
five percent of the volume on which it is located, which is by specified by %SystemRoot% 
\ServiceProfiles\NetworkService\AppData\Local\PeerDistRepub. The location and the size of 
the republication cache can be changed using NetSh:

• netsh branchcache set localcache directory=C:\BranchCache\Localcache

• netsh branchcache set localcache size=20 percent=TRUE

BranchCache attempts to persist the republication cache across system reboots through the 
use of an index file that contains the database of segment descriptors. When the system reboots, 
 BranchCache validates the general integrity of the republication cache by checking that it was 
properly closed . If the republication cache fails this consistency check, it is discarded . The publica-
tion cache is not persisted across reboots . The private SMB-BranchCache publication cache needs no 
explicit persistence; persistence comes for free, as a result of the SMB-BranchCache integration (which 
was covered previously) and the fact that with the SMB all published content is actual files. The hashes 
are validated before access to the files in the cache is allowed.

Configuration
BranchCache can be configured using the Local Security Group Policy editor as shown in Figure 7-28, 
using the network shell (NetSh) as shown in Figure 7-29, or as part of Group Policy pushed by an 
administrator (within a domain) .
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FIGURE 7-28 Configuring BranchCache using the Group Policy editor

FIGURE 7-29 Configuring BranchCache using the network shell

 ■ BranchCache Implementationservice in %SystemRoot%\PeerDistSvc.dll. This service starts 
when the BranchCache is enabled on both clients and servers, and it interacts with the 
 kernel-mode components (drivers) .

 ■ HTTP extension driver in %SystemRoot%\System32\Drivers\PeerDistKM.sys. This driver 
 registers with the Network Module Registrar (NMR) as a client of the http .sys driver and 
 examines all HTTP packets going into and out of the system. It adds files to the cache and 
 retrieves cached content information for published content from the BranchCache service, 
rather than sending the request to the web server .
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 ■ BranchCache APIs (PeerDistXxx) are exported by %SystemRoot%\System32\PeerDist.dll, which 
uses LRPC/ALPC to communicate with the BranchCache service .

 ■ The BranchCache HTTP transport in %SystemRoot%\System32\PeerDistHttpTrans.dll 
 implements the transport on top of which the Peer Content Caching and Retrieval: Retrieval 
Protocol [MS-PCCRR] exchanges data between BranchCache clients and/or hosted cache 
 servers . Each MS-PCCRR message is encapsulated in a simple transport message, which in turn, 
is sent over an HTTP request .

 ■ The Web Services Discovery Provider in %SystemRoot%\System32\PeerDistWSDDiscoProv.dll 
implements the WS-D protocol to discover which clients on the LAN are caching a particular 
file (or part of a file).

 ■ The BranchCache Network Shell Helper in %SystemRoot%\System32\PeerDistSh.dll is an 
 extension to the Network Shell (%SystemRoot%\System32\Netsh.exe) application that pro-
vides users with a means of monitoring and configuring the BranchCache service. Network 
Shell helper DLLs are installed by adding a string value to HKEY_LOCAL_MACHINE 
\SOFTWARE\Microsoft\NetSh, which provides the Network Shell with the path to the 
 helper DLL .

 ■ A standalone variant of all the BranchCache APIs are implemented in %SystemRoot% 
\System32\PeerDistHashPeerDistHash.dll (only present on Windows Server systems), which 
contains all of the BranchCache APIs and functionality and does not require the use of the 
BranchCache service . This component is designed for use by other Windows features that are 
tightly integrated with BranchCache, such as the SMB Groveler, which generates the hashes on 
the server .

 ■ Hash groveler service in %SystemRoot%\System32\smbhash.exe (only on Windows Server 
 systems). The groveler runs on the file or web server and generates hashes when clients 
request a hash list . The groveler monitors a given namespace or share and ensures that the 
BranchCache hashes are updated for all files within that namespace. All groveler I/O runs at 
low I/O priority so as not to interfere with the normal operation of the system . 

BranchCache uses the following protocols, which are documented at www.microsoft.com:

Peer Content Caching and Retrieval: Content Identification, as defined in [MS-PCCRC], defines the 
content information structures previously described . Peer Content Caching and Retrieval: Discovery 
Protocol, as defined in [MS-PCCRD], specifies a multicast to discover and locate services based on 
the Web Services Dynamic Discovery (WS-Discovery) protocol [WS-Discovery] . There are two modes 
of operations in WS-Discovery: client-initiated probes and service-initiated announcements . Both 
are sent through IP multicast to a predefined group. The primary role in the Content Caching and 
Retrieval System is Content Discovery .

 ■ Peer Content Caching and Retrieval: Retrieval Protocol, as defined in [MS-PCCRR], specifies the 
messages that are necessary for querying peer-role servers or a hosted cache server for the 
availability of certain content, and for retrieving the content . The primary role in the Content 
Caching and Retrieval System is Content Retrieval .
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 ■ Peer Content Caching and Retrieval: Hosted Cache Protocol, as defined in [MS-PCHC], 
 specifies an HTTPS-based mechanism for clients to notify a hosted cache server regarding the 
 availability of content and for a hosted cache server to indicate interest in the content . The 
primary role in the Content Caching and Retrieval System is Content Notification.

 ■ Peer Content Caching and Retrieval: Hypertext Transfer Protocol (HTTP) Extensions, as defined 
in [MS-PCCRTP], specifies a content encoding known as PeerDist that is used by an HTTP/1 .1 
client and an HTTP/1 .1 server to communicate content to each other . The primary role in the 
Content Caching and Retrieval System is Metadata (Hash) Retrieval .

 ■ Server Message Block (SMB) Version 2.1 Protocol, as defined in [MS-SMB2]. Version 2.1 of this 
protocol has enhancements for the detection of content caching-enabled shares and retrieval 
of metadata related to content caching . The primary role in the Content Caching and Retrieval 
System is Metadata (Hash) Retrieval .

Supporting SMB-BranchCache integration requires the following changes on both the clients and 
servers . On the client, the functionality of the existing client-side caching (CSC) components were 
extended . On the server, the SMB Server Driver (srv2 .sys) was extended to support hash list retrieval 
from the server, and a new service was added, the SMB Hash Generation Service (also known as the 
Groveler), to manage the generation, updating, and deletion of hashes for content on an SMB share .

BranchCache Optimized Application Retrieval: SMB Sequence
The following sequence describes how content that is cached by BranchCache is delivered to an 
 application without requiring any changes to the application, as shown in Figure 7-30 . This sequence 
refers to the case when the channel/protocol of choice for that application is SMB—for example, the 
application opens the file from the remote share with CreateFile (or something that calls  CreateFile, 
such as fopen) and reads from the file. If the application decides to retrieve the data via an HTTP 
 request (backed by either WinHTTP or WinInet), the sequence is very different, but it is still a 
 sequence completely transparent to the application .

BranchCache and SMB are integrated through the Offline Files component in Windows. The Offline 
Files service opportunistically tries to prefetch files accessed via SMB to optimize network usage and 
user experience on the client side. The offline files driver might temporarily delay the application’s 
read to give the prefetch from BranchCache an opportunity to stay ahead of the application’s read 
position. This delay is calculated based on the measured latency to the file server. 

Data retrieval begins with an application reading data from a file on a remote SMB share. When 
Offline Files is enabled on the client and BranchCache is not enabled, the application’s read request 
flow through the offline files driver to the SMB server. When both offline files and BranchCache are 
enabled on the client, the following steps occur:
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1. The offline files driver intercepts the read I/O request and determines whether the following 
specific conditions have been met to initiate prefetching the file:

a. The data is not already stored in the offline files cache. If the data is already present, the 
application’s read will be satisfied by this data without making any data requests to the 
file server.

b. The latency to the server (as observed by the client so far) is above the configured 
 threshold .

c. BranchCache hash generation is enabled on the file share.

d. The target file size is at least 64 KB.

e. The read is beyond the first 64 KB of the file.

2. If the preceding conditions are met, the offline files driver notifies the offline files service to 
start prefetching the file. 

3. The offline files service then retrieves the content information from the file server. If the server 
has the up-to-date content information for the specified file, it returns it to the client. If there 
is no content information for the specified file or if it is out of date, the SMB hash-generation 
service on the file server will be requested to generate new content information for this file, 
and no content information is returned to the client, causing offline files to skip BranchCache 
retrieval for this file.

4. If content information is retrieved from the file server, the offline files service then uses that 
information to attempt to retrieve data from BranchCache . 

5. BranchCache attempts to retrieve the data either from peers or the hosted cache (depending 
on the configuration). If data is found, it is returned to the offline files service; otherwise, an 
error is returned .

6. If data is found in BranchCache, the data is written to the offline files cache and the prefetch 
thread continues to attempt to retrieve data from BranchCache until it has retrieved up to 
8 MB of data or it fails to retrieve data .

7.  When the application’s read operation is allowed to proceed, it attempts to read the data 
from the offline files cache, which is prepopulated by data from BranchCache if the prefetch 
thread successfully retrieved data. Otherwise, the application’s read is allowed to flow to the 
server to retrieve data. Data retrieved from the file server is then cached in the offline files 
cache for later publication to BranchCache .

8. When the Offline Files Service is requested to prefetch data from BranchCache, it also 
 attempts to publish any data to BranchCache for the file from the offline files cache. File data 
is stored in the offline files cache until the offline files cache needs to reclaim space for newer 
files. The same data is also stored in BranchCache’s republication cache so that it can be 
shared with other BranchCache clients and across different protocols/applications integrated 
with BranchCache .
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If the client accesses the same content again (after closing the file and opening it again) and the 
content has not been changed on the server, the application will be able to retrieve the data from the 
Offline Files cache without doing the BranchCache lookup. This is called transparent caching .

If the requested data cannot be found through BranchCache, once it is retrieved from the SMB 
server it will be republished to the BranchCache for access by other clients . (These steps are not 
shown in Figure 7-30 .)
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FIGURE 7-30 BranchCache request flows

BranchCache Optimized Application Retrieval: HTTP Sequence
The following sequence describes how content that is cached by BranchCache is delivered to an 
application without requiring any changes to the application . This sequence covers the case when 
the channel/protocol of choice for that application is HTTP, for example the application retrieves the 
content via an HTTP request based on either WinInet or WinHTTP APIs .

BranchCache and HTTP are tightly integrated, both in terms of HTTP .sys on the server side and 
WinInet and WinHTTP on the client side . In contrast with the SMB-BranchCache integration, when 
BranchCache is enabled on both client and server, an application’s HTTP requests are always stalled, 
waiting for BranchCache retrievals . The HTTP-BranchCache integration is focuses on minimizing 
the usage of the WAN’s bandwidth (even when the WAN happens to be very fast and has very low 
 latency), and all the data that can be retrieved via BranchCache will be transferred via BranchCache .
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1. Data retrieval begins with an application issuing an HTTP Request .

2. When BranchCache is enabled on the client, the HTTP client stack (either WinInet or WinHTTP) 
adds headers to the request indicating that the client is capable of understanding the PeerDist 
HTTP encoding (as defined in [MS-PCCRTP]).

3. The HTTP client stack sends the request to the remote content server, typically across the 
WAN link .

4. The kernel-mode HTTP driver (HTTP .sys) receives the request on the content server . If 
 BranchCache is enabled on that server, HTTP .sys forwards a copy of the request to the 
 BranchCache HTTP extension driver (PeerDistKM .sys), which keeps track of the request and 
retrieves content information for that content (identified by its URL and content tags) from the 
BranchCache service .

5. The kernel-mode HTTP driver delivers the HTTP request to the associated web server in user 
mode (typically, IIS or a web service) and waits for a response .

6. The HTTP server authenticates and authorizes the client, it generates the response 
 accordingly, and it starts streaming the response down to HTTP .sys .

7.  Because BranchCache is enabled, HTTP .sys redirects the response through PeerDistKM .sys .

8. If the content information for that HTTP content is not available (or not yet available) or if the 
content tags do not match, the following steps occur:

a. PeerDistKM .sys sends a copy of the response stream to the BranchCache service for 
 publication so that the next request for the same URL will find the content information.

b. It allows the response stream to go back to HTTP .sys unchanged .

c. HTTP .sys sends out the response with actual data in it and no BranchCache metadata .

9. If, instead, the content information for that HTTP content is available and, based on content 
tags, it is found to be up to date with the content returned, the following steps occur:

a. PeerDistKM .sys replaces the body of the response with the content information 
 describing it in BranchCache terms .

b. It modifies the response headers adding that the response is now PeerDist-encoded.

c. It returns the modified (and, in general, much shorter) response stream to HTTP.sys.

d. HTTP.sys sends out the modified response, containing only BranchCache content 
 information metadata, but not any actual content data .

10. The response is received on the client side . If the response contains BranchCache content 
 information, the HTTP client stack passes that metadata to the BranchCache service, and it 
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starts serving the first application read for the actual contents of that response by asking 
BranchCache to retrieve the content data associated with the size of that first read.

11. BranchCache retrieves that data from the local republication cache (if available), or it retrieves 
a superset including the requested data either from other BranchCache clients in the LAN or 
from the hosted cache server (depending on the configuration).

12. If any of the requested data is missing, BranchCache signals to the HTTP stack the range of 
missing data, and the HTTP stack issues a range request back to the remote server for the 
missing data (or a superset including it) .

13. Once all the data is reassembled for the specific application read, it is returned to the 
 application in a way completely transparent to the application . 

14. The last three steps are repeated until all the application’s reads on the HTTP response in 
question are completed .

Name Resolution

Name resolution is the process by which a character-based name, such as www .microsoft .com or 
Mycomputer, is translated into a numeric address, such as 192 .168 .1 .1, that the network protocol stack 
can recognize . This section describes the three TCP/IP-related name resolution protocols provided 
by Windows: Domain Name System (DNS), Windows Internet Name Service (WINS), and Peer Name 
Resolution Protocol (PNRP) .

Domain Name System
Domain Name System (DNS) is the standard (RFC 1035, et al .) by which Internet names (such as  
www.microsoft.com) are translated to their corresponding IP addresses . A network application that 
wants to resolve a DNS name to an IP address sends a DNS lookup request using the UDP/IP  protocol 
(TCP/IP is used for requests whose response size exceeds 512 bytes) to a DNS server . DNS servers 
implement a distributed database of name/IP address pairs that are used to perform translations, and 
each server maintains the translations for a particular zone . Describing the details of DNS is outside 
the scope of this book, but DNS is the foundation of naming in Windows and so it is the primary 
Windows name resolution protocol .

The Windows DNS server is implemented as a Windows service (%SystemRoot%\System32 
\Dns.exe) that is included in server versions of Windows. Standard DNS server implementation relies 
on a text file as the translation database, but the Windows DNS server can be configured to store 
zone information in Active Directory .
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Peer Name Resolution Protocol
The Peer Name Resolution Protocol (PNRP) is a distributed peer-to-peer protocol that allows for 
 dynamic name resolution and publication exclusively across IPv6 networks . It allows Internet- 
connected devices to publish peer names and their associated IPv6 address, as well as optional 
information . Other devices will then resolve the peer name, retrieve the IPv6 address, and establish a 
connection . 

PNRP offers significant advantages over DNS, mainly by being distributed, which means that it is 
essentially serverless (other than for early bootstrapping), can scale to potentially millions of names, 
and is fault tolerant and bottleneck free . Because it includes secure name publication services, 
changes to name records can be performed from any system . DNS generally requires contacting a 
DNS server administrator to perform updates . PNRP name updates also occur in real time, making it 
appropriate for highly mobile devices, whereas DNS caches results . Finally, PNRP allows for naming 
more than just computers and services by allowing extended information to be published with name 
records. The specification for the Peer Name Resolution Protocol [MS-PNRP] can be found at  
www.microsoft.com .

Windows exposes PNRP via a PNRP API for applications and services, as well as by extending the 
getaddrinfo Winsock API described earlier in the chapter to perform resolution of PNRP IDs (described 
next) when an address includes the reserved .pnrp.net domain suffix.

PNRP peer names (also called P2P IDs) are made up of two components:

 ■ Authority For secure clients (which have their name records signed by a certifying  authority), 
the authority is identified by a SHA-1 hash of an associated public key, and for unsecured 
 clients, it is zero . If a client is secure, PNRP validates the name record before publishing it .

 ■ Classifier The classifier uses a simple string to identify a service provided by a peer, which 
allows multiple services to be provided by the same device . 

To create a PNRP ID, PNRP hashes the P2P ID and combines it with a unique 128-bit ID called 
the service location, as shown in Figure 7-31. The service location identifies different instances of the 
same P2P ID in the same cloud. (PNRP uses two clouds: a global cloud, which corresponds to all IPv6 
addresses on the Internet, and the link-local cloud, which corresponds to IPv6 addresses with the 
fe80::/10 prefix and is analogous to an IPv4 subnet.) 

authority.classifier

Public key

Friendly nameHash

Hash

(128 bits) Service location (128 bits)

} P2P ID

} PNRP ID

FIGURE 7-31 PNRP ID generation
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PNRP Resolution and Publication
PNRP name resolution occurs in two phases:

 ■ Endpoint determination In this phase, the requesting peer determines the IPv6 address 
 associated with the peer responsible for publishing the PNRP ID of the desired service .

 ■ PNRP ID resolution In this phase, once the requesting peer has located and confirmed the 
availability of the peer associated with the IPv6 address, it sends a PNRP request message for 
the PNRP ID of the service being requested. The peer providing the service replies to confirm 
the PNRP ID and can supply a comment and up to 4 KB of additional data, such as context 
information related to the service .

During the first phase, PNRP iterates over nodes while locating the publishing node, such that the 
node performing name resolution will be responsible for contacting nodes that are successively closer 
to the desired PNRP ID . Each iteration works as follows: Once a peer receives a request message, it 
performs a lookup in its cache for the requested PNRP ID . If a match is found, the request message is 
sent directly; otherwise, it is sent to the next closest PNRP ID (by seeing how much of the ID matches) .

When a node receives a request message for which it cannot find a PNRP ID, it checks the distance 
of any other IDs in the cache to the target ID. If it finds a node that is closer, the requested node 
sends a reply to the requesting node, where the reply contains the IPv6 address of the peer that 
most closely matches the target PNRP ID . The requesting node can then use the IPv6 address to send 
another query to that address’ node. If no node is closer, the requesting node is notified, and that 
node sends the request to the next closest node . Assuming PNRP IDs of 200, 350, 450, 500, and 800, 
Figure 7-32 depicts a possible endpoint determination phase for an example in which peer A is trying 
to find the endpoint for PNRP 800 (peer E).

To publish its PNRP ID(s), a peer first sends PNRP publication messages to its closest neighbors 
(entries in its cache that have IDs that are in the lowest levels) to seed their caches . It then randomly 
chooses nodes in the cloud that are not neighbors and sends them PNRP name resolution requests 
for its own PNRP ID . Through a mechanism described earlier, the endpoint determination phase 
results in the seeding of the PNRP ID across the caches of the random nodes that were chosen in 
the cloud .
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1 Peer A sends a PNRP 
request message to the 
node that registered the PNRP 
ID of 500 (peer C) because it is 
the closest (numerically) to 800.

2 Peer C does not have an entry for the 
PNRP ID of 800 or any entries that are 
closer to 800, so it sends back a response 
indicating that it could not find an entry 
closer to 800.

3 Peer A now sends a PNRP request message 
to the next closest PNRP ID (450), peer B.

5 Peer A sends a PNRP request 
to peer E.

4 Peer B does have an entry in 
its cache for the PNRP ID of 
800, so it sends the IPv6 
address of peer E to peer A.

6 Peer E sends a positive name 
resolution response back to 
peer A.

FIGURE 7-32 Example of PNRP name resolution

Location and Topology

Today, networked computers often move between networks that require different configuration 
 settings—for example, a corporate LAN and a home-based wireless network . Windows includes 
the Network Location Awareness (NLA) service to enable the dynamic configuration of network 
 applications and settings based on location, and Link-Layer Topology Discovery (LLTD) to enable the 
intelligent discovery and mapping of networked devices . 

Network Location Awareness
The Network Location Awareness (NLA) service provider is implemented as a Winsock Namespace 
Provider (NSP) and provides the necessary framework for allowing computers and devices that move 
across different networks to select the most appropriate configuration settings. For example, an 
 application taking advantage of NLA can detect when the user moves from a high-speed LAN to a 
high-latency wireless network and fine-tune its bandwidth use appropriately. NLA can also detect 
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when a home computer on a LAN might also have a secondary VPN connection to the office and 
select the proper configuration options.

Instead of having developers rely on manual network interface information to figure out the type 
of network, and the IP addresses or DNS names associated with them, NLA provides a standard-
ized query API for enumerating all the local network attachment information and correlating it with 
network interface information. The NLA API also includes notifications that enable applications to 
respond to changes when they occur . NLA provides applications two pieces of location information:

 ■ Logical network identity This identity is based on the logical network’s DNS domain name . 
If one does not exist, NLA uses custom static information stored in the registry together with 
the network’s subnet address as the identity .

 ■ Logical network interfaces For each network that a device is attached to, NLA creates an 
adapter name that identifies interfaces such as NICs or RAS connections in a unique fashion. 
Applications use adapter names with the IP Helper API (%SystemRoot%\System32\iphlpapi.dll) 
to query interface information and characteristics .

Each logical network is implemented as a service class with an associated GUID and  properties . 
NLA creates instances of that service class when it returns information about a logical network . 
 Service classes are schemas that describe a namespace; they define the name, identifier, and 
namespace-specific information that is common to all instances. These classes are then used in 
 combination with the WSALookupServiceXxx APIs when performing name resolution .

The best way to get network location information programmatically is to use the Network List 
Manager (NLM) APIs—for example INetworkListManager, INetwork, IEnumNetworks, INetworkEvents, 
and so on .

Network Connectivity Status Indicator
Network Connectivity Status Indicator (NCSI) determines in real time the connectivity level of 
 network connections on a system . It is loaded by the NLA service and functions solely as an informa-
tion  provider for NLA . NLA enables network-interacting programs to change their behavior based 
on how the computer is connected to the network . NCSI does not register as a client of NLA, but it 
does  receive certain private notifications directly from it. NCSI detects local vs. Internet connectivity, 
hotspot networks, and corporate connectivity detection and level .

The connectivity level of a network connection is assessed and is based on whether or not the 
 system has access to the Internet and to network devices such as the default gateway, DNS serv-
ers, and web proxy servers . This network connectivity information is used by various applications 
such as the Networking Tray Icon, Mini Map, Network Connection Wizard, Windows Media Center, 
 DirectAccess, Windows Update, and Outlook . NCSI information is displayed in the tray as an overlay 
on the network icon . Most of NCSI’s activity is disabled if a user is not logged in .

NCSI performs the primary tasks described in the following sections .
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Passive Poll
Every five seconds (configurable in the registry), NCSI activates to perform its general processing. The 
main purpose of this action is to query the network stack using the Network Storage Interface (NSI), 
and looks for:

1. Evidence that some traffic has been received. NSI returns packet counts for each network 
interface . If any packets have been received on an interface, that interface will have at least 
local connectivity .

2. Evidence that traffic has been received from either the Internet or corporate network. This is 
a little more complex and is determined by calculating the average number of hops a packet 
takes to depart from a system’s local ISP network (in a home/nondomain environment) or 
intranet (in a corporate environment) . NSI returns the largest hop count seen since the last 
time the hop counts were requested . If this value exceeds the average for a given IP family (for 
example, IPv4 vs . IPv6) on a given interface, that interface has internet connectivity .

3. Evidence that the host is communicating with a web proxy . The IP addresses for web proxies 
will have been identified using Web Proxy AutoDetect (WPAD), or DNS, and proxies config-
ured manually through Internet control panel . NSI returns details of the current TCP paths 
from the network stack . If this is a new path to a proxy, that interface has internet connectivity .

4. Evidence that an IPSEC Security Association (SA) has been established between the system 
and a host that has an IPv6 address matching the corporate network prefix defined in the 
registry . (This is passive corporate connectivity detection .)

5. Evidence that there is a reachable path reported by NSI to a host with an IPv6 prefix 
 matching the corporate network prefix in the registry. The interface is marked with corporate 
 connectivity .

In addition to handling the NSI queries, the passive poll is also used by NCSI to carry out most 
time-based processing . If there are no networks connected, NCSI continues to poll, but stops polling 
three polling periods after the last data is received .

Network Change Monitoring
NCSI has to be aware of changes to the configuration of interfaces on the system. This is handled 
by two event monitors that watch for NSI interface change notifications and DHCP status change 
 notifications. 

When NCSI detects that the network has changed, it records the current time in a data  structure 
associated with each interface . The passive poll task queries this value and, if it is older than 15 
seconds, it will perform an active probe . The 15-second delay (for example, three poll periods have 
elapsed) is used to re-evaluate the Internet connectivity state if it has seen one or more unreachable 
paths .

NCSI registers for DHCP events and responds to them immediately (that is, there is no dampening 
that happens) . If in that callback, DHCP reports that an interface is stable, an active probe is queued 
for that interface .
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Registry Change Monitoring
NCSI monitors two parent keys in the registry for any changes to themselves or their children using 
the registry change notification API. Any changes trigger NCSI to reload all values under each key:

 ■ HKLM\System\CurrentControlSet\Services\NlaSvc\Parameters\Internet

 ■ HKLM\SOFTWARE\Policies\Microsoft\Windows\NetworkConnectivityStatusIndicator

Active Probe
NCSI has two mechanisms for actively testing an interface to determine whether it has Internet 
 connectivity, both of which are configurable (and can be disabled) using the registry keys.

The first time an active probe is performed on an interface, it will be a web probe . This consists of 
an attempt to download the file http://www.msftncsi.com/ncsi.txt, and it compares the contents of 
that file with the expected value of “Microsoft NCSI”. If the comparison succeeds, the active probe is 
considered successful .

If NCSI has detected proxy servers, it checks to see if the interface being probed is the best 
 interface over which to reach the first proxy server. If so, it applies the proxy settings to the HTTP 
request. Otherwise, it first tries without the proxy settings, only applying them and making a second 
attempt if the first failed with name resolution failure. This is to support multihomed scenarios, where 
one interface is connected via proxy and the interface being probed is not . 

If an active probe succeeds, either the IPv4 or IPv6 Internet state will be brought to internet 
 connectivity. Because NCSI does not know whether the request was satisfied using IPv4 or IPv6 
 connectivity, it makes a guess based on the existence of default gateways for each address family, 
with IPv4 being selected if an exact determination cannot be made .

The next time an active probe is to be performed, if the hardware address of the default gateway 
is already in the list of known proxy-less gateways, a DNS probe is performed instead of a web probe . 
This is an optimization that produces quicker results . A DNS probe performs a simple DNS lookup for 
the name listed in the registry, with the default being dns.msftncsi.com .

HTTP probe behavior changes in multihomed scenarios when a proxy is detected . When an active 
probe is executed on an interface, a check is made whether or not that interface is preferred by the 
network stack to reach the first proxy server address. If so, the web probe is continued as normal. 
If not, the web probe is first attempted without the use of the proxy. If that fails because the name 
could not be resolved via DNS, NCSI concludes it must be behind the proxy after all and applies the 
proxy server settings and retries the probe .

The content retrieved by the HTTP request is compared to known content in the registry . If the 
content does not match, NCSI assumes that the interface is connected to a hotspot network (which 
has rerouted the HTTP request to a login page) . It then uses the Network List Manager (NLM) APIs 
to send a message to the PNIDUI (%SystemRoot%\System32\pnidui.dll) Shell Service Object (SSO), 
which then displays a balloon to indicate to the user that she needs to log in before connecting to 
the  Internet . The gateway MAC address is also recorded in a known hotspot gateway list for proxy 
 detection optimization later .

http://www.msftncsi.com/ncsi.txt
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NSCI can be configured via Group Policy, as shown in Figure 7-33, or via the registry.

FIGURE 7-33 NCSI parameters in the Group Policy editor

Link-Layer Topology Discovery
The Link-Layer Topology Discovery (LLTD) protocol operates over both wired and wireless networks 
and enables applications to discover the topology of a network . For example, the Network Map 
 functionality in Windows uses LLTD to draw the local network topology for the connected devices 
that support the LLTD protocol . Additionally, LLTD supports Quality of Service (QoS) extensions, which 
allow applications to diagnose network problems such as low signal strength on a wireless network 
and bandwidth constraints on home networks . Because it operates on the OSI data-link layer, LLTD 
works only on a single LAN or subnet and cannot cross routers, but its capabilities make it suitable 
for most home and small-office networks. The specification for the Link-Layer Topology Discovery 
protocol [MS-LLTD] can be found at www.microsoft.com .

The LLTD Mapper I/O and the LLTD Responder components implement LLTD . The former is 
 responsible for the discovery process and for generating network maps . Because it uses a protocol 
different from IP, the LLTD Mapper uses NDIS APIs to directly send commands to the network via 
the network adapter . The LLTD Responder listens for and responds to discovery commands with 
 information about the computer . As mentioned earlier, only devices that have a responder are shown 
in the network map .
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Protocol Drivers

Network drivers take high-level I/O requests and translate them into low-level network protocol 
requests for transmission across the network . The network APIs rely on transport protocol drivers in 
kernel mode to perform the actual translation . Separating APIs from underlying protocols gives the 
networking architecture the flexibility of letting each API use a number of different protocols. The 
Internet’s explosive growth and reliance on the TCP/IP protocol has made TCP/IP the preeminent 
protocol in Windows . The Defense Advanced Research Projects Agency (DARPA) developed TCP/IP in 
1969, specifically as the foundation for a large-scale, fault-tolerant network that became the Internet; 
therefore, TCP/IP has WAN-friendly characteristics such as routability and good WAN performance . 
TCP/IP is the preferred Windows protocol and is installed by default .

The 4-byte network addresses used by the IPv4 protocol on the legacy TCP/IP stack limits the 
number of public IP addresses to roughly four billion, which is nearly exhausted as more and more 
devices, such as cell phones and PDAs, acquire an Internet presence . For this reason, the IPv6 proto-
col, which has 16-byte addresses, is gaining adoption . Windows includes a combined TCP/IP stack, 
called the Next Generation TCP/IP Stack, which supports both IPv4 and IPv6 simultaneously, with IPv6 
being the preferred protocol . When operating on IPv6 networks, the stack also supports coexistence 
with IPv4 networks through the use of tunneling . The Next Generation TCP/IP Stack offers several 
advanced features to improve network performance, some of which are outlined in the following list:

 ■ Receive Window Auto Tuning The TCP protocol defines a receive window size, which 
 determines how much data a receiver can accept before the server requires an acknowledg-
ment . Optimally, the receive window size should be equal to the bandwidth-delay product, 
which is the network link’s capacity multiplied by its end-to-end delay . This calculates the 
amount of data that can be “in transit” between the sender and receiver at any given time . 
The Windows TCP/IP stack analyzes the conditions of a network link and chooses the optimal 
receive window size, adjusting it as needed if the network conditions change .

 ■ Compound TCP (CTCP) Network congestion occurs when a node or link reaches its 
 carrying capacity . CTCP implements a congestion-avoidance algorithm that monitors network 
 bandwidth, latency, and packet losses . It aggressively increases the amount of data that can 
be sent by a machine when the network will support it, and it backs off when the network is 
congested. Using CTCP on a high-bandwidth, low-latency network can significantly improve 
transfer speeds

 ■ Explicit Congestion Notification (ECN) Whenever a TCP packet is lost (unacknowledged), 
the TCP protocol assumes that the data was dropped because of router congestion and 
 enforces congestion control, which dramatically lowers the sender’s transmission rate . ECN 
 allows routers to explicitly mark packets as being forwarded during congestion, which is read 
by the Windows TCP/IP stack as a sign that transmission rates should be lowered .  Lowering 
rates in this manner results in better performance than relying on loss-based congestion 
 control . ECN is disabled by default, because many outdated routers might drop packets with 
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the ECN bit set instead of ignoring the bit . To determine whether your network supports ECN, 
you can use the Microsoft Internet Connectivity Evaluation Tool (http://www.microsoft.com 
/windows/using/tools/igd/default.mspx) . You can examine and modify the ECN capability using 
the network shell (from an Admin command window), as shown in Figure 7-34 . 

FIGURE 7-34 Using the network shell to examine and configure TCP parameters

 ■ High-loss throughput improvements, including the NewReno Fast Recovery Algorithm, 
 Enhanced Selective Acknowledgment (SACK), Forward RTO-Recovery (F-RTO), and Limited 
Transit . These algorithms reduce the overall retransmission of acknowledgments or TCP 
 segments during high-loss scenarios while still maintaining the integrity of the TCP stream . 
This allows for greater bandwidth in these environments and preserves TCP’s reliable transport 
semantics .

The Next Generation TCP/IP Stack (%SystemRoot%\System32\Drivers\Tcpip.sys), shown in 
 Figure 7-35, implements TCP, UDP, IP, ARP, ICMP, and IGMP . To support legacy protocols such as 
 NetBIOS, which make use of the deprecated TDI interface, the network stack also includes a com-
ponent called TDX (TDI translation), which creates device objects that represent legacy protocols 
so that clients can obtain a file object representing a protocol and issue network I/O to the proto-
col using TDI IRPs . The TDX component creates several device objects that represent various TDI 
 client– accessible protocols: \Device\Tcp6, \Device\Tcp, \Device\Udp6, \Device\Udp, \Device\Rawip, 
and \Device\Tdx.
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FIGURE 7-35 Windows Next Generation TCP/IP Stack

EXPERIMENT: Looking at TCP/IP’s Device Objects
Using the kernel debugger to look at a live system, you can examine TCP/IP’s device objects . 
 After performing the !drvobj command to see the addresses of each of the driver’s device 
 objects, execute !devobj to view the name and other details about the device object .

kd> !drvobj tdx 
Driver object (861d9478) is for: 
 \Driver\tdx 
Driver Extension List: (id , addr) 
 
Device Object list: 
861db310  861db440  861d8440  861d03e8 
861cd440  861d2318  861d9350   
lkd> !devobj 861cd440   
Device object (861cd440) is for: 
 Tcp6 \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050 
Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
Device queue is not busy. 
lkd> !devobj 861db440   
Device object (861db440) is for: 
 RawIp \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050 
Dacl 8b1bc54c DevExt 861db4f8 DevObjExt 861db500  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
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Device queue is not busy. 
lkd> !devobj 861d8440   
Device object (861d8440) is for: 
 Udp6 \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 0 Type 00000012 Flags 00000050 
Dacl 8b1bc54c DevExt 861d84f8 DevObjExt 861d8500  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
Device queue is not busy. 
lkd> !devobj 861d03e8 
Device object (861d03e8) is for: 
 Udp \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 6 Type 00000012 Flags 00000050 
Dacl 8b1bc54c DevExt 861d04a0 DevObjExt 861d04a8  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
Device queue is not busy. 
lkd> !devobj 861cd440   
Device object (861cd440) is for: 
 Tcp6 \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 7 Type 00000012 Flags 00000050 
Dacl 8b1bc54c DevExt 861cd4f8 DevObjExt 861cd500  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
Device queue is not busy. 
lkd> !devobj 861d2318   
Device object (861d2318) is for: 
 Tcp \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 167 Type 00000012 Flags 00000050 
Dacl 8b1bc54c DevExt 861d23d0 DevObjExt 861d23d8  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
Device queue is not busy. 
lkd> !devobj 861d9350   
Device object (861d9350) is for: 
 Tdx \Driver\tdx DriverObject 861d9478 
Current Irp 00000000 RefCount 0 Type 00000021 Flags 00000050 
Dacl 8b0649a8 DevExt 00000000 DevObjExt 861d9408  
ExtensionFlags (0x00000800)   
                             Unknown flags 0x00000800 
Device queue is not busy.
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Windows Filtering Platform
Windows includes a rich and extensible platform for monitoring, intercepting, and processing 
 network traffic at all levels in the network stack. Other Windows networking services extend basic 
networking features of the TCP/IP protocol driver by relying on Windows Filtering Platform (WFP) . 
These include Network Address Translation (NAT), IP filtering, IP inspection, and Internet Protocol 
Security (IPsec) . Figure 7-36 shows how the different components of the WFP are integrated with the 
TCP/IP stack . These include

 ■ Filter engine The filter engine is implemented in both user mode and kernel mode and 
performs all the filtering operations on the network. Each filter engine component consists of 
filtering layers, one for each component of the network stack. The user-mode engine, respon-
sible for RPC and IPsec keying policy, among other things, contains approximately 10 filters, 
while the kernel-mode engine, which performs the network and transport layer filtering of the 
TCP/IP stack, contains around 50 .

 ■ Shims Shims are the kernel-mode components that reside between the network stack and 
the filter engine. They are responsible for making the decision to allow or block network traffic 
based on their filtering behavior, which is defined by the filter engine. A shim operates in three 
steps: it parses the incoming data to match incoming values with entries in the filter engine, 
calls the filter engine to return an action based on the incoming values, and then interprets 
the action (drop the packet, for example) .

 ■ Base filtering engine (BFE) The BFE is a user-mode service (%SystemRoot%\System32\Bfe.
dll) that manages all WFP operations. It is responsible for adding and removing filters from the 
WFP stack, managing the filter configuration, and enforcing security on the filter database.

 ■ Callout drivers Callout drivers are kernel-mode components that add custom filtering func-
tionality outside the basic support provided by the WFP . Callout drivers associate callout func-
tions with one or more kernel-mode filtering layers, and the WFP enables callout functions to 
perform deep packet inspection and modification. Network Address Translation (described 
next) and IPsec are implemented as callout drivers, for example .
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Network Address Translation
Network Address Translation (NAT) is a routing service that allows multiple private IP addresses to 
map to a single public IP address . Without NAT, each computer of a LAN must be assigned a public 
IP address to communicate across the Internet . NAT allows one computer of the LAN to be assigned 
an IP address and the other computers to use private IP addresses and be connected to the Internet 
through that computer . NAT translates between private IP addresses and the public IP address as 
necessary, routing packets between LAN computers and the Internet .

NAT components on Windows consist of a NAT device driver, %SystemRoot%\System32\Drivers 
\ipnat.sys, that interfaces with the WFP stack as a callout driver, as well as packet editors that can 
perform additional packet processing beyond address and port translation . 

IP Filtering
Windows includes a very basic IP filtering capability with which a user can choose to allow only 
 certain ports or IP protocols into or out of the network . Although this capability can serve to protect a 
computer from unauthorized network accesses, its drawback is that it is static and does not automati-
cally create new filters for traffic initiated by applications running on the computer. 

Windows also includes a host firewall capability, called Windows Firewall, that goes beyond the 
basic filtering just described. Windows Firewall uses WFP to provide a stateful firewall, which is one 
that keeps track of traffic flow so that it distinguishes between TCP/IP traffic that originates on the 
local LAN and unsolicited traffic that originates on the Internet. When Windows Firewall is enabled 
on an interface, one of three profiles can be applied—public, private, and domain. By default, when 
the public profile is chosen (or until a profile is selected), all unsolicited incoming traffic received by 
the computer is discarded. A user or application can define exceptions so that services running on the 
computer, such as file and printer sharing or a website, can be accessed from other computers.

The Windows Firewall service, which executes in a Svchost process, uses the BFE to pass exception 
rules defined in the configuration user interface to the IPNat driver. The WFP filter engine executes 
the callback functions of each registered callout driver as it processes both inbound and outbound 
IP packets . A callback function can provide NAT functionality by modifying source and destination 
 addresses in a packet, or as a firewall by returning a status code to TCP/IP that requests that  
TCP/IP drop the packet and cease processing for it . In kernel mode, Windows Firewall uses the 
 Microsoft  Protection Service driver (%SystemRoot%\System32\Drivers\Mpsdrv.sys) that provides 
support for PPTP and FTP filtering, because those protocols provide their own independent control 
and data channels. The driver must analyze the control channel to figure out which data channel to 
manipulate. The driver is also used for displaying notification windows when an application starts 
listening on a socket . 

Internet Protocol Security
Internet Protocol Security (IPsec), which is integrated with the Windows TCP/IP stack, helps  protect 
unicast (IPsec itself supports multicast, but the Windows implementation does not) IP data against 
 attacks such as eavesdropping, sniffer attacks, data modification, IP address spoofing, and man- in-
the-middle attacks (as long as the identity of the remote machine can be verified, such as a VPN). 
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You can use IPsec to provide defense-in-depth against network-based attacks from untrusted 
 computers; certain attacks that can result in the denial-of-service of applications, services, or the 
network; data corruption, data theft, and user-credential theft; and the administrative control over 
 servers, other computers, and the network . IPsec helps defend against network-based attacks 
through  cryptography-based security services, security protocols, and dynamic key management .

IPsec provides the following properties for unicast IP packets sent between trusted hosts:

 ■ Data origin authentication, which verifies the origin of an IP packet and ensures that 
 unauthenticated parties cannot access data .

 ■ Data integrity, which protects an IP packet from being modified in transit without being 
 detected .

 ■ Data confidentiality, which encrypts the payload of IP packets before transmission. Data 
 confidentiality ensures that only the IPsec peer with which a computer is communicating can 
read and interpret the contents of the packets . This property is optional .

 ■ Anti-replay (or replay protection), which ensures that each IP packet is unique and can’t be 
reused . This property prevents an attacker from intercepting IP packets and inserting modi-
fied packets into a data stream between a source computer and a destination computer. When 
anti-replay is used, attackers cannot reply to captured messages to establish a session or gain 
unauthorized access to data .

You can use IPsec to help defend against network-based attacks by configuring host-based IPsec 
packet filtering and enforcing trusted communications. When you use IPsec for host-based IPsec 
packet filtering, IPsec can permit or block specific types of unicast IP traffic based on source and 
 destination address combinations and specific protocols and specific ports.

In an Active Directory environment, Group Policy can be used to configure domains, sites, and 
organizational units (OUs), and IPsec policies (called connection security rules) can then be assigned as 
required to Group Policy objects (GPOs) through Windows Firewall with Advanced Security configura-
tion settings. Alternatively, you can configure and assign local IPsec policies. Active Directory–based 
connection security rules are stored in Active Directory, and a copy of the current policy is maintained 
in a cache in the local registry . Local connection security rules are stored in the local system registry .

To establish trusted communications, IPsec uses mutual authentication, and it supports the 
 following authentication methods through AuthIP, Microsoft’s extension to Internet Key Exchange 
(IKE):

 ■ Interactive user Kerberos 5 credentials or interactive user NTLMv2 credentials

 ■ User x.509 certificates

 ■ Computer SSL certificates

 ■ NAP health certificates
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 ■ Anonymous authentication (optional authentication)

 ■ Preshared key

If AuthIP is not available, plain IKE is also supported by IPsec . The Windows implementation of 
IPsec is based on IPsec Requests for Comments (RFCs) . The Windows IPsec architecture includes 
Windows Firewall with Advanced Security, the legacy IPsec Policy Agent, the IKE and Authenticated 
Internet Protocol (AuthIP) protocols, and an IPsec WFP callout driver, which are described in the 
 following list:

 ■ Windows Firewall with Advanced Security In addition to the filtering functionality 
 described earlier, the Windows Firewall service is also responsible for providing the security 
and policy configuration settings for IPsec, which can be configured through Group Policy 
either locally or on an Active Directory domain .

 ■ Legacy IPsec Policy Agent The legacy IPsec Policy Agent runs as a service . In the Services 
snap-in in the Microsoft Management Console (MMC), the IPsec Policy Agent appears in the 
list of computer services under the name IPsec Policy Agent . The IPsec Policy Agent obtains 
the legacy IPsec policy from an Active Directory domain or the local registry and then passes 
IP address filters to the IPsec driver and authentication and security settings to IKE. These 
policies are honored to enable compatibility with older versions of Windows, which implement 
IPsec management through Active Directory .

 ■ IKE and AuthIP IKE is a protocol that supports the authentication and key negotiation 
services required by IPsec. For outgoing traffic, IKE waits for requests to negotiate security 
 associations (SAs) from the IPsec driver, negotiates the SAs, and then sends the SA settings 
back to the IPsec driver. For incoming traffic, IKE receives a negotiation request directly 
from the remote peer, and all other traffic from the peer is dropped until the SAs have been 
successfully negotiated . SAs are a combination of mutually agreeable IPsec policy settings 
and keys that defines the security services, mechanisms, and keys that are used to help 
secure communications between IPsec peers . Each SA is a one-way or simplex connection 
that  secures the traffic it carries. IKE negotiates main mode SAs and quick mode SAs when 
 requested by the IPsec driver . The IKE main mode (or ISAKMP) SA protects the IKE negotiation . 
The quick mode (or IPsec) SAs protect application traffic. AuthIP is a proprietary extension to 
IKE supported by Windows Vista and later, while Windows 7 and Windows Server 2008 R2 also 
add support for IKEv2, an equivalent standardized extension . It adds a secondary authentica-
tion mechanism to increase security and simplify maintenance and configuration of IPsec.

 ■ IPsec WFP callout driver The IPsec WFP callout driver is a device driver (%SystemRoot% 
\System32\Drivers\Fwpkclnt.sys) that is bound to WFP and processes packets that pass 
through the TCP/IP driver. The IPsec driver monitors and secures outbound unicast IP traffic, 
and it monitors, decrypts, and validates inbound unicast IP packets. WFP receives filters from 
the IPsec Policy Agent and invokes the callout, which then permits, blocks, or secures packets 
as required. To secure traffic, the IPsecI driver uses active SA settings, or it requests that new 
SAs be created .
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You can use the Windows Firewall with Advanced Security (%SystemRoot%\System32\Wf.msc) 
snap-in that is available in MMC to create and manage connection security rules by using the New 
Connection Security Rule Wizard, shown in Figure 7-37 . This snap-in can be used to create, modify, 
and store local connection security rules or Active Directory–based connection security rules, and to 
modify connection security rules on remote computers . Alternatively, you can use the Netsh utility 
with the netsh advfirewall consec command to manage connection security rules . After IPsec-secured 
communication is established, you can monitor IPsec information for local computers and for remote 
computers by using the Windows Firewall with Advanced Security snap-in or the Netsh utility with the 
netsh advfirewall monitor command .

FIGURE 7-37 New Connection Security Rule Wizard

NDIS Drivers

When a protocol driver wants to read or write messages formatted in its protocol’s format from or 
to the network, the driver must do so using a network adapter . Expecting protocol drivers to under-
stand the nuances of every network adapter on the market (proprietary network adapters number 
in the thousands) is not reasonable, so network adapter vendors provide device drivers that can take 
network messages and transmit them via the vendors’ proprietary hardware . In 1989, Microsoft and 
3Com jointly developed the Network Driver Interface Specification (NDIS), which lets protocol drivers 
communicate with network adapter drivers in a device-independent manner . Network adapter drivers 
that conform to NDIS are called NDIS drivers or NDIS miniport drivers . The version of NDIS that ships 
with Windows 7 and Windows Server 2008 R2 is NDIS 6 .20 .

The NDIS library (%SystemRoot%\System32\Drivers\Ndis.sys) implements the boundary that 
 exists between network transports, such as the TCP/IP driver, and adapter drivers . The NDIS library 
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is a helper library that NDIS driver clients use to format commands they send to NDIS drivers . NDIS 
drivers interface with the library to receive requests and send back responses . Figure 7-38 shows the 
relationship between various NDIS-related components .
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NDIS Protocol Edge
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FIGURE 7-38 NDIS components

Instead of merely providing the NDIS boundary helper routines, the NDIS library provides 
NDIS drivers with an entire execution environment . NDIS drivers do not follow the standard 
 Windows device driver I/O model, and they cannot function without the encapsulation the NDIS 
library gives them . This insulation layer wraps NDIS drivers so thoroughly that NDIS drivers don’t 
 accept and process IRPs . Rather, protocol drivers such as TCP/IP call a function in the NDIS library, 
 NdisAllocateNetBufferList, and pass the packets to an NDIS miniport by calling an NDIS library 
 function (NdisSendNetBufferLists) . Additionally, to make development simpler, all components of the 
Windows Next Generation TCP/IP stack make use of the NET_BUFFER_LIST structure, including TCP/IP 
and WSK, which streamlines communications with NDIS . 

NDIS includes the following features:

 ■ NDIS drivers can report whether or not their network medium is active, which allows  Windows 
to display a network connected/disconnected icon on the taskbar . This feature also allows 
 protocols and other applications to be aware of this state and react accordingly . The  
TCP/IP transport, for example, uses this information to determine when it should reevaluate 
 addressing information it receives from DHCP .
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 ■ NDIS drivers can be paused and resumed, which enables run-time reconfiguration, such 
as adding or removing an NDIS Lightweight Filter driver. A lightweight filter replaces most 
instances of NDIS intermediate drivers used prior to NDIS version 6 . (Intermediate drivers are 
still supported in NDIS 6, but their complexity makes them suitable for only a small class of 
problems.) Lightweight filter drivers are covered in more detail in the upcoming sections.

 ■ TCP/IP offloading, including task and chimney offloading. Task offloading allows a network 
interface card to implement some or all of the TCP/IP protocol stack, providing a substantial 
increase in network performance. NDIS includes support for IPsec Task Offload Version 2, 
which includes support for additional cryptography suites used in IPsec, such as AES, as well 
as IPv6 support. Chimney offloading provides a direct connection (the so-called chimney) 
between network applications and the network card hardware, enabling greater offloading 
and connection state management to be implemented by the network card. These offloading 
operations can improve system performance by relieving the CPU from the tasks .

 ■ Receive-side scaling enables systems with multiple processors to perform packet receive 
operations based on the most efficient use of available target processors. NDIS supports the 
receive-side scaling (RSS) interface at the hardware level and targets interrupts and DPCs to 
the appropriate processors .

 ■ Wake-on-LAN allows a wake-on-LAN-capable network adapter to bring the system out of 
a suspended power state . Events that can trigger the network adapter to signal the system 
include media connections (such as plugging a network cable into the adapter), the receipt 
of protocol-specific patterns registered by a protocol (the TCP/IP transport asks to be woken 
for Address Resolution Protocol [ARP] requests), and, for Ethernet adapters, the receipt of a 
magic packet (a network packet that contains 16 contiguous copies of the adapter’s Ethernet 
address) .

 ■ Header-data split allows compatible network cards to improve network performance 
by  splitting the data and header part of an Ethernet frame into different buffers and 
 subsequently combining the buffers into smaller regions of memory than if the buffers were 
combined. This allows more efficient memory usage as well as better caching because multiple 
headers can fit in a single page.

 ■ Connection-oriented NDIS (CoNDIS) allows NDIS drivers to manage connection-oriented 
media (typically, a WAN), such as ISDN or PPP devices . (CoNDIS is described in more detail 
shortly .)

The interfaces that the NDIS library provides for NDIS drivers to interface with network adapter 
hardware are available via functions that translate directly to corresponding functions in the HAL .
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EXPERIMENT: Listing the Loaded NDIS Miniports
The Ndiskd kernel debugger extension library includes the !miniports and !miniport commands, 
which let you list the loaded miniports using a kernel debugger and, given the address of a 
miniport block (a data structure Windows uses to track miniports), see detailed information 
about the miniport driver . The following example shows the !miniports and !miniport com-
mands being used to list all the miniports and then specifics about the miniport responsible for 
interfacing the system to a PCI Ethernet adapter . (Note that WAN miniport drivers work with 
dial-up connections .)

lkd> .load ndiskd  
Loaded ndiskd extension DLL  
 
 
lkd> !miniports 
NDIS Driver verifier level: 0 
NDIS Failed allocations   : 0 
Miniport Driver Block: 86880d78, Version 0.0 
  Miniport: 868cf0e8, NetLuidIndex: 1, IfIndex: 9, RAS Async Adapter 
Miniport Driver Block: 84c3be60, Version 4.0 
  Miniport: 84c3c0e8, NetLuidIndex: 3, IfIndex: 15, VMware Virtual Ethernet Adapter  
Miniport Driver Block: 84c29240, Version 0.0 
  Miniport: 84c2b438, NetLuidIndex: 0, IfIndex: 2, WAN Miniport (SSTP) 
... 
lkd> !miniport 84bcc0e8 
 
 Miniport 84bcc0e8 : Broadcom NetXtreme 57xx Gigabit Controller, v6.0 
 
    AdapterContext : 85f6b000 
    Flags          : 0c452218 
                     BUS_MASTER, 64BIT_DMA, IGNORE_TOKEN_RING_ERRORS 
                     DESERIALIZED, RESOURCES_AVAILABLE, SUPPORTS_MEDIA_SENSE 
                     DOES_NOT_DO_LOOPBACK, SG_DMA,  
                     NOT_MEDIA_CONNECTED,  
    PnPFlags       : 00610021 
                     PM_SUPPORTED, DEVICE_POWER_ENABLED, RECEIVED_START 
                     HARDWARE_DEVICE, NDIS_WDM_DRIVER,  
    MiniportState        : STATE_RUNNING 
    IfIndex                  : 10 
    Ndis5MiniportInNdis6Mode : 0 
    InternalResetCount    : 0000 
    MiniportResetCount    : 0000 
    References            : 5 
    UserModeOpenReferences: 0 
    PnPDeviceState        : PNP_DEVICE_STARTED 
    CurrentDevicePowerState : PowerDeviceD0 
    Bus PM capabilities 
    DeviceD1:        0 
    DeviceD2:        0 
    WakeFromD0:        0 
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    WakeFromD1:        0 
    WakeFromD2:        0 
    WakeFromD3:        1 
 
    SystemState        DeviceState 
    PowerSystemUnspecified    PowerDeviceUnspecified 
    S0            D0 
    S1            PowerDeviceUnspecified 
    S2            PowerDeviceUnspecified 
    S3            D3 
    S4            D3 
    S5            D3 
    SystemWake: S5 
        DeviceWake: D3 
 
    WakeupMethods Enabled 2: 
        WAKE_UP_PATTERN_MATCH   
    WakeUpCapabilities: 
    MinMagicPacketWakeUp: 4 
    MinPatternWakeUp: 4 
    MinLinkChangeWakeUp: 0 
    Current PnP and PM Settings:          : 00000030 
                     DISABLE_WAKE_UP, DISABLE_WAKE_ON_RECONNECT,  
    Translated Allocated Resources: 
        Memory: ecef0000, Length: 10000 
        Interrupt Level: 9, Vector: a8 
    MediaType      : 802.3 
    DeviceObject   : 84bcc030, PhysDO : 848fd6b0  Next DO: 848fc7b0 
    MapRegisters   : 00000000 
    FirstPendingPkt: 00000000 
    DriverVerifyFlags  : 00000000 
    Miniport Interrupt : 85f72000 
    Miniport version 6.0 
    Miniport Filter List: 
    Miniport Open Block Queue: 
      8669bad0: Protocol 86699530 = NDISUIO, ProtocolBindingContext 8669be88, v6.0 
      86690008: Protocol 86691008 = VMNETBRIDGE, ProtocolBindingContext 866919b8, v5.0 
      84f81c50: Protocol 849fb918 = TCPIP6, ProtocolBindingContext 84f7b930, v6.1 
      84f7b230: Protocol 849f43c8 = TCPIP, ProtocolBindingContext 84f7b5e8, v6.1

The Flags field for the miniport that was examined indicates that the miniport supports 
64-bit direct memory access operation (64BIT_DMA), that the media is currently not active 
(NOT_MEDIA_CONNECTED), and that it can dynamically detect whether the media is connected 
or disconnected (SUPPORTS_MEDIA_SENSE) . Also listed are the adapter’s system-to-device 
power-state mappings and the bus resources that the Plug and Play manager assigned to the 
adapter . (See the section “The Power Manager” in Chapter 8 in Part 2 for more information on 
power-state mappings .)
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Variations on the NDIS Miniport
The NDIS model also supports hybrid network transport NDIS drivers, called NDIS intermediate 
 drivers . These drivers lie between transport drivers and NDIS miniport drivers . To an NDIS mini-
port driver, an NDIS intermediate driver looks like a transport driver; to a transport driver, an NDIS 
intermediate driver looks like an NDIS miniport driver . NDIS intermediate drivers can see all net-
work traffic taking place on a system because the drivers lie between protocol drivers and network 
 drivers . Software that provides fault-tolerant and load-balancing options for network adapters, such 
as  Microsoft’s Network Load Balancing Provider, are based on NDIS intermediate drivers . Finally, the 
NDIS model also implements lightweight filter drivers (LWF), which are similar to intermediate drivers 
but specifically designed for filtering network traffic. LWFs support dynamic insertion and removal 
while the protocol stack is running. Filter drivers have the ability to filter all communications to and 
from the underlying miniport adapter. They also have the ability to select specify types of filtering 
(packet data or control messages) and to be bypassed for those that they are not interested in . 

Connection-Oriented NDIS
Support for connection-oriented network hardware (for example, PPP) is native in Windows, which 
makes connection management and establishment standard in the Windows network  architecture . 
Connection-oriented NDIS drivers use many of the same APIs that standard NDIS drivers use; 
 however, connection-oriented NDIS drivers send packets through established network connections 
rather than placing them on the network medium .

In addition to miniport support for connection-oriented media, NDIS includes definitions for 
 drivers that work to support a connection-oriented miniport driver:

 ■ Call managers are NDIS drivers that provide call setup and teardown services for connection-
oriented clients (described shortly) . A call manager uses a connection-oriented miniport to 
exchange signaling messages with network switches or another connection-oriented net-
work medium . A call manager supports one or more signaling protocols . A call manager is 
 implemented as a network protocol driver .

 ■ An integrated miniport call manager (MCM) is a connection-oriented miniport driver that also 
provides call manager services to connection-oriented clients . An MCM is essentially an NDIS 
miniport driver with a built-in call manager .

 ■ A connection-oriented client uses the call setup and teardown services of a call manager 
or MCM and the send and receive services of a connection-oriented NDIS miniport driver . 
A  connection-oriented client can provide its own protocol services to higher levels in the 
network stack, or it can implement an emulation layer that interfaces connectionless legacy 
protocols and connection-oriented media . 
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Figure 7-39 shows the relationships between these components .
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FIGURE 7-39 Connection-oriented NDIS drivers

EXPERIMENT: Using Network Monitor to Capture Network Packets
Microsoft provides a tool named Network Monitor that lets you capture packets that flow 
through one or more NDIS miniport drivers on your system by installing an NDIS lightweight 
filter driver (Netmon). You can obtain the latest version of Network Monitor by going to  
http://www.microsoft.com/download/en/details.aspx?id=4865 . Don’t forget to download the 
NetMon protocol parsers from http://nmparsers.codeplex.com/; otherwise, you won’t be able 
to decode the Microsoft protocols. When you first start Network Monitor, you’ll see a window 
similar to the one shown in Figure 7-40 .
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FIGURE 7-40 Network monitor

In the Select Networks pane, Network Monitor lets you select which network connection 
you want to monitor . After selecting one or more, start the capture environment by clicking 
the New Capture button on the toolbar . You can now initiate monitoring by clicking the Start 
button on the toolbar . Perform operations that generate network activity on the connection 
you’re monitoring (such as browsing to a website), and after you see that Network Monitor has 
captured packets, stop monitoring by clicking the Stop button . In the Frame Summary pane, 
you will see all the raw network traffic during the capture period. The Network Conversations 
pane displays network traffic isolated by process, whenever possible. By clicking on the  
Iexplore .exe process in this example, Network Monitor shows only the relevant frames in the 
Frame Summary view, as shown in Figure 7-41 .
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FIGURE 7-41 Capturing packets with Network Monitor

The window shows the HTTP packets that Network Monitor captured as the Microsoft 
 website was accessed through Internet Explorer . If you click on a frame, Network  Monitor 
 displays a view of the packet that breaks it apart to show various layered application and 
 protocol headers in the Frame Details pane, as shown in the previous screen shot .

Network Monitor also includes a number of other features, such as capture triggers and 
 filters, that make it a powerful tool for troubleshooting network problems. You can also add 
parsers for other protocols, as well as view and modify their source code . Network Monitor 
parsers are hosted on CodePlex (http://nmparsers.codeplex.com), the Microsoft open source 
project site .

Remote NDIS
Prior to the development of Remote NDIS, a vendor that developed a USB network device had to 
 provide a driver that interfaced with NDIS as a miniport driver as well as interfacing with a USB WDM 
bus driver, as shown in Figure 7-42 . 
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FIGURE 7-42 NDIS miniport driver for a USB network device

Remote NDIS is a specification for network devices on USB. The specification eliminates the need 
for a hardware vendor to write an NDIS miniport driver by defining messages and the mechanism by 
which the messages are transmitted over USB . Remote NDIS messages mirror the NDIS interface and 
include messages for initializing and resetting a device, transmitting and receiving packets, setting 
and querying device parameters, and indicating media link status .

The Remote NDIS architecture, in Figure 7-43, relies on a Microsoft-supplied NDIS miniport driver, 
%SystemRoot%\System32\Drivers\Rndismp.sys, that translates NDIS commands and forwards them to 
a USB device . The architecture allows for a single NDIS miniport driver to be used for all Remote NDIS 
devices on USB .
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FIGURE 7-43 Remote NDIS architecture for USB network devices

Currently, USB is the only bus supported by RNDIS on Windows .
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QoS
If no special measures are taken, IP network traffic is delivered on a first-come, first-served basis. 
Applications have no control over the priority of their messages, and they can experience bursty 
network behavior, where they occasionally obtain high throughput and low latencies but otherwise 
receive poor network performance . While this level of service is acceptable in most situations (such as 
transferring files or browsing the Web), an increasing number of network applications demand more 
consistent service levels, or Quality of Service (QoS) guarantees . Video conferencing, media streaming, 
and enterprise resource planning (ERP) are examples of applications that require consistent network 
performance . QoS allows an application to specify minimum bandwidth and maximum latencies, 
which can be satisfied only if every networking software and hardware component between a sender 
and a receiver supports QoS standards such as IEEE 802.1P, an industry standard that specifies the 
format of QoS packets and how OSI layer 2 devices (switches and network adapters) respond to them .

Windows supports QoS through a policy-based QoS implementation that takes full advantage of 
the Next Generation TCP/IP network stack, WFP, and NDIS lightweight filter drivers. The implemen-
tation allows for managing or prioritizing bandwidth use based on different conditions, such as the 
application, the source or destination IP address, the protocol being used, and the source or destina-
tion ports . Network administrators typically apply QoS settings to a logon session or a computer with 
Active Directory–based Group Policy, but they can be applied locally as well .

Policy-based QoS provides two methods through which bandwidth can be managed. The first 
uses a special field in the IP header called the Differentiated Services Code Point (DSCP) . Routers that 
support DSCP read the value and separate packets into specific priority queues. The QoS architecture 
in Windows can mark outgoing packets with the appropriate DSCP field so that network devices can 
provide differentiated levels of service . The other bandwidth management method is the ability to 
simply throttle outgoing traffic based on the conditions outlined earlier, where the QoS components 
limit bandwidth to a specified rate.

The Windows QoS implementation consists of several components, as shown in Figure 7-44 . First, 
the QoS Client Side Extension (%SystemRoot%\System32\Gptext.dll) notifies the Group Policy client 
and the QoS Inspection Module that QoS settings have changed . Next, the QoS Inspection Module 
(Enterprise Quality of Service, eQoS), which is a WFP packet-inspection component implemented 
in the TCP/IP driver that reacts to policy changes, retrieves the updated policy and works with the 
 transport layer and QoS Packet Scheduler to mark traffic that matches the policy. Finally, the QoS 
Packet Scheduler, or Pacer (%SystemRoot%\System32\Drivers\Pacer.sys), provides the NDIS light-
weight filter functionality, such as throttling and setting the DSCP value, to control packet scheduling 
based on the QoS policies. Pacer also provides the GQoS (Generic QoS) and TC (Traffic Control) API 
support for legacy Windows applications that used these mechanisms . 

In addition to the systemwide, policy-based QoS support provided by the QoS architecture, 
Windows enables specific classes of socket-based applications to have individual and specific control 
of QoS behavior through an API called the Quality Windows Audio/Video Experience, or qWAVE . 
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Network-based multimedia applications, such as Voice over IP (VoIP), can use the qWAVE API to 
query information on real-time network bandwidth and adapt to changing network conditions, as 
well as to prioritize packets to efficiently use the available bandwidth. qWAVE also takes advantage 
of the topology protocols described earlier to dynamically determine if the current network devices 
will  support the required bandwidth for a video stream, for example . It can notify applications of 
 diminishing bandwidth, at which point the multimedia application is expected to reduce the stream 
quality, for example .
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FIGURE 7-44 Policy-based QoS architecture

qWAVE is implemented in the QoS2 (%SystemRoot%\System32\Qwave.dll) API library and provides 
four main components:

 ■ Admission control, which determines, when a new network multimedia stream is started, if the 
current network can support the sustained bandwidth requested .

 ■ Caching, which allows the detailed admission control checks to be bypassed if similar usage 
patterns occurred in the past and the calculation result was already cached .

 ■ Monitoring and probing, which keep track of available bandwidth and notify applications 
 during low-bandwidth or high-latency situations .

 ■ Traffic tagging and shaping, which uses the 802 .11p and DSCP technologies mentioned earlier 
to tag packets with the appropriate priority to ensure timely delivery .
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Figure 7-45 shows the general overview of the qWAVE architecture:
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FIGURE 7-45 qWAVE architecture

Binding

The final piece in the Windows networking architecture puzzle is the way in which the components 
at the various layers—networking API layer, transport driver layer, NDIS driver layer—locate one 
another . The name of the process that connects the layers is binding . You’ve witnessed binding taking 
place if you’ve changed your network configuration by adding or removing a component using the 
Network Connections folder .

When you install a networking component, you must supply an INF file for the component. 
(INF files are described in Chapter 8 in Part 2.) This file includes directions that setup API routines 
must  follow to install and configure the component, including binding dependencies or binding 
 relationships . A developer can specify binding dependencies for a proprietary component so that 
the Service Control Manager (the Service Control Manager is described in Chapter 4, “Management 
 Mechanisms”) will not only load the component in the correct order but will load the component 
only if other dependent components are present on the system . Binding relationships, which the bind 
engine determines with the aid of additional information in a component’s INF file, establish con-
nections between components at the various layers . The connections specify which components a 
network component on one layer can use on the layer beneath it .

For example, the Workstation service (redirector) automatically binds to the TCP/IP protocol . The 
order of the binding, which you can examine on the Adapters And Bindings tab in the Advanced 
Settings dialog box (shown in Figure 7-46), determines the priority of the binding . (See the section 
“Multiple Redirector Support” earlier in this chapter for instructions on how to launch the Advanced 
Settings dialog box.) When the redirector receives a request to access a remote file, it submits the 
request to both protocol drivers simultaneously . When the response comes, the redirector waits until 
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it has also received responses from any higher-priority protocol drivers . Only then will the redirector 
return the result to the caller . Thus, it can be advantageous to reorder bindings so that bindings of 
high priority are also the most performance efficient or applicable to most of the computers in your 
network . You can also manually remove bindings with the Advanced Settings dialog box .

FIGURE 7-46 Editing bindings with the Advanced Settings dialog box

The Bind value, in the Linkage subkey of a network component’s registry configuration key, 
stores binding information for that component. For example, if you examine HKLM\SYSTEM 
\CurrentControlSet\Services\LanmanWorkstation\Linkage\Bind, you’ll see the binding information 
for the Workstation service .

Layered Network Services

Windows includes network services that build on the APIs and components we’ve presented in this 
chapter . Describing the capabilities and detailed internal implementation of all these services is 
 outside the scope of this book, but this section provides a brief overview of remote access, Active 
 Directory, Network Load Balancing, and Distributed File System (DFS), including DFS Replication 
(DFSR) .

Remote Access
Remote access, which is available with Windows Server with the Routing and Remote Access service, 
allows remote access clients to connect to remote access servers and access network resources such 
as files, printers, and network services as if the client were physically connected to the remote access 
server’s network . Windows provides two types of remote access:

 ■ Dial-up remote access is used by clients that connect to a remote access server via a telephone 
or other telecommunications infrastructure . The telecommunications medium is used to create 
a temporary physical or virtual connection between the client and the server .



686 Windows Internals, Sixth Edition, Part 1

 ■ Virtual private network (VPN) remote access lets a VPN client establish a virtual point-to-point 
connection to the server over an IP network such as the Internet . Windows also supports 
the Secure Socket Transmission Protocol (SSTP), which is a newer tunneling protocol for VPN 
connections that has the ability to pass through most firewalls and routers that block PPTP 
or L2TP/IPsec traffic. It does so by packaging PPP data over the SSL channel of the HTTPS 
protocol . Because the latter operates on port 443 and is usually part of typical Web browsing 
behavior, it is much more likely to be available than traditional VPN tunneling protocols .

Remote access differs from remote control solutions because remote access acts as a proxy 
 connection to a Windows network, whereas remote control software executes applications on a 
server, presenting a user interface to the client .

Active Directory
Active Directory is the Windows implementation of Lightweight Directory Access Protocol (LDAP) 
directory services (RFC 4510) . Fundamentally, Active Directory is a database that stores objects rep-
resenting resources defined by applications in a Windows network. For example, the structure and 
membership of a Windows domain, including user accounts and password information, are stored in 
Active Directory .

Object classes and the attributes that define properties of objects are specified by a schema . 
The objects in the Active Directory are hierarchically arranged, much like the registry’s logical 
 organization, where container objects can store other objects, including other container objects . 
(See  Chapter 6 for more information on container objects .)

Active Directory supports a number of APIs that clients can use to access objects within an Active 
Directory database:

 ■ The LDAP C API is a C language API that uses the LDAP networking protocol . Applications 
written in C or C++ can use this API directly, and applications written in other languages can 
access the APIs through translation layers .

 ■ Active Directory Service Interfaces (ADSI) is a COM interface to Active Directory implemented 
on top of LDAP that abstracts the details of LDAP programming . ADSI supports multiple lan-
guages, including Microsoft Visual Basic, C, and Microsoft Visual C++ . ADSI can also be used 
by Microsoft Windows Script Host (WSH) applications .

 ■ Messaging API (MAPI) is supported for compatibility with Microsoft Exchange client and 
 Outlook Address Book client applications .

 ■ Security Account Manager (SAM) APIs are built on top of Active Directory to provide an 
 interface to logon authentication packages such as MSV1_0 (%SystemRoot%\System32 
\Msv1_0.dll, which is used for legacy NT LAN Manager authentication) and Kerberos  
(%SystemRoot%\System32\Kdcsvc.dll).

 ■ Windows NT 4 networking APIs (Net APIs) are used by Windows NT 4 clients to gain access to 
Active Directory through SAM .
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 ■ NTDS API is used to look up SIDs and GUIDs in an Active Directory implementation (via 
DsCrackNames mostly) as well as for its main purposes, Active Directory management and 
replication . Several third parties have written applications that monitor Active Directory from 
these APIs .

Active Directory is implemented as a database file that, by default, is named %SystemRoot%\Ntds 
\Ntds.dit and replicated across the domain controllers in a domain. The Active Directory directory 
service, which is a Windows service that executes in the Local Security Authority Subsystem (LSASS) 
process, manages the database, using DLLs that implement the on-disk structure of the database as 
well as provide transaction-based updates to protect the integrity of the database . The Active Direc-
tory database store is based on a version of the Extensible Storage Engine (ESE), also known as the JET 
Blue, database used by Microsoft Exchange Server 2007, Desktop Search, and Windows Mail . The ESE 
library (%SystemRoot%\System32\Esent.dll) provides routines for accessing the database, which are 
open for other applications to use as well . Figure 7-47 shows the Active Directory architecture .
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Network Load Balancing
As stated earlier in the chapter, Network Load Balancing, which is included with server versions of 
Windows, is based on NDIS lightweight filter technology. Network Load Balancing allows for the 
 creation of a cluster containing up to 32 computers, which are called cluster hosts in Network Load 
Balancing . The cluster can maintain multiple dedicated IP addresses and a single virtual IP address 
that is published for access by clients . Client requests go to all the computers in the cluster, but 
only one cluster host responds to the request . The Network Load Balancing NDIS drivers effectively 
 partition the client space among available cluster hosts in a distributed manner . This way, each host 
handles its portion of incoming client requests, and every client request always gets handled by 
one and only one host . The cluster host that determines it should handle a client request allows 
the request to propagate up to the TCP/IP protocol driver and eventually a server application; the 
other cluster hosts don’t . If a cluster host fails, the rest of the cluster realizes that the cluster host is 
no  longer a candidate for processing requests and redistributes the incoming client requests to the 
remaining cluster hosts . No new client requests are sent to the failed cluster host . Another cluster 
host can be added to the cluster as a replacement, and it will then seamlessly start handling client 
requests .

Network Load Balancing isn’t a general-purpose clustering solution because the server application 
that clients communicate with must have certain characteristics: the first is that it must be based on 
protocols supported by the Windows TCP/IP stack, and the second is that it must be able to handle 
client requests on any system in a Network Load Balancing cluster . This second requirement typically 
means that an application that must have access to shared state in order to service client requests 
must manage the shared state itself—Network Load Balancing doesn’t include services for automati-
cally distributing shared state across cluster hosts . Applications that are ideally suited for Network 
Load Balancing include a web server that serves static content, Windows Media Server, and Terminal 
Services . Figure 7-48 shows an example of a Network Load Balancing operation .
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FIGURE 7-48 Network Load Balancing operation

Network Access Protection
One of the most difficult challenges that network administrators face is ensuring that systems 
that connect to their private networks are up to date and meet the organization’s health policy 
 requirements . A health policy contains the specific requirements that a system must meet, such as 
the minimum required system hotfixes, or a minimum antivirus signature version. Enforcing these 
 requirements is even more difficult when the systems, such as home computers or laptops, are not 
under the network administrator’s control . Attackers often create malware that targets out-of-date 
software, so users who do not keep their systems up to date with the most recent operating system 
updates or antivirus signatures risk exposing the organization’s private network assets to attacks and 
viruses .

Network Access Protection (NAP) provides a mechanism that helps network administrators enforce 
compliance with health requirement policies for all systems that require network access . Systems that 
do not meet the required health policies are isolated from the network and are placed in quarantine . 
While in quarantine, the noncompliant system’s network connectivity is severely limited, and it can 
only see the remediation servers from which it can receive the necessary updates to bring it back 
into compliance . This ensures that only systems that comply with the health policy requirements are 
 allowed to access the organization’s network . NAP is not designed to protect a network from mali-
cious users; it is designed to help administrators maintain the health of the systems on the network, 
which in turn helps maintain the network’s overall integrity . NAP is a multivendor system, with clients 
running on other operating systems, such as Mac OS X and Linux, and several third-party System 
Health Agents, System Health Validators, and Enforcement Clients .
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An exhaustive description of NAP is beyond the scope of this book; however, Figures 7-49 and 
7-50 illustrate the various components that implement NAP on client and server systems . A detailed 
description of NAP can be found at http://technet.microsoft.com/en-us/network/bb545879.aspx .
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FIGURE 7-49 NAP client-side architecture

In brief, the components of NAP on the client include the following:

 ■ System Health Agent (SHA) Monitors one or more aspects of a client’s health, and 
 provides one or more Statements of Health (SoH) to the local system’s NAP Agent . For 
 example, an antivirus SHA might examine the version numbers of the antivirus engine and 
virus signature file, and place that information in its SoH. A SHA can be matched to a remedia-
tion server so that a noncompliant system will know how to become compliant . For example, 
a SHA for checking antivirus signatures could be matched to a server that contains the latest 
antivirus signature file and the antivirus application package. Some SHAs do not need to be 
matched with a remediation server . For example, a SHA might just report local system settings 
that a System Health Validator (SHV) running on the NAP server SHV can use to determine 
whether the system’s firewall is enabled. Windows XP Service Pack 3 and later provide a SHA 
(%SystemRoot%\System32\Mssha.dll) that monitors the settings of the Windows Action 
Center (SHA-WAC) . This SHA is typically referred to as the Windows SHA, or WSH . To write 
a SHA, look at the INapSystemHealthAgentBinding2, INapSystemHealthAgentCallback, and 
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 INapSystemHealthAgentRequest APIs . The SHA is dependent upon the System Health Validator 
(SHV), and it is expected that the author of a SHA also provide a SHV .

Note SHA vendors should understand that the evaluation process can  happen 
before the system has an IP address (for example, using 802 .1x), so the SHA 
cannot look for data outside the client system . In addition, the IP address can 
change at any point in time (for example, if NAP causes the client to move to the 
quarantine VLAN), so the SHA should not cache sockets or make any assumptions 
about its IP address .

 ■ NAP Agent %SystemRoot%\System32\qagentRT.dll (quarantine agent service runtime) . 
Runs on each client computer, collects the SoH from each SHA, and relays that information to 
the NAP Server . The NAP Agent communicates with the NAP Server running on the Network 
Policy Server using the Microsoft Statement of Health protocol [MS-SoH] .

 ■ Enforcement Client (EC) Responsible for communicating with an Enforcement Point when 
trying to connect to a network, and for enforcing machine compliance with NAP policies . An 
Enforcement Point is a server or network access device that can be used with NAP to require 
the evaluation of a NAP client’s health state and provide restricted network access or com-
munication . If the machine’s health is not compliant, the NAP EC indicates the restricted status 
to the NAP Agent. Windows provides ECs for IPsec (%SystemRoot%\System32\NapIPsec.dll), 
802.1X and VPN EAP-authenticated connections (%SystemRoot%\System32\Eapqec.dll), DHCP 
(%SystemRoot%\System32\Dhcpqec.dll), and a Remote Desktop gateway (%SystemRoot% 
\System32\Tsgqec.dll). To write an EC, look at the INapEnforcementClientBinding,  
INapEnforcementClientCallback, and INapEnforcementClientConnection2 APIs . 

Note The name “enforcement client” can be somewhat confusing . The name 
refers to its role as a client of a network enforcement point, so it is more about 
how a client system accesses a network (although access control is generally part 
of its function) .

The following diagram shows the NAP components on a server . On the server side, the entire 
mechanism is an add-on to the Network Policy Server (NPS) Server (part of the IAS service) . 
In general, the health requests arrive at the NPS as an addition to RADIUS requests sent to 
the NPS by the enforcement point . The servers, the NPS then passes the Statement of Health 
(SoH) to the health validation layer, which passes the SoH to the appropriate SHV .

From the NPS perspective, the requests are coming from RADIUS clients (for example, 802 .1x 
network switch, VPN server, DHCP server, and so on) in RADIUS UDP packets . Or it allows 
 private ALPC calls . (Instead of going through UDP, the ALPC is used by the other Windows 
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Server roles—for example, DHCP server—to simplify the programming model .) The RADIUS 
specification (RFC 2865) provides for a maximum packet size of 4096, which has a significant 
impact on the amount of data that a SHA can send .

The client IPsec EC talks to a Health Registration Authority (HRA) server over HTTP . The HRA 
is an IIS ISAPI filter, which passes the SoH to the NPS (using the ALPC interface) and is respon-
sible for issuing the certificates (when the machine is identified as qualified for a certificate). 
The HRA server list can be configured using DNS, by adding HRA server records and configur-
ing the client to get the list from DNS . Third parties can implement a RADIUS client to talk to 
the NPS over UDP .
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 ■ System Health Validator (SHV) Evaluates a SoH received from the corresponding SHA on a 
client and determines whether the client is in compliance with the organization’s health policy 
by checking with a Health Requirements Server (HRS) . For example, an antivirus HRS might 
specify the minimum antivirus engine version and virus signature file version. 
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Note The presence of a Health Requirements Server is an implementation detail; 
an SHV can perform all the necessary work on its own . 

The SHV uses this information to determine whether the SoH provided by the client SHA 
is in compliance with the health policy provided by the HRS . To write a SHV, look at the 
 INapSystemHealthValidator and INapSystemHealthValidationRequest2 APIs . The SHV is 
 dependent upon the System Health Agent (SHA), and it is expected that the author of a SHA 
also provide a SHV .

Not pictured in the diagram are one or more Remediation Servers, which allow a client to be 
brought into compliance (for example, a Windows Update server) . The SHV is not connected to the 
Remediation Servers, but it is aware of their existence (configured administratively). It passes informa-
tion about the servers to the client when the SoH indicates that the client is not compliant with the 
current policy requirements .

NAP client configuration is typically done in the Group Policy editor with the Enforcement Client 
snap-in, but it can also be performed using the NAP client configuration MMC snap-in  
(%SystemRoot%\System32\Napclcfg.msc) or the network shell (%SystemRoot%\System32\Netsh.exe), 
as shown in Figures 7-51, 7-52, and 7-53 . 

Note Group Policy always takes precedence over other configurations, followed by the 
 local configuration, and then by DNS auto-discovery.

FIGURE 7-51 NAP Client configuration
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FIGURE 7-52 NAP Client configuration

FIGURE 7-53 Configuring NAP using the network shell
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Direct Access
In Windows 7 Ultimate and Enterprise editions, Microsoft added an always-on Virtual Private Network 
(VPN) capability known as DirectAccess (DA), which allows a remote client on the Internet access to a 
corporate domain-based network . A DA connection to a corporate network is created when the client 
system boots, and it lasts for as long as the client is running and connected to the Internet . If network 
problems cause the connection to be dropped, the connection will be automatically re-established 
when network connections permit . DA uses IPsec running over IPv6, which can be encapsulated in 
IPv4 using a variety of mechanisms (described later) if the local system does not have end-to-end 
IPv6 connectivity to the private network . Remote systems can even use DA when they are behind a 
firewall, because DA can use HTTPS (TCP port 443) as a transport (IP-HTTPS).

Unlike traditional VPN products, remote systems using DA to access a corporate network are 
 always visible and manageable—just as if the machine was directly plugged into the corporate 
 network . The corporate IT department can manage remote systems by updating Group Policy 
 settings or push software updates at any time the remote systems are attached to the Internet . The IT 
department can also specify which corporate network resources (applications, servers, subnets, and so 
on) can be accessed by a user or remote system that is connected using DA . 

For enhanced security, Authentication Mechanism Assurance (described in Chapter 6) can be 
required on DA clients . This requires two-factor authentication (for example, a smart card or other 
hardware token) to log on or unlock a system . 

As shown in Figure 7-54, there are many mechanisms available for connecting a DA client to a 
 corporate network: IPv6, Intra-Site Automatic Tunnel Addressing Protocol (ISATAP), IPv4 encrypted 
with IPsec, 6to4 tunnel, or Teredo . In all cases, a connection is made between the remote client and a 
DA server . This server provides Denial of Service (DoS) protection by rate-limiting connection nego-
tiation traffic used to connect to it, and it acts as an IPv6 tunnel gateway between the remote client 
and the corporate network . The DA server also functions as an IPv6-based IPsec security gateway, 
similar to a VPN server or VPN client access concentrator, to control access to the corporate network

A client typically has two IPv6 tunnels to the DA server: an infrastructure tunnel and an intranet 
tunnel . The infrastructure tunnel is for communicating with corporate infrastructure servers, such as 
a Domain Name System (DNS) server, and domain controllers . The infrastructure tunnel is created 
 automatically when the client boots, and it does not require the user to be logged in . The intranet 
tunnel is established when a user logs in, and it carries network traffic for the user.

DA also works with NAP . In this case, a Health Registration Authority (HRA) server is placed outside 
the corporate firewall (often referred to as the DMZ, or DeMilitarized Zone). The client is configured 
with the name of the HRA (which can be resolved to an IP address using a public DNS server) . When 
the client boots, it contacts the HRA and sends its Statement of Health . If the client is not healthy, it 
must access remediation servers, which are also in the DMZ . Once the client is healthy, it obtains a 
health certificate that can then be used with IPsec to connect to the DA server.
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Conclusion

The Windows network architecture provides a flexible infrastructure for networking APIs, network 
protocol drivers, and network adapter drivers . The Windows networking architecture takes advan-
tage of I/O layering to give networking support the extensibility to evolve as computer networking 
evolves . Similarly, new APIs can interface to existing Windows protocol drivers . Finally, the range 
of networking APIs implemented on Windows affords network application developers a range of 
 possible implementations, each with different programming models and protocol support .
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64-bit programming interfaces, 2
64-bit Windows

address space, 16
device driver verification, 17
object headers, 150
stride value, 467
system calls, 135
Win32 emulation, 224. See Wow64

!dp command, 366
!dt command, 396
!handle command, 364
!numa command, 460
!pcr command, 453
!peb command, 365
!process command, 363–364, 394, 454
!ready command, 408
!reg dumppool command, 298–299
!reg findkcb command, 301
/SUBSYSTEM qualifier, 48
%SystemRoot%\System32 directory, 352
%SystemRoot%\System32\Wbem directory, 

352
!teb command, 395
!thread command, 394, 395, 397

A
AAM (Admin Approval Mode), 574–576
aborts, 80
absolute timers, 115

abstract classes, 345
AcceptEx function, 599
access

caching, 643
determining, 528–536
network, 689–690

AccessCheck, 25, 531
object integrity levels, viewing, 504–505
object security checks, 164

AccessCheckByType function, 531
access checks, 495–497

access token-based, 532–533
discretionary, 528, 530–531
user-mode equivalents, 536

access control, 523–536
claims based, 537
discretionary, 488
forms of, 23
identity-based, 537

access control entries (ACEs). See ACEs 
(access control entries)

access control lists (ACLs). See ACLs (access 
control lists)

access-denied errors, 292
access logging, 494–495
access mask, specifying, 165
access rights

administrative vs . user, 566
group claims, 563
to objects, 163
process requests, 368
protected processes and, 368
revocation, 533

access tokens, 5, 14, 506–513, 547
access checks based on, 532–533
AppIDs in, 582
creation, 560
generation, 77
privileges, adding, 559
user, 559

access validation
ACE ordering, 533–534
algorithms, 530–533

account profiles, loading, 325
account rights, 540

defined, 538
ACEs (access control entries), 523

audit types, 549

conditional, 537–538, 582, 584
flags, 524
inheritance, 527–528
order of, 528, 533–536
processing, 532
propagation, 528
in SACLs, 524
viewing, 535–536

ACLs (access control lists)
accumulation of access rights, 524
ACE order in, 528
assigning, 527–528
displaying, 163–164
services, permissions for, 316
types, 523
virtual service accounts in, 518, 520–521

act as part of operating system privilege, 
546

Action Center, viewing crashes in, 130
activation contexts, 237
active desktop, 557–558
Active Directory, 286, 490, 686–687

ACEs used in, 523
APIs to access objects, 686–687
architecture, 687
directory service, 687
schema, 686
server name publishing integration, 608

Active Directory Service Interfaces (ADSI), 
686

Active Directory Users and Groups MMC 
snap-in, 539

active logon sessions, listing, 560–562
active probes, 661
ActiveX controls, 344
addresses. See also IP addresses

well-known, 600
address mapping, 15
address ordering, 189
address sharing, restricting, 604
address space

initial process, 378–379
layout, 16
for Wow64 processes, 224–225

Address Windowing Extension (AWE), 16
AdjustBoost dispatch events, 431
AdjustBoost priority boosts, 443
AdjustUnwait dispatch events, 430–431
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AdjustUnwait priority boosts, 442–443
Admin Approval Mode (AAM), 574–576
administrative rights, 566

operations requiring, 573
requesting, 576–578
running with, 574–576

Administrator account name, 499
administrators

Bypass Traverse Checking privilege, 545
privileges assignment, 539

admission control, 683
ADSI (Active Directory Service Interfaces), 

686
Advanced Local Procedure Call (ALPC). 

See ALPC (Advanced Local Procedure 
Call)

Advanced Security Settings dialog box
Effective Permissions tab, 535–536
Permissions tab, 535

Advanced Settings dialog box Adapters 
And Bindings tab, 684–685

Advapi32 .dll, 37
process-creation routines, 369
virtual DLL files, 246

AFD (Ancillary Function Driver), 602
affinity masks, 40, 458. See also 

processor affinity
extended, 465–466
process, 464–465
restricting to specific node, 460
thread, 463–465

affinity policy, interrupts, 102–104
alertable wait state, 112
ALPC (Advanced Local Procedure Call), 

56, 209–219
asynchronous operation, 213–214
attributes, 215
blobs, 215–216
completion list, 213–214
connection model, 210–211
debugging, 218–219
handles, 215–216
handle table, 216
message model, 211–213
message queues, 212
message zones, 217
performance, 217
port creation, 73
ports, 210, 212–213
regions, 214–215
resources, 215–216
sections, 214–215
security, 214, 216–217
tracing, 218–219
uses, 209
views, 214–215

altitudes of registry callbacks, 303
AMD-V Rapid Virtualization Indexing 

(RVI), 259
Ancillary Function Driver (AFD), 602

ANSI character text strings, converting to 
Unicode, 24

antivirus products, use of callback 
mechanism, 303

APC boosts, 432
APC delivery

disabling, 196–197, 198
in Wow64, 225

APC interrupt level, 91, 386, 413
APC objects, 110
APC queue, 110
APCs (asynchronous procedure calls), 

110–112, 607
CPU quota enforcement, 474
disabling, 110
insertion and delivery behavior, 111
pending, 448, 469
per-process CPU Quota APC structure, 

472
per-thread, 472–473, 476
queuing to thread, 430
rate control, 383
signaling code implementation, 433
User APC reserve object, 162

APIC (Advanced Programmable Interrupt 
Controller), 84

architecture, 84
interrupt assignment, 90
viewing, 85–86
virtualizing, 257

API redirection
for application compatibility, 244–245
image loader support, 233

APIs
application-compatibility risks, 244
categorization, 245–247
separating from underlying protocols, 

663
API Sets, 245–247

image loader support, 233
AppID, 581–582

certificate verification, 588
application-compatibility flags, 578
application-compatibility shims, 568
application desktop, 556
application failures, troubleshooting, 

291–293
application layer in OSI reference model, 

594
application load failures, 243, 244
application manifests

execution level information, 577–578
version-specific GUIDs in, 244

applications
administrative rights, requesting, 

576–578
affinity updates, 480
AppIDs, 581–582
buffer overflows, 292
compatibility levels, 245
debugging startup, 233–234

dynamic configuration, 658
group-aware, 408
identification for security purposes, 

581–582
initialization, 232
I/O control functions, 227–228
nonadministrative, 566
notification of registry changes, 290
peer-to-peer support, 624–625
private objects, 497
problem diagnosis requests, 354
registry key creation, 301
registry settings, 279
registry settings, locating, 290–291
response times, 113
RPC, 606–607
single-instancing, 172–173
standard user rights, running with, 

566–573
startup, 278
subsystem DLL calls, 49
unprivileged user accounts, running 

in, 292
user data, saving, 566–567
USER function calls, 51
user-mode execution, 232
virtualization, 385
Winsock functions, access to, 602

application setup programs
service initialization, 305
service registration, 305

application start cursor, 385
AppLocker, 491, 583–588

auditing mode, 583
CBAC use, 537
conditional ACEs, 582, 584
PowerShell commands, 585–586
registry change notifications, 586
rules, 583
storage location of rules, 584–585

APs (authentication protocols), 563
arbiters, 97
argument table, 135
artificial wait state, 478
ASMP (asymmetric multiprocessing), 38
assembly language, 38
ASSERT checks, 45–46
association classes, 349–350
Assured Authentication, 562–563
asymmetric multiprocessing (ASMP), 38
asynchronous callbacks, for change 

notifications, 278
asynchronous events, interrupts, 80. See 

also interrupts
asynchronous execution, 204
asynchronous file transfer, 621
asynchronous messaging, 211–214

message zones, 217
asynchronous notifications, 213–214

AdjustUnwait priority boosts
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asynchronous procedure calls (APCs). 
See APCs (asynchronous procedure 
calls)

asynchronous RPC, 607
atomic lock operations, 197
attributes

ALPC, 215
cacheable, 639
CBAC, 537
process, 372–373

Audio Device Graph process (Audiodg .
exe), 368

auditing
advanced policy settings, 554
audit events, generating, 548
Audit Object Access policy, 549
local system policies, 548
mechanisms for, 548–554
policy configuration, 548

Audit Log, 524
Audit Object Access policy, 549
AuditPol command, 552
AuditQueryGlobalSacl API, 552
audit records

ACEs in, 549–550
flow of, 549
generation, 548
object-access, 549–550

AuditSetGlobalSacl API, 552
authentication

Assured Authentication, 562–563
biometric framework, 563–568
certificate-based, 563
credential providers, 77
Kerberos, 559–560
levels, 608
MSV1_0, 558–559
network communication, 608
password-based, 558–562
remote, 559
smartcard, 562
user, 555–556, 558–560

authentication packages, 491, 555
for user logon, 558–559

authentication protocols (APs), 563
authentication services, 608
AuthIP, 670, 671
authorization, 536–538
AUTHZ_CLIENT_CONTEXT, 536
AuthZ Windows API, 497, 536–538
Autochk .exe, 73
auto-elevation, 578–579
automated problem detection, 354. 

See also WDI (Windows Diagnostic 
Infrastructure)

auto-start services, 305, 321, 323, 327
dependencies, 327

availability, 637
AWE (Address Windowing Extension), 16

B
Background Intelligent Transfer Service 

(BITS), 621–624, 645
balancer, 262
balance set manager, 69–70, 439–441
balance-set-manager thread, 188
base filtering engine (BFE), 667
BaseNamedObjects directory, 147
Base Services, 2
basic sockets, 605
BCD (Boot Configuration Database), 278

registry hive, 283–284
remote editing, 284–285

BCDEdit, 284
BFE (base filtering engine), 667
binary dependencies

manifests, 237
resolving, 235

binary MOF (BMF) files, 348
binding, 684–685

bindings priority, 684–685
bins for registry cells, 296–298

allocation, 301
biometrics, 563–568
bitmasks, processor state, 462–463
BITS (Background Intelligent Transfer 

Service), 621–624
BITSAdmin tool, 622–623
BranchCache use, 645
capabilities, 621
Compact Server, 622
downloading files, 622
messages in event log, 624
PowerShell cmdlets, 622–623
uploading files, 622

blobs, 215–216
blocked threads, resuming execution, 475
blocking calls timeout parameter, 213
blocking IPC mechanisms, 213
blocks, registry hive, 296–298
boosts. See priority boosts
Boot Configuration Database (BCD). 

See BCD (Boot Configuration 
Database)

Boot.ini file, 283
boot loader, 278
boot menu, 324
boot process

auto-start and delayed auto-start 
services, 327

debugging mode, 369
failures, 328
information storage location, 286
last known good configuration, 328
performance diagnostics, 356
safe mode, 324
startup repair tool, 356
successful, 328

boot-start drivers, 321–322
boot-verification programs, 329

boundary descriptors, 171
BranchCache, 645–655

acceleration, 647
APIs, 650
application retrieval: HTTP sequence, 

653–655
application retrieval: SMB sequence, 

651–653
architecture, 645
availability, 647
caching modes, 646–651
configuration, 648–651
hash groveler service, 650
HTTP extension driver, 649
Implementation service, 649
Network Shell Helper, 650
operation, 645
protocols used by, 650–651
publication cache, 647–648
republication cache, 648

broadcasting, 614, 615
BSD (Berkeley Software Distribution) 

Sockets, 597
buffer overflows, 292
bus drivers, 64, 90
busy wait loops, 180
Bypass Traverse Checking privilege, 545
byte mode, 612–613

C
cacheable attributes, 639
cache-aware pushlocks, 200–201
cache manager, 55
caches

accessing, 639
BranchCache, 647
Offline Files, 639
republication, 648
structure, 643–644

caching
client-side, 639–644
content, 645–655
files, 639–644
network usage infomation, 683
security, 646

callable functions, 2–3
callbacks

allocation and deallocation, 216
asynchronous, 162, 278
to completion routine, 112
DPC, 117
executive objects, 214
NAT functionality, 669
pre and post, 176
registry, 303–304
Shim Engine, 244
user, 226
verifying, 176

call managers, 677
callout drivers, 667

 callout drivers
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callouts, 595
CBAC (Claims Based Access Control), 537
CBI (Component Based Servicing) stack, 

285–286
cell indexes, 297
cells, registry hive, 296

data types, 296–297
certificate-based authentication, 563
certificate chains, 585
certificate paths, reverification, 582
certificate verification, 588
change notifications, asynchronous 

callbacks for, 278
Change Notify privilege, 314
ChangeServiceConfig2 API, 314
ChangeWindowMessageEx API, 530
ChangeWindowMessageFilter API, 530
checked build, 45–46

ALPC message logging, 218
child partitions, 251–254. See 

also hypervisor (Hyper-V)
access to hardware, 251–252
access to memory, 258
emulated devices for, 255
enlightenments, 253–254
processors, adding, 257
viewing, 252–253
virtualization components, 252
virtual processors, 257

child processes
integrity level, 502
token inheritance, 507

chimney offloading, 674
CIM (Common Information Model), 

343–349
classes, 345

CIM_ManagedSystemElement class, 345
CIMV2 namespace, 350
Claims Based Access Control (CBAC), 537
classes

abstract, 345
associations, 349–350
CIM, 345
common-model, 345
definitions, 348
extended-model, 345–346
MOF definitions, viewing, 347
objects in, enumerating, 349
registrations in registry, 283
static, 347

client communication ports, 210
client IDs, 12
client operating systems. See 

also operating systems
vs . server versions, 41–43

client processes, impersonation limits, 515
clients

connectionless, 598
health monitoring, 690–691
of the transport, 596

Client/Server Run-Time Subsystem  
(Csrss .exe), 49. See also Csrss .exe 
(Client/Server Run-Time Subsystem)

client-side caching (CSC), 639–644
clock cycles

DFSS, triggering, 472
per quantum, 424–425
for quantum targets, 451–452
thread run time, 399, 423
threads, charging to, 472–474

clock interrupt handler, 107
clock interrupts, 83, 89–90, 112

minimizing, 122
clock intervals

change request tracing, 113–115
frequency, 423
length of, 423
modification, 112–113
for running threads, 422

clock interval timer, scheduling on, 451
Clockres program, 423
close method, 154
CLR (Common Language Runtime), 3

Windows DLLs, 3
CLR via C#, 3rd edition (Richter), 3
Clustered Shared Volumes (CSV), 267–268
cluster hosts, 688
clustering, 688
coalescing, timer, 122–123
code

atomic execution, 204
critical sections, 177, 179, 201, 203
dispatch, 95
integrity, 274–276
kernel-mode, 136, 274, 494
Self-Monitoring Analysis and Reporting 

Technology (SMART) code, 356
cold patches, 270
COM API, 344
COM class registrations, 283
commands, task-based, 341
Common Criteria for Information 

Technology Security Evaluation 
(CCITSE), 22, 489

Common Information Model (CIM), 
343–349

Common Language Runtime. See CLR 
(Common Language Runtime)

Common Language Runtime (CLR), 3
common-model classes, 345
communication ports, 210
COM objects, administrative rights 

requests, 579
Compaq, 37
compatibility, 34

dynamic runtime, 233
completion lists

ALPC, 213–214
ALPC support, 217

completion ports, 214

Component Based Servicing (CBS) stack, 
285–286

Component Services, 2
components, identifying, 286
compositing, 18
compound TCP (CTCP), 663
conditional ACEs, 537–538, 582, 584
conditional expressions, 537–538
condition variables (CondVars), 183, 

202–203
configuration data

reading, 278
storage location, 286

configuration manager, 54
cell mapping, 298–300
hive syncs, 302–303
key and value name storage, 304
key control block lookups, 304
memory management, 297
naming parsing, 300
object manager’s object support, 300
performance optimizations, 304
registry filtering, 303–304
registry management, 293–305
registry namespace implementation, 

154
registry virtualization, 572
subkey searches, 298

congestion. See also network traffic
avoidance algorithm, 663

ConnectEx API, 599
connection blobs, 216
connectionless networking protocols, 599
connection-oriented clients, 677
connection-oriented NDIS (CoNDIS), 674, 

677–678
connection-oriented network hardware, 

677–678
connection-oriented sockets, 605
connections. See network connections
connectivity status, 659–662
console applications, 52

services, 305
console window host (Conhost .exe), 51–52
consumers

of debug events, 230
trace data, 220
UBPM registration, 339–340

content
caching, 645–655
identification, 650
publishing, 647
republished, 648

contention count, 199
context attribute, 215
CONTEXT block, 12
context switches, 13, 424, 448

defined, 410
processor-specific implementations, 60
thread, 448

control handlers, 309

callouts
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controllers, 220
control objects, 57
control points, 626
control sets, last known good, 286
ConvertThreadToFiber function, 13
core parking, 118
Core Parking engine, 470
CoreProcessorSetvalue, 458
CoresPerPhysicalProcessor value, 458
core system files, 37
corporate networks, accessing, 695–696
corrected machine check interrupt level, 

91
C programming language, 35, 38
CPs (credential providers), 77, 491

alternative, 555–556
loading, 555
user identification tasks, 555

CPU. See also logical processors; 
processors

idle thread, 453–456
share weight, 472

CPU 0 congestion, 118
CPU quotas, 471–478

enforcement, 474
per-session blocks, 471–472
recovering, 476
updating and extending, 477

CPU rate limits, 478
CPU starvation

prevention, 434
thread priority boosts for, 439–441

CPU Stress tool, viewing priority boosts, 
435–437, 440–441

CPU throttling, 383, 448
clock cycles, charging to threads, 

472–474
quota enforcement, 474

CPU usage
displaying, 10, 26
limiting, 478
multimedia threads, 446
specifying, 416
system threads, mapping to, 70–71
threads, 399, 423

crash dump files, 28
crashed applications

error reporting, 130–132
user, informing, 130

create a token object privilege, 546
CreateEventEx API, 165
CreateFile function, 515
create global object privilege, 174
CreateMailslot function, 614
CreateMutexEx API, 165
CreateNamedPipe function, 612–613
CreatePrivateNamespace API, 171
CreateProcessAsUser function, 326, 576
CreateProcess function

flags and parameters, creating and 
validating, 371–373

flow of, 369–391
stage 1 decision tree, 375–376

CreateRestrictedToken function, 516
CreateSemaphoreEx API, 165
CreateService function, 305–306
CreateThread function, 398, 456–457
CreationFlags parameter, 371
Creator Group ID SID, 499
Creator Owner ID SID, 499
credential providers (CPs). See CPs 

(credential providers)
critical sections, 201

limitations, 201
mutually exclusive access, 178
spinlocks on, 179
SRW Locks, replacement by, 203

critical structure corruptions, 274
critical worker threads, 206
CSC (client-side caching), 639–644
CsrCreateProcess function, 384
CSR_PROCESS, 359–360, 365–366

allocation, 384
dumping, 366
pointer to, 396

Csrss .exe (Client/Server Run-Time 
Subsystem), 49

CSR_PROCESS maintenance, 365
CSR_THREAD maintenance, 396
parallel proces structures, 359–360
parallel thread structures, 392
process-creation routines, 369
process information, 365
SCM, killing, 332
shutdown routine, 331

CSR_THREAD, 392, 396
allocation, 384
dumping, 396
fields, 396

C-state intervals, 122
CSV (Clustered Shared Volumes), 267–268
CTCP (compound TCP), 663
Ctrl+Alt+Delete key combination, 557
CurrentControlSet key, 328–329
current directory, path, 236
current user. See also users

preferences and software configuration, 
281

D
DACLs (discretionary access control lists), 

165, 494, 523, 524
access checks, 531, 533
ACEs in, 523–524
assigning, 527–528
null, 524

DA (DirectAccess), 695–696
daisy-chain configurations, 101
dangling dependencies, 246
data execution prevention (DEP), 243

data formatting for transmission, 594
datagrams, 599
datagram sockets, 605
datalink layer in OSI reference model, 

592–593
Logical Link Control, 593
Medium Access Control, 593

data structures
abstraction layer, 362
CSR_PROCESS, 365–366
CSR_THREAD, 396
dispatcher database, 421–422
EPROCESS, 359–364
fields, displaying, 362–363
idle process and idle thread, 453
KPROCESS, 362–364
KTHREAD, 392–393
vs . objects, 22
PEB, 364–365
process, 359–371
PspCpuQuotaControl, 471
synchronization of access, 176–205
TEB, 394–395
thread, 360, 391–397
W32PROCESS, 367
W32THREAD, 396–397
of wait operations, 188–191

data transfer
BITS management, 621
congestion, 663
downloading, 622
high-loss scenarios, 664
prioritization, 621
reliable transfer, 593, 597
seamless, 621
transfer types, 621
uploading, 622

data transmission
bidirectional, 612–613
formatting for, 594
unreliable, unidirectional, 614–617

data view attribute, 215
DbgkCreateThread, 386
DbgUi APIs, 229, 230, 232
DCE (distributed computing 

environment), 605
DCOM (Distributed Component Object 

Model), 625
DdeImpersonateClient function, 514
deadline requirements, 100
deadlocks

avoiding, 213
detection, 201
limiting, 434

debug events, kernel-mode, 229
debugger. See also kernel debugger; 

user-mode debugger
breakpoints, 124, 126
debug event requests, 230
extension commands, 29
image loader, watching, 233–234

 debugger
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debugger (continued)
notifications, 46, 386
objects, viewing, 231
ports, 125
processes, breaking into, 230
system timers, listing, 119–121
timer resolution information, 114

debugger-based attacks, 369
Debugger.chm help file, 29
debugging

application startup, 233–234
crashing processes, 129
handles and object, 167
kernel, 26–31
kernel support, 229–230
loader snaps, 233–234
user-mode, 27, 229–232

debugging mode, booting in, 28
Debugging Tools for Windows, 27

help file, 31
Tlist .exe tool, 6
updates, 27

debug object, 229
debug programs privilege, 546
debug version of Windows, 45
default security, 496. See also security
Defense Advanced Research Projects 

Agency (DARPA), 663
deferred delete operations, 166
deferred procedure calls (DPCs). 

See DPCs (deferred procedure calls)
deferred ready threads, 383, 416

processing, 442
DelayedAutoStart parameter, 308
delayed auto-start services, 324

startup, 327
delayed worker threads, 205–206
delay load, 243
delete method, 154
delete operations, deferred, 166
DEP (data execution prevention), 243
dependencies

of auto-start services, 327
binding, 684
dangling, 246
defining and fulfilling, 242–243
of services, 324

Dependency Walker, 25
image type, viewing, 48
kernel and HAL images, viewing, 61–62

DependOnGroup parameter, 308, 324
DependOnService parameter, 308
Description parameter, 308
desktop

creating and opening, 556–557
locking or unlocking, 558
process association with, 372
protecting access to, 558
UAC prompts, 580

desktop object, 144
okay-to-close routine, 155

open method, 154
Desktops tool, 8
Developing Drivers with the Windows 

Driver Foundation (Orwick and 
Smith), 32

development environment, 3
device drivers, 36, 63–67. See also drivers

32-bit, 272
APC blocking, 111
auto-start, 323
biometric scanner, 564
characteristics, 306–308
development frameworks, 64–65
DPCs, 107
dynamically allocated queued spinlocks, 

182
fast mutexes, 196–197
installed, viewing, 65
integrity of code, 274–276
interrupt request restriction violations, 

95
I/O control functions, 227–228
kernel-mode APCs, 111–112
kernel-mode contexts, 63
loading, 322
minidrivers, 434
object access, 156
parameters, 309
priority boost specification, 433
registry settings, 279
spinlocks, 180
startup failures, 322
structured exception handling, 125
system calls access, 136
system threads, mapping to, 70–71
system worker thread use, 205
TDI clients, 594
types, 63
verification of, 17
WDM environment, 64
Windows internals, accessing with, 63

device interrupts, 81, 91
Device Manager, 286
Device Profile for Web Services (DPWS), 

626–627
devices

emulation, 251
symbolic link creation, 73

device-to-driver mappings, 286
DFS-N (Distributed File System 

Namespace), 637–638
DFS-R (Distributed File System 

Replication), 637, 638
DFSS (Distributed Fair Share Scheduler), 

471–477
clock cycles, charging to threads, 

472–474
idle-only queue thread management, 

475–477
initialization, 471
per-session CPU quota blocks, 471–472

quota enforcement, 474
scheduler, 476–477
session weight management, 477
turning off, 471

Dhcp service, 314–315
DiagLog session, 354
Diagnostic Policy Service (DPS), 354–355
diagnostic scenarios

built-in, 356–357
Group Policy settings, 355

diagnostics instrumentation, 354
dial-up remote access, 685–686
Differentiated Services Code Point (DSCP), 

682
Digital Equipment Corporation Alpha 

AXP, 37
digital rights management, protected 

processes and, 368
Direct2D, 18
DirectAccess (DA), 695–696
directed context switches, 13
directory object type, 144
DisconnectEx API, 599
discretionary access checks, 528
discretionary access control, 23, 488

access logging, 494
object protection, 494

discretionary access control lists (DACLs). 
See DACLs (discretionary access 
control lists)

disk diagnostics, 356
disk, paging data to, 15
dispatch code, 95
dispatcher, 409, 421
dispatcher database, 421–422

synchronization, 422
dispatcher headers, 188

flags, 192–193
interpreting, 192

dispatcher objects, 57, 153, 184, 187
thread state changes, 186
waiting for, 184–185

dispatcher synchronization objects, 117
dispatch events, thread priority boosts, 

430–431
dispatching

interrupt, 81–112
trap, 79–140

dispatch interrupts, 104–110, 413
display I/O functionality, 51
DisplayName parameter, 308
distributed applications, loosely coupled 

messaging, 625
Distributed Cache caching mode, 646
Distributed Component Object Model 

(DCOM), 625
distributed computing environment 

(DCE), 605
Distributed Fair Share Scheduler (DFSS). 

See DFSS (Distributed Fair Share 
Scheduler)
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Distributed File System Client, 633
Distributed File System Namespace 

(DFS-N), 637–638
Distributed File System Replication 

(DFS-R), 638
Distributed Management Task Force 

(DMTF), 342
Dllhost .exe, 11
DllMain routines, 244
DLL restriction, 588
DLLs

credential providers, 77
defined, 5
importing and loading, 242
initialization tasks, 244
KPP-protected, 272
loading and unloading by image loader, 

233, 235
name redirection rules, 236–238
name resolution by image loader, 

235–236
opening, 73
search path, 236
sub-DLLs, 245–247
subsystem, 36

DMTF (Distributed Management Task 
Force), 342

DNS (Domain Name System), 655
lookup requests, 655

DNS servers, 655
domain accounts, SIDs, 499
Domain Name System (DNS), 655
downloads, 622
DPC/dispatch interrupts, 91, 94, 104–110

generation rules, 106
for spinlocks, 179–180
triggering, 105–106

DPC objects, 105
DPC queues, 105
DPCs (deferred procedure calls), 104, 448

capabilities, 107–113
monitoring, 108–109
prioritization, 105
processing, 105–106
queuing, 476
targeted, 105
target processor, 118
threaded, 107
thread wake-up calls, 477

DPS (Diagnostic Policy Service), 354–355
DPWS (Device Profile for Web Services), 

626–627
drive-letter assignment, 323
drive-letter mapping, 629
Driver directory, 322
drivers. See also device drivers

boot-start and system-start, 321–322
context data, assigning and creating, 

304
network adapter-protocol driver 

communication, 672

object filtering, 176
signature enforcement, 18
signing policies, 274–275

Driver Verifier, 17, 56
deadlock detection, 201

DSCP (Differentiated Services Code Point), 
682

dt command, 29, 393–394, 397
KNODE structure, viewing, 459

dynamic-link libraries. See DLLs
Dynamic Memory, 260–263

architecture, 260
calculating, 262
configuring, 261
watching, 263–265

dynamic processors, 479–480
adding, 72
threaded DPC support, 479

dynamic providers, 347
dynamic runtime compatibility 

mitigations, 233
dynamic worker threads, 206

E
ECN (Explicit Congestion Notification), 

663–664
elevation shims, 385
elevation, UAC, 573–590

auto-elevation, 578–579
declining, 576
defined, 574
elevation prompts, 580
over-the-shoulder, 574
requested levels, 577

emulation, device, 251, 255
EnableCpuQuota registry value, 471
encryption of network communication, 

608
end nodes, data transfer between, 593
energy-report .html, 113
Enforcement Client (EC), 691
enlightened I/O, 254–256
enlightenments, 248, 253–254

kernel patch protection, 273
enlistment objects, 269
EnterCriticalSection function, 194–195
environment subsystem, 48–53

excutive objects and object services, 
143

server processes, 36
environment variables, creation, 73
EPROCESS, 359–371, 453

accessing, 360
CPU quota block pointer, 472
executive routines in, 362
fields, displaying, 362–363
key fields, 360–361
protected process flag, 368–369

EPROCESS object, setting up, 376–378
ERESOURCE, 432, 434

errata manager, 56
ErrorControl parameter, 307, 327
error port, 127, 132
error recovery, 268

kernel transaction manager, 56, 
268–270

service recovery options, 330–331
transactional modification of registry, 

287–289
error reports

crash analysis server, sending to, 130
destination, configuring, 130
Windows Error Reporting, 129–132

errors
access-denied, 292
automated detection and resolution, 

354. See also WDI (Windows 
Diagnostic Infrastructure)

fatal, 125
service startup, 327–328
system startup, 328
transmit and receive, 593

Ethernet frames, header-data split, 674
ETHREAD, 359, 391–397, 453

displaying, 393–394
executive thread object encapsulation, 

391
EtwConsumer objects, 144
ETW (Event Tracing for Windows), 56, 220

for ALPC messages, 218–219
clock interval change requests, 113
DiagLog session, 354
TCP/IP activity, tracing, 222–223
trace classes, 220–221
trace event header, 220

EtwRegistration objects, 144
Evaluation Assurance Levels (EALs), 489
event-based problem diagnosis, 354
event classes, 220
event handles, 155
Event Log provider, 344–345

association class, 350
inheritance, 346

Event Log, service startup error entries, 
327–328

event objects, 143
signaled state, 186

events
asynchronous, 80
default security, 496
intercepts for, 266
network-status, 605
synchronous, 80

Event Tracing for Windows (ETW). 
See ETW (Event Tracing for Windows)

event tracing, kernel, 220–223
event unwait operations, 198
Event Viewer, 587
Everyone SID, 498, 499
Ex APIs, 165
exception dispatcher, 124–126
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exception dispatching, 123–132
Windows Error Reporting, 129–132
Wow64, 225

exception handlers
frame-based, 125
vectored, 125

exception ports, 126
exceptions

aborts, 80
architecture-independent, 124
defined, 79–80
interrupt numbers, 124
kernel-mode, 125
reproducing, 80
from SRW Lock failure, 203
unhandled, 127–129

exclusive access, 198–199
executable images

integrity of, 274–276
opening, 373–376
running, decision tree, 375–376

executable pages, integrity of, 275–276
executables

administrative rights requests, 576–578
auto-elevation, 578–579
default configuration, 578
service applications, 305–321
virtualization and, 568
Windows, 578

execution
modes, 17–32
profiling, 91–95

executive components
object access, 156
system worker thread use, 205

executive interlocked functions, 182
executive LUID, 509, 510
executive mutexes, 196–198
executive objects, 57, 142–144

access methods, 494
creation, 143
object types, viewing, 143
primary, 143–144
security descriptor, 495

executive process object
creation, 370, 376–381
EPROCESS object setup, 376–378
final setup, 381
initial thread creation, 381–383
PEB setup, 380–381
process address space setup, 378–380

executive resources, 184, 198–199
listing, 198–199
thread waits on, 434

executive thread object
creation, 381–383
execution, starting, 385
fields of, 392
thread parameter, 382
thread representation, 391

executive, Windows, 36, 54–57

abstraction layer, 362
access token creation, 560
components, 54–55
functions, 54
infrastructure routines, 56–57
kernel-mode APCs, 111
prefixes, 66
process-creation routines, 369
support functions, 56
symbolic link objects, 173
system service stubs, 53
system worker thread management, 206
user-mode debugging module, 229

ExitWindowsEx function, 331
experiments, 25
expiration time, token, 510
Explicit Congestion Notification (ECN), 

663–664
Explorer, 562

display of virtualized files, 569
export tables, parsing by image loader, 

233
extended-model classes, 345–346
extensibility, 33
extension interfaces, 605
extensions, virtualization exceptions, 

568–569

F
facilities, displaying, 44
FailureActions parameter, 308, 330
FailureCommand parameter, 308, 330
failures

application, 291–293
application startup, 243–244
services, 330–331

fast mutexes, 196–198
acquiring, 196
vs . guarded mutexes, 197

fast user switching, 21
fatal errors, 125
FCL (Framework Class Library), 3
features enabled, determining, 43–44
fibers, 13
file access, caching, 643
file extensions

associations in HKCR, 283
virtualization exceptions, 568–569

file handles, 155
file hash, 582

for AppLocker rules, 584
file mapping objects, 14
file objects, 22, 143

default security overrides, 496
integrity level, 502

file renames, 73
file requests

compounding, 636
pipelining, 636

files
access methods, 494
caching on local machine, 639
ghosted, 643
locking down, 583

file shares, 627
aggregating, 637
caching files on local machine, 639

file sharing, and symbolic links, 173
file-system drivers (FSDs). See FSDs  

(file-system drivers)
file system minifilters, 274
file system namespace, 154
file system objects, global audit policy, 

552
file-system runtime library, 57
file system virtualization, 567–573
file transfer. See also data transfer

asynchronous, 621
file virtualization, 568–571

enabling and disabling, 570–571
filter drivers, 63, 64

lightweight, 677
filtered admin tokens, 507

characteristics, 516
UAC use, 566
viewing, 517

filter engine, 667
Fingerprint Biometric Service Provider, 

564
fingerprint scanners, 563
firewalls

rules, 318
stateful, 669

flags
ACE, 524
application-compatibility, 578
dispatcher header, 192
global, 207–209
handle table entry, 159–160
object, 147–148
object attribute, 147
object header, 146
PRCB, 116
registry virtualization, 572
security descriptor, 522–523

floating-point exceptions, 124
floating-point state, saving, 96
foreground threads

priority boosts, 435–437
quantum length, 427

fragment names, 611
frame-based exception handlers, 125
Framework Class Library (FCL), 3
free build, 45
FSDs (file-system drivers), 63, 154

filter drivers, 63
invoking, 616
MUP, 630
thread priority boost values, 434

function drivers, 64

exception dispatching
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functions
intrinsic, 178
name prefixes, 66–67
splitting across discrete files, 246
system call numbers, mapping to, 139
user-mode, 49
Windows executive calls, 49

Fusion (SxS) redirection, 237

G
games, thread priority boosts for, 

444–448
gates, 197

pushlocks, 199–201
Gdi32 .dll, 37
GDI functions, 51
GDI subsystem, 396
GDI/User objects, 142
getaddrinfo function, 598
GetEffectiveRightsFromAcl function, 

530–531
GetSystemTimeAdjustment function, 423
GetThreadContext function, 12
Gflags.exe, 207–208
ghosts, 643
global audit policy, 552–553

additional auditing, 553
configuring, 553
querying, 552
setting, 552–553
storage location, 553

Global Descriptor Table (GDT), 272
global flags, 207–209

changing, 207–208
maintain objects list, 141
viewing, 207–208

Global Flags tool, 25
global namespace, 173

accessing, 174
global resources, mutually exclusive 

access, 178
global spinlocks, 181
Graphics and Multimedia Services, 3
group-aware applications, 408
group claims, 563
Group parameter, 307
GroupSetMember value, 458
group SIDs, 508
groups, processor

assignment, 460–462
number per group, 462

guarded mutexes, 196–198
acquiring, 197
vs . fast mutexes, 197

guest operating systems, 248. See 
also hypervisor (Hyper-V); operating 
systems

address translation, virtual and physical, 
258

support from, 254
guest physical address space (GPA space), 

258
guest virtual address space (GVA space), 

251–252, 258
GUIDs, Windows version-specific, 244
GUI permissions editors, 534–536
GUI processes, state information, 367
GUI threads, priority boosts, 437–439

H
Hal .dll, 37
HAL (hardware abstraction layer), 36, 

60–62
checked build version, 46
dynamic processor support, 479–480
interrupt levels, 90
version, determining, 61
x86 versions, 60

handle attribute, 215
handle data blobs, 216
handle leaks, 167
handlers, control, 309
handles

defined, 22
existing, referencing objects with, 497
hive, 295
process, 360
to registry keys, 280
transaction, 288

handles, object, 155–160
debugging mechanisms, 167
kernel handle table, 160
maximum number, 159
open, searching for, 161
references, viewing, 167
resource accounting, 168
tracing, 165, 167
viewing, 156–157

handle tables, 158
ALPC-specific, 216
entries, structure of, 159–160
kernel handle table, 160
viewing, 160–161

Handle tool, 157
handle tracing database, 167
Handle Viewer, 25
hardware

device-to-driver mappings, 286
exceptions and interrupts, 80
interrupt processing, 82–84
in OSI reference model, 592–594
virtual address space, 15
virtualized, 248, 254–268

hardware abstraction layer (HAL). 
See HAL (hardware abstraction layer)

hardware device drivers, 63
hardware exceptions, 80–81
hardware-generated interrupts, 81
hardware profiles, 286

hashing, 582
header-data split, 674
header files, 32
health policies, 689
Health Requirements Server (HRS), 

692–693
heap manager, 54
helper DLLs, 602
high-frequency timers, 113–115
high interrupt level, 90
high-loss scenarios, 664
hive handles, 295
hives, reigstry, 293–294

bins, 296
cell indexes, 297
cell maps, 298–300
cells, 296
corruption, 303
loading and unloading, 294
log hives, 302–303
nonvolatile, 302
on-disk file names, 293–294
opening, 295
page pool usage, viewing, 298–299
recoverable state, 303
size limits, 295
structure, 296–298

hive syncs, 302–303
HKCU\SOFTWARE\Microsoft 

\Windows NT\Current Version\
Winlogon\Shell value, 562

HKEY_CLASSES_ROOT, 280–281, 283
HKEY_CURRENT_CONFIG, 280–281, 286
HKEY_CURRENT_USER, 280–281
HKEY_LOCAL_MACHINE, 24, 280–281, 

283–284
HKEY_PERFORMANCE_DATA, 280–281, 

287
HKEY_USERS, 280–281, 282
HKLM\SAM key, 492
HKLM\Security key, 492
HKLM\SOFTWARE\Microsoft\Windows NT 

\Current Version\Winlogon\Userinit 
value, 562

host-based IPsec packet filtering, 670
host-based virtualization, 248
Hosted Cache caching mode, 646
hot key processing code, 557
hotpatching, 233, 270–272

compile-time, 271–272
limitations, 272
operations, 270–271
patch descriptors, 271

housekeeping threads, 466
HTTP

BranchCache application retrieval 
sequence, 653–655

BranchCache integration, 653
requests and responses, 610–611

HTTPS, 621
BranchCache use, 645
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HTTP Server API, 610–612
Http .sys, 611
hung processes, 400
hvboot .sys driver, 251
hypercalls, 251
hypercritical worker threads, 206
Hyper-Threading, 39
hypervisor (Hyper-V), 248–268

architectural stack, 249
child partitions, 251–254
emulated devices, 255
enlightenments, 253–254
enlightenments, kernel patch 

protection, 273
guest physical address space, 258
hardware emulation and support, 

254–268
hardware management, 254
hypercalls, 251
initialization, 251
intercepts, 265–266
Live Migration, 266–268
parent partition, 249–251
parent partition operating system, 250
partitions, 249
security rating, 489
shadow page tables, 258
SLAT use, 259
synthetic devices, 255–257
VDevs, 254
virtual machine management service, 

250–251
virtual processors, 257
Windows driver architecture use, 

249–250
hypervisor library, 56
hypervisor stack, 249–250

I
i8259A Programmable Interrupt 

Controller (PIC), 84
i82489 Advanced Programmable Interrupt 

Controller (APIC), 84. See also APIC 
(Advanced Programmable Interrupt 
Controller)

IA32Exec .bin, 224
IA64 architecture

interrupt controllers, 85
interrupt request levels, 87
system service dispatching, 133

IBAC (identity-based access control), 537
ICs (integration components), 255–256
ideal node, 467
ideal processor, 466
identification, credential providers, 77
identity-based access control (IBAC), 537
idle-only queue, 456

flushing, 473, 475
locking mechanism, 472, 474
maintainence, 472

remote processor, 476
scheduling, 476–477
thread management, 475
thread reinsertion, 477
thread release, 468
threads, adding to, 474
threads, resuming execution, 476

idle process, 453–455
name, 455

idle processors, 468–469
registry activity, viewing, 290

idle scheduling, 458
idle/sleep processor states, 122
idle threads, 453–456

operations, 456
preemption, 456
priority level, 455
ready queue scanning, 458

idle-time duration, optimizing, 122
IDT (interrupt dispatch table), 82

viewing, 82–83
Iexplore .exe, 503
IKE (Internet Key Exchange), 671
image database, 325
image loader, 54, 232–247

API Sets use, 245–247
application initialization tasks, 232
context information, 395
DLL name redirection, 236–238
DLL name resolution, 235–236
DLL restriction, 588
DLL search, 242
DLL search order, viewing, 237–238
early process initialization, 234–235
import parsing, 242–243
initialization, 386
internals, 240–241
legacy installer identification, 576–577
loaded module database, 238–241
post-import initialization tasks, 243–244
SwitchBack, 244–245
tasks of, 233
watching, 233–234

ImagePath parameter, 307, 325
images

execution, 589–590
global flags, 208
uniprocessor flag, 464

image subsystem, 48
ImpersonateNamedPipeClient function, 

514, 613
ImpersonateSecurityContext function, 514
impersonation, 14, 495, 514–516

client, 608, 613
integrity policy, 516
misuse prevention, 515
server forms, 514

impersonation tokens, 509, 514
import parsing, 242–243
import tables, parsing by image loader, 

233, 235

increase scheduling priority privilege, 412
increaseuserva qualifier, 15
indirection, 155
inheritance

of ACE flags, 524
of ACEs, 527–528
class, 346
priority levels, 412
Windows API support, 528

initialization
Distributed Fair Share Scheduler, 471
hypervisor, 251
of processes, 232
system, 205, 556
of Unified Background Process 

Manager, 337
Winlogon, 556–558

initialization tasks
atomic execution, 204–205
import parsing, 242–243
post-import tasks, 243–244

initialized threads, 417
initial process address space, creating, 

378–379
init once, 204–205
in-memory structures, 277
input string parameters, 24
installers, 228

administrative rights for, 576–577
Institute of Electrical and Electronics 

Engineers (IEEE) 802 committee, 593
integer divide-by-zero exceptions, 124
integer overflow, 124
integration components (ICs), 255–256
integrity checks, mandatory, 528–529
integrity levels, 500–505

access based on, 529
implementation, 495
low, launching programs at, 513
object, 504–505
process, 502–503
propagation, 502
Protected Mode Internet Explorer use, 

503
for User Interface Privilege Isolation, 

529–530
integrity protection, 22
integrity state, 275
intelligent timer tick distribution, 121–122
Intel processors, 37
Intel VT Extended/Nested Page Table 

(NPT) technology, 259–260
interactive logon, 555

authentication packages, 555, 558
interactive logon manager (Winlogon), 

491. See also Winlogon
interactive processes, 318
interactive services, 319–321, 326
Interactive Services Detection (UI0Detect) 

service, 320
intercepts, 265–266
interfaces, testing, 661

HTTP Server API
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interlocked operations, 178
spinlocks for, 182

intermediate nodes, 593
internal data structures. See 

also processes; threads
contents, displaying, 29

internal support functions, 53
International Organization for 

Standardization (ISO), 592
Internet APIs, 610–612
Internet applications, 610–696
Internet Explorer

Protected Mode, 503, 529
virtualization support, 567

Internet Key Exchange (IKE), 671
interprocess communication, 

programming APIs for, 612–696
interprocessor interrupt level, 90
interprocessor interrupts (IPIs), 89
Interrupt Affinity Policy Tool, 103
interrupt controllers

IA64, 85
x64, 85
x86, 84

Interrupt Descriptor Table (IDT), 273
interrupt dispatching, 81–112
interrupt dispatch table (IDT), 82–83
interrupt objects, 95

address, 99
connecting and disconnecting, 100
ISR, registering, 101
viewing details, 97–100

interrupt request levels (IRQLs). See IRQLs 
(interrupt request levels)

interrupt requests (IRQs). See IRQs 
(interrupt requests)

interrupts
affinity, 102–104
APC, 110–112
defined, 79–80
dispatch or DPC, 104–110
handling, 451
hardware processing, 82–84
interrupt control flow, 96
IRQL, mapping to, 90–91
line-based, 101–102
masking, 87–88, 178
message signaled-based, 101–102
monitoring, 108–109
prioritization, 84–92, 102–104
routing algorithms, 84
service routines, 86–87
sharing, 101
software, 104–112

interrupt service routine (ISR), 81, 
100–101

interrupt trap handlers, 81
intra-user isolation, 495
intrinsic functions, 178
I/O

control functions, 227–228

device interrupts, 80, 81
per-file information, 26
priority boosts on completion, 433–434

IoCompletion object type, 144
I .O Completion packet reserve object, 

162–163
I/O completion ports

jobs associated with, 480
scalability, wait internals, and efficiency 

of work processing, 404
I/O manager, 55

file system namespace implementation, 
154

I/O model of processing, 605–606
I/O requests, 594, 663
I/O transfers, 81
IP addresses

cluster, 688
private to public mapping, 669
public, 663

IPC parsing bugs, 216
IP filtering, 669
IPIs (interprocessor interrupts), 89
IPsec, 669–672

architecture, 671
authentication methods, 670–671
Group Policy settings, 670
host-based packet filtering, 670
monitoring secured communication, 

672
WFP callout driver, 671

IPsec Policy Agent, 671
IPv4, 663
IPv6, 663
IRPs (I/O request packets), 594
IRQ lines, interrupts based on, 101–102
IRQLs (interrupt request levels), 86–91

APC level, 88
DISPATCH_LEVEL, 422
interrupts, mapping to, 90–91
lazy, 87
passive level, 88
predefined, 90–91
raising and lowering, 88
save locations, 89
on spinlocks, 178–179
vs . thread priorities, 412–413
viewing, 88–91

IRQs (interrupt requests), 82
IRQ 1, 99
prioritization, 103–104

isolation
intra-user, 495
service, 315–318
Session Zero Isolation, 318–321
transaction, 288

ISR (interrupt service routine), 81
interrupt level, connecting and 

disconnecting, 100
registering, 101

J
job objects, 480–484

job sets, 482
limits, specifying, 481–482
process accounting information, 480
quantum values, 425
viewing, 482–484

job object type, 143
jobs, 14

transfer, 621

K
Kd .exe, 28
KeAcquireInStackQueuedSpinLock 

function, 182
KeAcquireInterruptSpinLock API, 180
KeAcquire/ReleaseSpinLockForDpc API, 

107
KeAcquireSpinLock function, 180
KeAddSystemServiceTable function, 137
KeAreAllApcsDisabled function, 198
KeAreApcsDisabled function, 197
KeEnterGuardedRegion, 111
KeInitializeProcess function, 379
KePerformGroupConfiguration routine, 

460
Kerberos authentication, 555, 558–560

TCP/IP port (port 88), 559
Kerberos Key Distribution Center service, 

559
KeReleaseInStackQueuedSpinLock 

function, 182
KeReleaseInterruptSpinLock API, 180
KeReleaseSpinLock function, 180
kernel, 36, 57–60

attributes management, 215
blob management, 216
daisy-chain configuration support, 101
design, 37–41
dispatcher database, 421–422
dispatcher objects, 184, 187
DPC processing, 105–107
driver and DLL loader, 240
dynamic thread creation, 403
exceptions and interrupts, 

distinguishing between, 80
exception trapping and handling, 124
hardware support, 59–60
interrupt objects, 95
lock ordering scheme, 189
mutual exclusion functions, 177
NUMA system information, 459–460
objects, 57
portable interfaces, 59
processor control region, 58
protection mechanisms, 34
real-time, 100
scalability features, 40–41
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kernel (continued)
software interrupts, 90
structured exception handling, 125
system interrupts, 80
threaded DPC support for dynamic 

processors, 479
thread priority assignment, 411
thread scheduling, creation, and 

termination, 403. See also thread 
scheduling

user-mode debugging support, 
229–230

Windows scheduling code, 409
x86-specific interfaces, 60

Kernel32 .dll, 37
process-creation tasks, 369
thread creation, 398
user-mode debugging component, 232
virtual DLL files, 246
Windows subsystem–specific 

operations, 383–385
kernel boot process, 278
kernel debugger, 25

commands, 28
EPROCESS fields, displaying, 362–363
ETHREAD and KTHREAD, displaying, 

393–394
executive resources, listing, 198–199
extension commands, 29
handle table, viewing, 160–161
job objects, viewing, 482–484
key control blocks, viewing, 301–302
library, 56
NDIS mini-ports, listing, 675–676
NtGlobalFlag variable, viewing and 

setting, 209
PEB, displaying, 365
!process command, 363–364
ready threads, viewing, 408–409
security descriptors, viewing, 525–527
system worker threads, listing, 207
TCP/IP device objects, viewing, 665–666
TEB, dumping, 395
thread data structures, dumping, 394
tokens, viewing, 510–513

kernel debugging, 26–31
local, 28
system not booted in debug mode, 31

kernel dispatcher, 409
ready queues, 421

kernel event tracing, 220–223
kernel handles, 368
kernel handle table, 160

registry hives, opening, 295
kernel image

checked build version, 46
client and server version, 42

kernel logger, 220
TCP/IP activity, tracing, 222–223
trace classes, enabling, 220–221

kernel mode, 17–20, 34, 35
protected processes support, 368
RPC support, 609
transitioning to user mode, 18

kernel-mode APCs, 110–111, 162
kernel-mode code

signing, 274
system calls, 136
trust level, 494

Kernel Mode Code Signing (KMCS) policy, 
17, 274

kernel-mode components, 36–37
device drivers, 63

Kernel-Mode Driver Framework (KMDF), 
64

kernel-mode exceptions, 125
kernel-mode RPC, 609
kernel-mode system threads, 69
kernel-mode threads, 413
kernel-mode trampolines, 136–137
kernel objects, 142
Kernel Patch Protection (KPP), 272–274
kernel processor control block (KPRCB), 58

viewing, 58–59
Kernel Profiler (Kernrate), 91–95
kernel queues, 404
Kernel Security Device Driver (KSecDD), 

491
kernel stacks, 273
kernel streaming filter drivers, 63
kernel structures

substructures, 30
type information, displaying, 29

kernel support functions, defined, 4
kernel support routines, defined, 4
Kernel Transaction Manager (KTM), 56, 

268–270
KeServiceDescriptorTable, 137, 139
KeServiceDescriptorTableShadow, 137, 

139
KeStartDynamicProcessor function, 479
KeStartThread function, 382
KeUpdateRunTime routine, 115
KeUpdateSystemTime routine, 115
keyboard, logon requests from, 555
key control blocks

allocation, 300
deletion, 301
fast access to, 304
key name references, 304
viewing, 301–302

keyed events, 194–196
performance, 196
signaling, 195
waiter lists, 195–196

key object allocation, 300
key object type, 144
keys, registry, 279

access, protecting, 304
CurrentControlSet, 328–329
global audit policy, 552

linking, 295
missing, 291–292
naming scheme, 279
safe mode, 324
virtualized, 571–572

keystrokes, squashing, 557
KiCheckForThreadDispatch function, 469
KiCyclesPerClockQuantum value, 

423–425, 477
KiDeferredReadyThread function, 463, 

468–469
KiFloatingDispatch handler, 96
KiIdleLoop routine, 456
KiInterruptDispatchLBControl handler, 96
KiInterruptDispatchNoEOI handler, 95–96
KiInterruptDispatchNoLock handler, 95
KiProcessDeferredReadyList function, 463
KiSearchForNewThread function, 458, 

467, 468, 475
KiSelectCandidateProcessor function, 470
KiSelectNextThread function, 456–458
KiSelectReadyThread function, 457
KiSystemService routine, 136
KiThreadStartup function, 386
KMCS (Kernel Mode Code Signing) policy, 

17
KMDF (Kernel-Mode Driver Framework), 

64
KNODE, 459
Known DLLs, 237
KPCR (kernel processor control region), 58

viewing, 58–59
KPP (Kernel Patch Protection), 272–274

supported techniques for working 
around, 274

KPRCB (kernel processor control block), 
58

viewing, 58–59
KPROCESS, 364, 453

initializing, 379
viewing, 362–363

KQUEUE, 404
KSecDD, 491
KTHREAD, 391–397, 453

displaying, 393–394
Win32Thread field, 397

KTM (Kernel Transaction Manager), 56, 
268–270

KTM objects, 269
deferred deletion, 166

Ktmutil .exe, 270

L
LAN adapter (LANA) numbers, 618
language packs, 24
LANs, datalink layer, 593
last known good control set, 286, 

328–330
last processor, 466
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latency
decreasing, 430–433
optimizing for, 433

layered network services, 685–696
binding, 684–685

layered service providers (LSPs), 600
lazy IRQL, 87
Ldr, 232. See also image loader
least privilege, 313–314
LeaveCriticalSection function, 194
legacy applications

Administrative privileges, 566–567
application-compatibility shims, 568
compatibility assistance, 357
networking APIs for, 597, 618
standard user account, running in, 567

legacy hardware, registry descriptions, 
286

legacy IPsec Policy Agent, 671
levels of trust ratings, 487
licensed processors, 40
Lightweight Directory Access Protocol 

(LDAP) directory services, 686
lightweight filter drivers (LWF), 677
link command /SUBSYSTEM qualifier, 48
Link-Layer Topology Discovery (LLTD), 662
links, registry, 280
listening sockets, 605
LiveKd, 31

child partitions, viewing, 252–253
Live Migration, 266–268

memory transfer, 266–267
setup, 266
state transfer, 267
VM files, transfer of ownership, 267

LLTD (Link-Layer Topology Discovery), 662
load and unload device drivers privilege, 

546
loaded modules database, 238–241
loader data table entries, 238

fields, 238–241
loader snaps, 233–234
local accounts and group registry 

information, 286
local-account SIDs, 498
local area networks (LANs), 593
local kernel debugging, 28
local logon SIDs, 558
locally unique identifier (LUID). See LUID 

(locally unique identifier)
local namespace, 173
 .LOCAL redirection, 236
local RPC, 609
local security authentication server 

process, 77
Local Security Authority (LSA), 540
Local Security Authority process (LSASS). 

See LSASS (Local Security Authority 
subsystem)

local security policy, 548
Local Security Policy Editor

Advanced Audit Policy Configuration 
settings, 554

audit policy configuration, 548
BranchCache configuration, 648–649
Software Restriction Policies node, 589
User Rights Assignment configuration, 

539
local service account, 312–313, 333

account privileges, 312
group membership, 311
network resource access, 312
services running in, 310, 313

LocalServiceAndNoImpersonation service 
group, 333

LocalServiceNetworkRestricted service 
group, 333

LocalServiceNoNetwork service group, 
333

LocalService service group, 333
Local Session Manager (Lsm .exe), 76–77
Local SID, 499
local system

audit policy, 548
connecting to, 28

local system account
access to resources, 315–316
characteristics, 311
core operating system components 

in, 310
group membership, 311–312
privileges, 311–312
services, running in, 310–312

LocalSystemNetworkRestricted service 
group, 334

location, network, 658–662
Network Location Awareness service, 

658–659
lock convoys, 200
lockdown, system, 583–588
locking mechanisms

order of objects, 189
SRW Locks, 202–203
user-mode, 201–202

locking primitives
spinlocks, 179–180
for user-mode code, 183

lock ownership priority boosts, 431–433, 
442

logging
ALPC messages, 218
transacted operations, 288

log hives, 302–303
Logical Link Control (LLC), 593
logical network identity, 659
logical network interfaces, 659
logical networks, 659
logical prefetcher, 55
logical processors, 257. See 

also processors
active, 463
affinity mask, 458

candidate processor selection, 470
context switch to new thread, 410
dynamic, 479–480
group assignment, 460–462
ideal, last, and next, 466–467
idle, 463
nonparked, 463
number per group, 462
ready queue population, 468–470
state information, 458–459, 462–463
thread selection, 456–458

LogicalProcessorsPerCore value, 458
logon

aborted, 558
account rights retrieval, 540
active sessions, listing, 560–562
authentication requirements, 494
components of, 556
configuration data use, 278
via fingerprint scan, 565
interactive, 555
management, 77–78
registry activity during, 292–293
secure, 488
security, 555–565
service logon, 325
successful, 328–329
termination, 559
type, determining, 540
user, 558–562
Winlogon management of, 555

logon sessions
active, listing, 560–562
LUID for, 558
SID for, 498

LogonSessions, 560–562
logon SIDs, 498
LogonUI, 77, 491, 555

launching, 557
network provider DLLs, loading, 556

LogonUserEx function, 325
LogonUser function, 515
low-memory situations, 194
LPC, 209
LsaAddAccountRights function, 540
LsaAuthenticationPort function, 557
LsaEnumerateAccountRights function, 

540
LsaEnumerateLogonSessions function, 

560
LSA (Local Security Authority), 540
LsaLogonUser calls, 558
LsaLogonUser function, 540
LsaRemoveAccountRights function, 540
LSASS (Local Security Authority 

subsystem), 318, 322, 490
allowed access checks, 559
audit policy manintenance, 548
groups and privileges checks, 506
logon termination, 559
policy database, 490
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LSASS (continued)
processes shared by, 332
service startup, 322, 325
SRM connection, 493
user logon tasks, 558–560

LsaStorePrivateData function, 325
Lsm .exe, 76–77
LSPs (layered service providers), 600
LUID (locally unique identifier), 509

logon session, 558–561
token authentication ID, 510

LWF (lightweight filter drivers), 677

M
machines. See also hardware; processors; 

servers
location, network, 658–662
SIDs, 498

MailSlot mini-redirector, 635
mailslots, 612–617

client naming format, 614
creation, 73
as FSDs, 616
implementation, 615–616

malicious operations, 546–547. See 
also security

Managed Object Format (MOF) language, 
344–348

binary MOF (BMF) files, 348
class definitions, 347

management applications, 342–343
objects, examining, 350

management mechanisms
registry, 277–304
services, 305–336
Unified Background Process Manager, 

336–342
Windows Diagnostic Infrastructure, 

354–357
Windows Management Instrumentation, 

342–353
management policies, 537
mandatory integrity checks, 528–529
mandatory integrity control (MIC), 23, 

500
mandatory policies, 505

in tokens, 509
manifests, 237

image loader management, 233
manual reset events, 186
MAPI (Messaging API), 686
mapped files, 73
mapping, address, 15
Margosis, Aaron, 32
marshaling/unmarshaling, 606, 609
Max Instances values, 617
MCM (miniport call manager), 677
Media Foundation API, 368
Medium Access Control (MAC), 593

memory
accessing, 94
access violations, 124
child partition access, 258
displaying statistics, 26
paging data, 15
sharing, 177
virtual, 15–16, 258

memory diagnostic tool, 356
memory leaks

detecting, 416
diagnosing, 356

memory management
with hypervisor, 254
process data structures used, 359
specifying limits, 416
on virtual machines, 260–263

memory management events, 69
memory manager, 55

mapping operations, 15
paging operations, 15
pushlock use, 201

memory translation, 259
message passing. See also data transfer

ALPC for, 209–211. See also ALPC 
(Advanced Local Procedure Call)

canceled, 212
notifications, asynchronous, 213–214

Message Queuing, 625–626
messages

attributes, 215
blobs, 216
delayed copying of, 217
hypercalls, 251
resources, 216

message-signaled interrupts (MSI), 102
message zones, 212, 217
Messaging and Collaboration, 3
Messaging API (MAPI), 686
MIC (mandatory integrity control), 500
Microsoft Developer Network (MSDN), 2
Microsoft Distributed Transaction 

Coordinator  
(MS DTC), 626

Microsoft Interface Definition Language 
(MIDL) compiler, 607

Microsoft Internet Connectivity Evaluation 
Tool, 664

Microsoft  .NET Framework, 3
Microsoft scripts, 351
Microsoft TechNet Scripting Center, 351
minidrivers, 434
miniport call manager (MCM), 677
miniport drivers, 595
mini-redirectors, 627, 632–635

architecture, 634
MinWin, 51, 246

API Set redirection, 236
image loader support, 233

MIPS architecture, 37
Mmc .exe auto-elevation, 579

MMCSS (MultiMedia Class Scheduler 
Service), 430

network packet throttling, 448
scheduling categories, 445
tasks, 445

MmSessionCreate function, 73
mode transitions, 18
modules, loaded, 238–239
Motorola PowerPC, 37
MPR (Multiple Provider Router), 627–630
Msafd .dll, 602
MSDN (Microsoft Developer Network), 2
MS-DOS executables, 374–375
MS DTC (Microsoft Distributed 

Transaction Coordinator), 626
MSI (message-signaled interrupts), 102
Msinfo32, 65
MSI-X, 102
MSV1_0 authentication, 555, 558–559

remote authentication, 559
Mswsock .dll, 602
multicasting, 598, 614
multicore systems, 39
MultiMedia Class Scheduler Service 

(MMCSS), 430
multimedia playback boosts, 430, 

444–448
multimedia response times, 113
Multiple Provider Router (MPR), 627–630
multiple sessions management, 72
Multiple UNC Provider (MUP), 630–632
multiple user sessions, 20
multiprocessor environments, 196–276
Multiprocessor Specification (MP 

Specification), 84
multiprocessor systems, 38–39

affinity, 463–465
affinity mask, extended, 465–466
affinity mask, system, 466
dispatcher database, 421–422
ideal and last processors, 466–467
ideal node, 467
NUMA systems, 459–460
package sets, 458
processor group assignment, 460–462
processors per group, 462
processor state, 462–463
scheduler scalability, 463
SMT sets, 458–459
thread scheduling, 458–467
thread selection, 467–468

multitasking, defined, 38
multithreaded applications, 466–467
MUP (Multiple UNC Provider), 630–632
MUP surrogate providers, 632–633
music content, protected, 368
mutants, 144
mutexes, 144

default security, 496
fast and guarded, 196–198

LSASS (Local Security Authority subsystem)
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mutex objects
abandonment, 186
signaled state, 186

mutual exclusion, 176–177
multiprocessor, 179–180

N
named pipes, 612–617

activity, viewing, 616–617
connections, establishing, 613
creation, 73
as FSDs, 616
implementation, 615–616
modes, 612–613
namespace, listing, 616–617
servers and clients, 612
target systems, connecting, 28

name parsing, 300
name resolution, 235–236, 655–658

DNS, 655
PNRP, 656–658

name retention, 165
namespace extensions, 597
namespaces

aggregation and availability, 637–638
CIMV2, 350
file-system, 154
global, 173
instancing, 173–175
private, 171
registry, 154
scopes, 639
security, 353
session, 173–174
WMI, 348–349

namespace service providers, 602
Winsock, adding to, 600

NAP Agent, 691
NAP (Network Access Protection), 

689–694
client configuration, 693–694
client-side architecture, 690–691
DA and, 695
Group Policy settings, 693
server-side, 691–692

Nasarre, Christophe, 2, 123, 188
National Computer Security Center 

(NCSC), 487
native system calls

definition, 4
worker factory management, 403

native system services, defined, 4
NAT (Network Address Translation), 669
Nbsts command, 619
NCSI (Network Connectivity Status 

Indicator), 659–662
active probing, 661
network change monitoring, 660
passive polling, 660
registry change monitoring, 661

NDIS drivers, 595, 672–684
connection-oriented, 677–678
execution environment, 673
intermediate, 677
network medium activity, 673
pausing and resuming, 674
Remote NDIS, 680–681

Ndiskd kernel debugger extension library, 
675–676

NDIS library, 595, 672–673
NDIS Lightweight Filter driver, 630, 674
NDIS miniport drivers, 595

listing, 675–676
packets through, capturing, 678–680
for USB network devices, 680–681

NDIS (Network Driver Interface 
Specification), 672

components, 673
connection-oriented, 674, 677–678
features, 673–674
lightweight filter drivers, 674, 677
receive-side scaling, 674
TCP/IP offloading, 674

Ndis .sys, 595
Net APIs, 686
NetBIOS, 618–620

implementation, 619–620
names, listing, 619
naming convention, 618
operation, 618–619
routing scheme, 619
sessions, 618

NetBIOS Extended User Interface 
(NetBEUI) protocol, 620

Netbios function, 619
NetBT (NetBIOS over TCP/IP) driver, 620
 .NET Framework

Common Language Runtime, 3
components, 3
Framework Class Library, 3

Netlogon, 559
Netsh

BranchCache configuration, 648–649
connection security settings, 672
publication and republication cache 

configuration, 648
Winsock service and namespace 

providers, viewing, 600–602
network access, protecting, 689–696
Network Access Protection (NAP), 

689–694
network activity, displaying, 26
network adapter drivers, 672

NDIS drivers, 672–684
network adapters, 672

Wake-on-LAN, 674
Network Address Translation (NAT), 669
network applications

dynamic configuration, 658
service levels, 682–684

network bandwidth
conserving, 638

managing and prioritizing, 682
real-time information, 683
reducing, 645

network-based attack prevention, 
669–670

Network Basic Input/Output System 
(NetBIOS), 618–620

network communication, authentication 
and encryption, 608

network connections
connectivity level, determining, 

659–662
establishing, 593
monitoring, 679–680
peer-to-peer, 626–627
security configuration, 672

Network Connections dialog box, 628
Network Connectivity Status Indicator 

(NCSI), 659–662
network diagnostics, 356
network drive letter assignment, 323
Network Driver Interface Specification 

(NDIS). See NDIS (Network Driver 
Interface Specification)

Network File System (NFS), 635
network group, 498
networking, 3, 591–696

APIs, 597–627
architecture, 591–596
binding, 684–685
BranchCache, 645–655
connection-oriented network hardware, 

677–678
Distributed File System Namespace, 

637–638
Distributed File System Replication, 638
filtering operations, 667–676
high-loss scenarios, 664
location-based configuration settings, 

658–662
name resolution, 655–658
NDIS drivers, 672–684
network services, 685–696
Offline Files, 639–644
OSI reference model, 592–594
performance features, 663–664
privacy, 621
protocol drivers, 663–672
Quality of Service, 682–684
redirectors, 627–636
slow-link latency threshold, 641
software components, 591
surrogate providers, 632–633
topology discovery and mapping, 

658–662
UNC names, 612
Windows components, 594–597
Windows Filtering Platform, 667–676

networking APIs, 594, 597–627
Background Intelligent Transfer Service, 

621–624

 networking APIs
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networking APIs (continued)
byte mode and message mode, 

612–613
Distributed Component Object Model, 

625
Internet APIs, 610–612
mailslots, 612–617
Message Queuing, 625–626
named pipes, 612–617
NetBIOS, 618–620
Peer-to-Peer Infrastructure, 624–625
remote procedure call, 605–609
Universal Plug and Play, 626–627
Windows Sockets, 597–603
Winsock Kernel, 595, 603–605

networking components
connection-oriented, 677
health policies for, 689
installing, 684
logical network identity and interfaces, 

659
network connectivity, testing, 661

network layer in OSI reference model, 593
Network List Manager (NLM) APIs, 659
Network Load Balancing, 688–689
Network Location Awareness (NLA) 

service, 658–659
network logon service (Netlogon), 491
Network Module Registrar (NMR), 603
Network Monitor

downloading, 678
packet capture, 678–680

network packet throttling, 448
network protocol requests, 663
network provider interface, 628
network providers, 628

drive-letter mapping, 629
network redirectors. See redirectors
network restriction rules, 318
networks

bursty behavior, 682
changes on, monitoring, 660
IPv6, 663
logical, 659
mapping, 662

network servers, 63
network service account, 312

account privileges, 312
group membership, 311
services running in, 310

NetworkServiceAndNoImpersonation 
service group, 334

network services, 685–696
Active Directory, 686–687
DirectAccess, 695–696
Network Access Protection, 689–694
Network Load Balancing, 688–689
remote access, 685–686
RPC applications, 607–608

NetworkService service group, 334
Network Shell (Netsh .exe). See Netsh

network stack, 591
IPv4 and IPv6 coexistence, 663
legacy protocol support, 664
WFP integration, 667

network status events, 605
network traffic

authentication and key negotiation, 671
first-come, first-served delivery, 682
monitoring, intercepting, and 

processing, 667–676
polling for, 660
tagging and shaping, 683

network transmissions
multicast messages, 598
OSI reference model, traversing, 592
requests and replies, 591
zero-copy, 599

New Connection Security Rule Wizard, 
672

Next Generation TCP/IP Stack, 663–665
next processor, 466
NFS (Network File System), 635
NIC driver encapsulation, 595
NLA (Network Location Awareness) 

service, 658–659
NMR (Network Module Registrar), 603
Nobody SID, 499
node addresses, 593
nodes, 39

end, 593
intermediate, 593

No-Execute-Up mandatory policy, 505
nonuniform memory access (NUMA) 

systems, 459–460
No-Read-Up mandatory policy, 505, 529
Notepad registry settings, 290
notifications

asynchronous, 213–214
change, 278, 290
preshutdown, 308, 332
from services, 320, 326
shutdown, 331
time-change, 337

NotifyBootConfigStatus function, 
328–329

No-Write-Up mandatory policy, 505
NtAllocateReserveObject system call, 162
NtAlpcCreatePortSection API, 214
NtCreateThreadEx function, 398
NtCreateUserProcess function, 370

calling, 373
executable file, opening, 373–376
executive process object creation, 

376–381
NtDelayExecutionThread calls, 467
Ntdll .dll, 37, 53–54, 234

DbgUi functions, 230
image loader, 232
worker factory interface, 403

NTDS API, 687
NtGlobalFlag variable, 207

viewing and setting, 209
NtInitializeRegistry function, 329
NT Kernel Logger, 220
Ntkrnlpa .exe, 37
Ntoskrnl .exe, 27, 37, 42, 220
NtQueryInformationWorkerFactory API, 

404
NtQueueUserApcThread system call, 162
NtSetIoCompletion API, 162
NtSetSystemInformation, 73
null sessions, 311, 514
NUMA distance array, 460
NUMA node 0, 460–461
NUMA nodes, 460
NUMA (nonuniform memory access) 

systems, 39, 459–460
NUMA Proximity IDs, 460
NUMA spanning, 262

O
ObCheckObjectAccess function, 496
ObDereferenceObjectWithTag function, 

168
object access auditing, 549–552

demonstrating, 550–552
object attribute flags, 147–148
object attributes, 147

defined, 22
OBJECT_ATTRIBUTES, 398
ObjectAttributes parameter, 22
object bodies, 145–149

format and contents, 148
object directories, 169–171
object directory objects, 169
object handles, 155–160
object headers, 145–149

offsets, 146
quota charges attribute, 168
viewing, 150–152

Object Identifiers (OIDs), 562–563
object leaks, 167
object manager, 22, 56, 140–176

access permissions, recording, 495
access rights checking and storage, 163
audit event creation, 548
exploring, 140–141
filtering, 274
finding objects, 154–155
generic services, 149
goals, 141–142
handle creation, 155
kernel-managed thread pools, 403
name lookups, 169, 173
namespace, 141
namespace management, 174
object directory object, 169
object filtering, 176
object header and subheader access, 

148
object header control, 145

networking APIs
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object manager (continued)
object method calls, 153
object naming requirements, 169
object retention, 165–168
object security enforcement, 494
open handle counter, incrementing, 165
pushlock use, 201
reference count, incrementing, 165
remote file access, 170–171
security access validation, 496–497
security descriptor management, 525
symbolic link object, 173
type objects, 149–153

Object Manager (CIMOM), 343
object methods, 153–155

close method, 154
defined, 22
delete method, 154
okay-to-close method, 155
open method, 154
parse method, 154
query name method, 154
security method, 155
security routine, 153

ObjectName parameter, 308, 325
object name squatting, 171
object-oriented design, 35
object owners, write-DACL access, 533
object protection mechanisms, 494–536

access checks, 495–497
access control, 523–536
assured authentication, 562
filtered admin tokens, 516–517
impersonation, 514–516
integrity levels, 500–505
restricted tokens, 516
security descriptors, 522–536
SIDs, 497–517
tokens, 506–513
virtual service accounts, 518–521

object reference tagging, 167–168
object reference tracing, 167–168
object retention, 165–168
object reuse protection, 488
objects, 21

access, determining, 528–536
ACL assignment, 527–528
address ordering, 189
base named, viewing, 171–172
caching modes, 641–642
create, open, and query services, 149
default security, 496
deferred delete operations, 166
defined, 21
deleting, 166–167
desired access rights, 163
dispatcher objects, 153
executive-level, 57
existing handles, referencing by, 497
filtering, 176
integrity levels, 504–505

integrity protection, 22
internal structure, 22
job, 480–484
kernel, 57
locating in namespaces, 349
locking order, 189
management, 343. See also object 

manager
mandatory policies, 505
naming, 169, 170–171
open handle counter, 165
opening by name, 496
operating system tasks, 22
owner rights, 531–532
private, 497
protection, 23
referencing, 155
reserve, 162–163
resource accounting, 168
security, 163–165
security descriptors, 494, 522–523
security routine, 153
security settings, viewing, 534–536
sharing in global namespace, 169
signaled state, defining, 185–188
structure, 145
synchronization support, 153
temporary and permanent, 165–168
type objects, 149–153
types, 142
write-DACL access, 533

object security locks, 496
object subheaders, 145–147

conditions required for, 147
object types, defined, 21
Object Viewer, 25
ObpCreateHandle function, 496
ObReferenceObjectByHandle function, 

497
ObReferenceObjectWithTag function, 168
OCI (open cryptographic interface), 608
ODBC (Open Database Connectivity) 

adapter, 344
Offline Files, 632, 639–644

architecture, 640
cache, 639
cache structure, 643–644
caching modes, 641–642
capabilities, 635
components, 639–640
data security, 643
ghosts, 643
Group Policy settings, 642
limitations, 639
object types, 639
prefetching files, 651

Offline (Need to Sync) caching mode, 642
Offline (Not Connected) caching mode, 

642
Offline Registry Library, 278

Offline (Slow Connection) caching mode, 
641

Offline (Working Offline) caching mode, 
642

Offreg .dll, 278
OIDs (Object Identifiers), 562–563
okay-to-close method, 155
on-demand problem diagnosis, 354
one-time initialization, 204–205
Oney, Walter, 32
online caching mode, 641
open cryptographic interface (OCI), 608
Open Database Connectivity (ODBC) 

adapter, 344
Openfiles /query command, 140–141
open handle counter, 165
open method calls, 154
open object APIs, problems with, 165
OpenSCManager function, 321
Open Software Foundation (Open Group), 

605
Open Systems Interconnection (OSI) 

model, 592–594
operating systems. See also Windows 

operating system
administrative rights, requesting, 

576–578
child partitions, 251–254
dynamic processor support, 479–480
enlightenments, 248, 253–254
hypervisor component, 248. See 

also hypervisor (Hyper-V)
logical processors, 257. See also logical 

processors
parent partition, 249–251
ProcessorAdd callback, 479–480
security ratings, 487–489
software, kernel-mode execution, 17–32
tasks, objects role in, 22
updates and antivirus signatures, 689
virtualization, 248
virtual memory space, 15

operations, administrative rights for, 573
Orange Book, 487
Orwick, Penny, 32
OSI reference model, 592–594
over-the-shoulder (OTS) elevations, 

574–575
Owner Rights SID, 531–532

P
packets, 592

capturing, 678–680
filtering by IPSec, 670
forwarding, 663
receive-side scaling, 674
routing, 593
throttling, 448
unicast, 669–670

 packets
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page faults, 94–95
exception numbers, 82

paging data, 15
paging files, initialization, 73
parameters, marshaling, 606
Parameters subkey, 306
parent partition, 249–251. See 

also hypervisor (Hyper-V)
logical processors, 257

parent processes
absent, 376
retrieving, 5–6

parse method, 154
remote file access, 170–171

partitions, 249. See also child partitions; 
parent partition

passive interrupt level, 91
password-based authentication, 558–562
passwords for user logon, 558–559
patch descriptors, 271
PatchGuard, 272–274
pause assembly instruction, 180
PCA (Program Compatibility Assistant), 

357
Pcb (process control block) member, 362
PCR (processor control region), 89, 453
PEB (process environment block), 238, 

359
address, 364
fields, 364
fields, viewing, 365
setting up, 380–381

Peer Content Caching and Retrieval, 650
Content Identification, 650
Hosted Cache Protocol, 651
Hypertext Transfer Protocol (HTTP) 

Extensions, 651
Retrieval Protocol, 650

Peer Name Resolution Protocol (PNRP), 
656–658

Peer-to-Peer Collaboration Interface, 625
Peer-to-Peer Graphing, 625
Peer-to-Peer Grouping, 625
Peer-to-Peer Identity Manager, 625
Peer-to-Peer Infrastructure, 624–625
Peer-to-Peer Namespace Provider, 625
performance

ALPC optimizations, 217
emulated devices, 255
network, 682–684
offloading operations, 674
playback, 448
problems, detecting and resolving, 356

performance counters
accessing, 23, 287
descriptions, 25
Dynamic Memory-related, 263–265
mode-related, 18
System Calls/Sec, 140

Performance Data Helper (PDH) API and 
functions, 287

performance diagnostics, 356
Performance Monitor, 25–26

functions, 25
kernel mode vs . user mode counter, 19
kernel mode vs . user mode usage, 20
performance counter descriptions, 25
providers, viewing, 338–339
System Monitor function, 25
thread activity, viewing, 399

Performance Options dialog box, 426, 
428

Performance tool
job objects, viewing, 482–484
multimedia thread boosts, viewing, 

446–447
thread state transitions, viewing, 

419–421
permanent objects, 165–168
permissions

effective, viewing, 534–536
for protected process threads, 401

per-processor ready queues, 421–422
physical layer in OSI reference model, 592
Physical Memory counter, 264
physical memory, mapping to virtual 

memory, 15
PIC (Programmable Interrupt Controller), 

84
viewing, 85–86

pipelining, 636
PipeList, 616–617
pipes, establishing, 593. See also named 

pipes
PIT (Programmable Interrupt Timer), 112
Pkgmgr .exe, auto-elevation, 579
platforms, portability across, 37–38
Plug and Play drivers, 64

code signing, 274
Plug and Play Extensions (PnP-X), 

626–627
Plug and Play manager, 55

device interrupt assignment, 90
dynamic processor support, 480

PMP (Protected Media Path), 368, 369
PNRP (Peer Name Resolution Protocol), 

656–658
ID generation, 656
peer names, 655
phases of name resolution, 657–658

pointers, KPP-protected, 273
point-to-point communications, 593
policy-based QoS, 682
policy settings, viewing, 43–44
Pool Monitor, 25
portability, 33

across hardware architectures, 37–38
HAL and, 60

port objects, 210
ports, 593
POSIX executables, 374

process section base address, 380

POSIX subsystem, 53
PostQueuedCompletionStatus API, 162
power fail interrupt level, 90
power management, 122
power manager, 55
Power Options, 64
PowerPC architecture, 37
PowerRequest objects, 144
PRCB (processor region control block), 89

global spinlock pointers, 181
per-processor ready queues and 

summary, 421
quantum reset value, 423

predictable-reads isolation level, 288
preemption, 445, 449–450

idle thread, 456
preemptive scheduler, 409
prefetching, 386
prefix cache, 630–631
presentation layer in OSI reference model, 

594
preshutdown notifications, 308, 332
PreshutdownTimeout parameter, 308
previous mode, 136
primary tokens, 509
principal names, 608
printer drivers, 32-bit vs . 64-bit, 228
priority boosts, 430–448

AdjustBoost, 443
AdjustUnwait, 442–443
APC, 432
applying, 442–443
for CPU starvation, 439–441
effects of, 442
executive resources, waiting on, 434
foreground threads after waits, 435–437
GUI threads, 437–439
I/O completion, 433–434
lock ownership, 432–433
for multimedia applications and games, 

430, 444–448
removing, 443–444
scheduler/dispatcher events, 430–431
unwait, 431–432, 432
viewing, 435–437, 440–441

priority class, process, 371
priority-driven, preemptive scheduling, 

408–410, 449. See also thread 
scheduling

priority levels, 410–416
boosts, 430–448
boosts and quantum length, 427
changing, 414–415
idle thread, 455
inheritance, 412
vs . IRQLs, 412–413
mapping of Windows kernel to 

Windows API, 411
preemption and, 450
priority 0, 456
process, 414

page faults
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priority levels (continued)
ready queues, 421
real-time range, 412
recomputation, 442–444
thread-scheduling, 410–416

Priority Queue, 644
privacy, 621
private address spaces, 15
private namespaces, 171
private objects, 497
private virtual address spaces, 5
privilege arrays, 509
privileged access control, 23
privileges, 538–547

assignment, 539
auditing-related, 548
Bypass Traverse Checking privilege, 545
checks for, 507, 540
defined, 538
enabling and disabling, 541–542
enforcement, 540
exploitation, 546–547
list of, 543–545
local system account, 311–312
separating levels of, 501
services, specifying, 313–314
services, viewing, 314–315
super-user, 546–547

problem scenarios, automated detection 
and resolution, 354–358

procedures, local and remote, 606–607
process activity, viewing, 7–32
process address space

creating, 378–379
PEB in, 359
setting up, 379–380
TEB in, 391, 394

process creation, 369–391
executable file, opening, 373–376
executive thread object, stack, and 

context, creating, 381–383
flags and parameters, creating and 

validating, 371–373
initial thread execution, starting, 385
main stages, 370–371
process initialization in context of new 

process, 386–387
tracing, 387–391
Windows executive process object 

creation, 376–381
Windows subsystem–specific post-

initialization, 383–385
process environment block (PEB). See PEB 

(process environment block)
processes

access rights requests, 368
access tokens, 547
affinity mask, 464–465. See also affinity 

masks
attaching to, 28
attribute list, 372–373

base priority, 411–412
breaking into, 230
components, 5
CPU utilization, 10. See also CPU usage
CreateProcess flow, 369–391. See 

also process creation
CSR_PROCESS, 359
Csrss-specific information, 365
data structures, 359–371
defined, 5
details, viewing, 10–12
error port, 132
handles, 155, 360
handles, acquiring, 155
handle tables, 158, 496
hung, 400–401
ideal node, 467
initialization, 234–235
integrity levels, 500–505, 529
integrity levels, viewing, 501–502
internals, 359–367
job objects, 480–484
loaded modules database, 238
multiple services, running, 309
network resource access, 311
open handles list, 14
overhead, 360
parent/child relationships, viewing, 

6–7, 68
priority classes, 371–372
priority levels, specifying, 414
protected, 271, 368–369
quota structure, 168
resources, 14
security context, 14, 506
services. See services
services running in, viewing, 334–335
shared, 332–335
system resource access, 168
threads in, 12
threads, viewing, 399
timer resolution change requests, 114
user-mode, 36
virtualization status, 567
W32PROCESS, 360
window stations, 318
work factory use, viewing, 405–407

Process Explorer, 9–12, 25
access rights, 368
capabilities, 11–12
clock cycle counter use, 399
handle table, viewing, 164
hosting processes tooltips, 11
information in, 10
object handles, viewing, 156–157
parent processes, 5–6
priority levels, changing, 414–415
privileges, viewing enabled, 541–542
process details, viewing, 10–12
process integrity levels, viewing, 

501–502

protected processes and, 369
protected process threads, viewing, 402
service processes, viewing details, 76
service security tokens, viewing, 

314–315
services running in processes, viewing, 

334–335
SIDs, viewing, 500
symbols, accessing, 10
thread activity, viewing, 399
thread pools, viewing, 405–407
threads, killing, 414
thread stack, displaying, 400
thread startup address, 400
thread user start address, viewing, 

127–128
token contents, viewing, 513
Wmiprvse creation, viewing, 352
Wow64 processes, displaying, 401

process IDs, 5
processing

deferring, 104–105
real-time, 100

process manager, 55
CPU rate limit enforcement, 478
hypercritical work item use, 206

process memory, changing, 28
Process Monitor, 25

account privileges for, 289
administrative account, running in, 292
DLL search order, viewing, 237–238
DPC activity, monitoring, 108–109
internals, 289–293
Internet Explorer, tracing, 503
interrupts, monitoring, 108–109
process startup, tracing, 387–391
registry activity, monitoring, 289
troubleshooting techniques, 291–292

process notifications, 274
process objects, 360–362

creation, 232
information in, displaying, 363–364

process object type, 22, 143
processor access modes, 17–20
ProcessorAdd callback, 479–480
processor affinity, 408, 463–465. See 

also affinity masks
extended affinity mask, 465–466
group assignment, 460–462
specifying, 416
system affinity mask, 466
updating, 480

processor control region (PCR), 89, 453
processor groups, 40
Processor Machine State Registers (MSRs), 

273
processor region control block (PRCB). 

See PRCB (processor region control 
block)

processors. See also logical processors
adding to child partitions, 257

 processors
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processors (continued)
CPU 0, 118
dynamic, 479–480
idle/sleep states, 122
IDT, 83
interrupt request level settings, 87
interrupts, 82
IRQL, changing, 89
licensed, 40
look-aside lists, 479
multiple, 38
timer expiration, 116
timer selection, 118–120
tracking, 40
virtual, 257

processor selection, 468–470
processor share-based scheduling, 

470–478
processor-specific data, 58
process security tokens, 9
process/thread runtime, updating, 116
process tree, 6–7, 11
Process Type object, 360
producers, 230
ProductPolicy registry value, 43
ProductSuite registry value, 42–43
ProductType registry value, 42–43
profile interrupt level, 90
profiles

loading and unloading, 283
roaming, 283, 569
security, 514
user, 282, 562

Program Compatibility Assistant (PCA), 
357

Programmable Interrupt Timer (PIT), 112
Programming the Microsoft Windows 

Driver Model, Second Edition (Oney), 
32

programs. See also executables
defined, 5
low integrity level, launching, 513

Protected Media Path (PMP), 368, 369
Protected Mode Internet Explorer (PIME), 

503, 529
protected processes, 271, 368–369

attribute list, 372
checks performed on, 385

protected process threads
information, viewing, 402
limitations, 401

Protection Profile (PP), 489
protocol drivers, 63

NDIS driver use, 672–684
network, 663–672
transport, 663
Windows Filtering Platform, 667–672

protocol stack, 594. See also network 
stack

providers, 344–345
built-in, 344

COM and DCOM servers, 344
defined, 628
dynamic, 347
event tracing, 220
interface features, 344
UBPM registration, 338–339
unregistering, 338
viewing, 338–339

proxies, detecting, 661
proximity IDs, 460–461
PsAllocateCpuQuotaBlock function, 

471–472
PsChargeProcessCpuCycles function, 473
PsCpuFairShareEnabled variable, 471
PsCreateSystemThread function, 69
PsGetSid function, 499–500
PsInvertedFunctionTable, 273
PspAllocateProcess function, 374, 

376–381
PspAllocateThread function, 381–383
PspCalculateCpuQuota-BlockCycleCredits 

function, 472
PspCpuQuotaControl data structure, 471
PspCreateThread function, 398

helper routines, 381
PspFlushProcessorIdleOnlyQueue 

function, 475
PspInsertProcess function, 381
PspInsertThread function, 381–383
PspLazyInitializeCpuQuota function, 471
PsPrioritySeparation function, 428–429, 

435, 438
PspStartNewFairShareInterval function, 

475
PspUserThreadStartup function, 386
PsReleaseThreadFromIdleOnlyQueue 

routine, 475, 477
publication cache, 647–648
public IP addresses, 663

private address mapping to, 669
publishing content, 647
pushlocks, 199–201

priority boosts and, 432
structure, 200

Q
Quality of Service (QoS), 682–684

components, 682–683
Winsock support, 597

Quality Windows Audio/Video Experience 
(qWAVE), 682–684

quantum, 409, 422–429
clock cycles per, 424–425
clock tick adjustment, 424
configuration settings, changing, 429
controlling, 425–426
end of, 450–452
expiration, 107
Priority Separation field, 428
registry value, 427–428

reset value, 423–424
short vs . long, 428
threads in idle process priority class, 428
values, 427
variable, 427, 428

quarantine agent service runtime, 691
query name method, 154
query/set native calls, worker factory 

management, 403
queued spinlocks, 181
QueueUserApc API, 162

R
race conditions, 480
rate limiting, CPU, 478
Raw transport protocol, 603
RDBSS (Redirected Drive Buffering 

SubSystem), 633–634
mini-redirectors, 634

RDPDR mini-redirector, 635
read-commit isolation level, 288
ready queues

context switch to, 424
deferred, 383
dispatcher, 421, 457
per-processor dispatcher, 421
preempted threads, 450
scanning, 421, 439, 440, 458
systemwide, 421
thread association with, 468–470

ready summary, 421
ready threads, 416

priority boosts for, 439
in ready queue, 421
viewing, 408–409

Real Time Clock (RTC), 112
real-time processing, 100
reaper function, 206
reason for access reporting, 549
receive window auto tuning, 663
recv and send APIs, 598
Redirected Drive Buffering SubSystem 

(RDBSS), 633–634
redirection

API Sets, 245–247
of DLL names, 236–238
in Wow64, 226

redirectors, 63, 605, 627–636
components, 633–634
mini-redirectors, 634–635
Multiple Provider Router, 627–630
Multiple UNC Provider, 630–632
prefix cache, 630–631
priority order, 631
Server Message Block, 635–636
surrogate providers, 632–633

reference count, object, 165–166
REG_BINARY values, 279
RegCreateKeyTransacted API, 287–288
RegDeleteKeyTransacted API, 287–288

processors
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REG_DWORD values, 279
Regedit .exe, 278

hives, loading and unloading, 294
local system account, running as, 492

Reg .exe, 278
virtualization state, displaying, 572

RegFlushKey API, 303
Regini .exe, 278
region blobs, 216
regions, mapping, 214–215
RegisterServiceCtrlHandler function, 309
registry, 23, 277–304

activity, montoring, 289
applications settings, locating, 290–291
AppLocker rules, 584–585
blocks, 296
buffer overflows, 292
compacting, 297
configuration data in, 227
configuration manager management, 

293–305
CurrentControlSet key, 328–329
data types, 279–280
editing, 277–278
EnableCpuQuota value, 471
error recovery, 287
filtering, 303–304
flushes, 302–303
global audit policy, 552
hives, 293–294. See also hives, registry
HKEY_CLASSES_ROOT, 283
HKEY_CURRENT_CONFIG, 286
HKEY_CURRENT_USER, 281
HKEY_LOCAL_MACHINE, 283–284
HKEY_PERFORMANCE_DATA, 287
HKEY_USERS, 282
idle system activity, viewing, 290
initialization, 73
internals, 293–305
keys, 279
last known good configuration, 286, 

328–330
links, 280
logical structure, 280–287
missing keys or values, 291–292
modification, 279
naming scheme, 279
Native and Wow64 portions, 227
performance counters, accessing, 23
performance optimizations, 304
permanent changes, 288
ProductPolicy value, 43
ProductSuite value, 42–43
ProductType value, 42–43
quantum settings, 427–428
root keys, 280–281
Services key, 305, 306
subsystem startup information, 49
symbolic links, 295
tools for editing, 277–278
transactional, 287

troubleshooting problems, 291–292
usage, 278–279
values, 279
viewing, 277–278
virtualization, 571–573, 578

Registry Editor, 284–285
registry filter notifications, 274
registry namespace, 154

virtualization, 567–590
REG_LINK values, 280
RegOpenKeyTransacted API, 287–288
REG_SZ values, 279
 .regtrans-ms extension, 289
relative identifiers (RIDs), 497–498
relative timers, 115
reliability, 34
relocation, 242
Remediation Servers, 693
remote access, 685–686
remote authentication, 559
remote clients, network connectivity, 

695–696
remote desktop connections, 20
remote editing of BCD, 284–285
remote files

caching on local machine, 639
requests for, 635–636

remote file systems
accessing, 630–633, 635–636
caching, 632

Remote NDIS, 680–681
remote performance monitoring, 287
remote procedure call (RPC). See RPC 

(remote procedure call)
remote resources, accessing, 629, 

633–635
remoting, 20
replay protection, 670
replication

benefits, 637
multimaster, 638
topologies, 638

replication groups, 638
republication cache, 648
RequiredPrivileges parameter, 308, 314
reserve blobs, 216
reserve objects, 162–163
resource accounting, 168
resource exhaustion prevention, 356
resource management, 416
Resource Manager (RM), 269

registry, 289
Resource Manager SID, 499
Resource Monitor

object handles, viewing, 157
resources, displaying, 26

resources
mutual exclusion and, 176–177
permissions, setting, 316
remote, 629, 633–635
service access to, 315–318

UNC name access, 627
responsiveness

improving, 430, 435, 437–439
thread priority boosts and, 433

restore files and directories privilege, 546
restricted service SIDs, 316–318
restricted tokens, 507, 516
retail build, 45
Richter, Jeffrey, 2, 3, 123, 188
RIDs (relative identifiers), 497–498

viewing, 499
rings 0 through 3, 17
RM (Resource Manager), 269
roaming profiles

registry values, 283
virtualized files and, 569

robustness, 34
root keys, registry, 280–281
root \Sessions directory, 73
routers, 593

congestion, 663
routing functions, 593
routing modes, 84
RpcImpersonateClient function, 514, 608
RPC (remote procedure call), 605–609

asynchronous, 607
implementation, 609
local and remote execution, 606, 609
operation, 605–608
security, 608
server name publishing, 608
subsystem, 609
unencrypted, 608

RPCSS, 609
RTC (Real Time Clock), 112
RtlUserThreadStart, 387
RtlVerifyVersionInfo function, 43
Run As Administrator command, 576
Runas command, 283, 292, 574–576
running threads, 417
run-once initialization (InitOnce), 183, 

204–205
runtime compatibility mitigations, 233
run-time patching, 233
Russinovich, Mark, 32

S
SACLs, 523, 524

assigning, 527–528
safe DLL search mode, 235–236
safe mode, 324

registry keys, 324
SAM APIs, 686
SAM database, 490
SAM (Security Accounts Manager), 490

security descriptors, 492
SAPICs (Streamlined Advanced 

Programmable Interrupt Controllers), 
84–85

 SAPICs (Streamlined Advanced Programmable Interrupt Controllers)
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SAS (secure attention sequence), 489
implementation, 557
logon startup, 558

SAs (security associations), 671
scalability, 40–41
scatter-gather, 597
ScAutoStartServices function, 323
sc command, 340
ScGenerateServiceDB function, 321
ScGenerateServiceTag function, 335
ScGetBootAndSystemDriverState 

function, 322
SChannel, 608
Scheduled Tasks service, 339
scheduling

processor share-based, 470–478
thread, 408–470
Windows system, 408–410

scheduling events, 69
thread priority boosts, 431

scheduling priorities, thread, 87. See 
also priority levels

ScInitDelayStart function, 327
ScLogonAndStartImage function, 325
SCM Extension DLL (Scext .dll), 336
SCM (Service Control Manager), 74–75, 

321–323
boot-verification program startup, 329
commands, 310
internal service database, 321
last known good control set, 328–330
named pipe creation, 326
network drive letter tracking, 323
service characteristics, 306
service database, 321–322
service deletion, 306
service entry and group order lists, 

321–322
service privileges, accounting, 314
service registry key creation, 305
service SID generation, 316
service-start command, 309, 326
shutdown routine, 331–332
startup, 321
SvcHost process launch, 333
UBPM initialization, 337

scopes, 639
script execution, controlling, 589–590
scripting API, 344
scripts, 351
ScStartService function, 325
ScTagQuery (Winsider Seminars & 

Solutions Inc .), 335
Sc tool, virtual service account creation, 

518–521
SDDL (Security Descriptor Definition 

Language), 537
SeAccessCheck function, 496
SeAuditPrivilege, 548
second-chance notification, 126

Second-Level Address Translation (SLAT), 
259

section blobs, 216
section objects, 143, 214–215, 373–374

mapping to API Sets, 247
secure attention sequence (SAS). See SAS 

(secure attention sequence)
Secure Socket Transmission Protocol 

(SSTP), 686
security, 22. See also security mechanisms

access control, 23
of cache content, 646
console processes, 52
debugger-based attacks, 369
IPsec, 669–672
job object limits, 481
local system account characteristics, 311
for namespaces, 353
object, 163–165
object name squatting, 171
privilege exploitation, 546–547
regions and, 214–215
of registry keys, 304
of RPC, 608
section objects and, 214
service isolation, 315–318
service security contexts, 310
shatter attack prevention, 320, 530
spoofing prevention, 516
systemwide policies in registry, 286
WMI, 353

Security Accounts Manager (SAM), 490, 
492

security associations (SAs), 671
security attribute, 215
security auditing, 23, 488, 548–554

global audit policy, 552–553
object access auditing, 549–552

security blobs, 216
security boundaries, 573
security checks, 536
security components

application identification, 581–582
communication paths, 493

security contexts
identifying, 506
process, 14
user, 23

security credentials, user, 23
security descriptors, 522–536

attributes, 522
flags, 522–523
thread, 399
viewing, 525–527

security identifiers (SIDs). See SIDs 
(security identifiers)

security mechanisms, 487–590
access checks, 495–497
access logging, 494–536
access tokens, 547
account rights, 538–547

ALPC mechanisms, 216–217
AppID, 581–582
AppLocker, 583–588
AuthZ Windows API, 536–538
core components, 490–493
logon, 555–565
object protection, 494–536
privileges, 538–547
ratings, 487–489
Software Restriction Policies, 589–590
UAC, 566–581

security method, 155
Security parameter, 308
security policy, 548
Security Policy MMC snap-in, AppLocker 

management, 584
security quality of service (SQOS), 515
security ratings

Common Criteria for Information 
Technology Security Evaluation, 
489–495

Trusted Computer System Evaluation 
Criteria, 487–489

security reference monitor (SRM), 55, 490
access rights checking, 163

security routine, 153
security support providers (SSPs), 608
Security Target (ST), 489
security tokens, 12
security validation of impersonating 

threads, 495
Self-Monitoring Analysis and Reporting 

Technology (SMART) code, 356
semaphore object type, 144
semaphores, 143, 144

default security, 496
ETHREAD, 196
object directory, 170
for shared resources, 202
for shared waiters, 198
signaled state, 186

SeNotifyPrivilege, 545
server communication ports, 210
server connection ports, 210
Server Message Block (SMB). See SMB 

(Server Message Block)
server name publishing, 608
server operating system versions vs . client 

versions, 41–43
servers

accept operations, queuing, 599
CPU addition and replacement, 

479–480
file-system change replication, 637, 638
impersonation, 514
principal names, 608
quantum length, 422
Remediation Servers, 693
replication groups, 638
well-known addresses, 600

Service-0x0-3e7$ window station, 318

SAS (secure attention sequence)
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service applications, 305–321
SCPs, 305

Service Control Manager (SCM), 74–75
service control programs, 341–342
Service Control (Sc .exe), 314–315
service groupNetworkService-

NetworkRestricted, 334
service hardening, 531–532
Service Host (SvcHost), services running 

in, 332–333
service logon SIDs, 317
service processes, 36

management, 74–75
service details, viewing, 76
services in, mapping, 75

service provider interface (SPI), 600
services, 305–336. See also Windows 

services
account settings, 313
alternate accounts, running in, 313
authenticating to other machines, 311, 

312
auto-start, 305, 321, 323
Change Notify privilege, 314
characteristics, 306–308
delayed auto-start, 324, 327
dependencies, 324
entry points, 309
FailureActions and FailureCommand 

values, 330
failures, 330–331
groupings, 333–334
group startup ordering, 321, 324
ImagePath value, 325
initializing, 309
interactive, 319–321, 326
isolation, 315–318
least privilege, running with, 313–314
listing, 75–76
local system account, running in, 

310–312
logon information, 325
main thread, 309–310
names, 74
ObjectName value, 325
Parameters subkey, 306
peer-to-peer support, 624–625
privileges, specifying, 313–314
privileges, viewing, 314–315
process, launching, 326
registering, 305
running in processes, viewing, 334–335
security context, 310
security descriptors, 342
service applications, 305–321
Service Control Manager, 321–323
service SIDs, 316–318
Services key, 305–306
service tags, 335–336
Session Zero Isolation, 318–321
shared processes, 332–335

shutdown, 331–332
shutdown notifications, 331
shutdown order, 332
startup, 74, 305, 323–327
startup errors, 327–328
status messages, 309
triggers, 340–341
user notifications, 320
well-known addresses, 600
window stations, 318–319

ServiceSidType parameter, 308
Services key, 305, 306
Services MMC snap-in, 342
service tags, 335–336
SeSecurityPrivilege, 548
session create requests, 73
session layer in OSI reference model, 593
session manager (Smss), 49, 72–74
session namespace, 173–174

instancing, viewing, 175
sessions

accounting information, 472
active logon, listing, 560–562
disconnecting, 21
multiple, 20
NetBIOS, 618
session weight, 477

Session Zero Isolation, 318–321
Set API, 477
SetInformationJobObject function, 464
SetPriorityClass function, 412
SetProcessAffinityMask function, 464
SetProcessWorkingSetSizeEx function, 416
SetServiceStatus function, 309
SetThreadAffinityMask function, 464
setup programs, virtualization, 385
SetWindowsHook function, 557
shadow page tables (SPTs), 258
shared access, executive resources for, 

198–199
shared memory

communication, 214
regions, 214–215
sections, 13

shared processes, 332–335
of services, 332–335

shatter attacks, 320, 530
ShellExecute API, 576
shifting, 123
shims, 233, 667

application-compatibility, 568
elevation, 385

shutdown
notifications, 331
ordering, 332
performance diagnostics, 356
services, 331–332

side-by-side assemblies, 384, 398
side-by-side redirection, 237
SIDs (security identifiers), 497–517

assignment, 498

firewall rules and, 318
integrity level, 501
list of, 498–499
local logon, 558
Owner Rights, 531–532
structure, 498
types, 316–317
values in, 497
viewing, 499–500

Sigcheck, viewing application 
manifests with, 578

signaled state, defining, 185–188
signed files, 582
silent process death, 130

solving, 132
simple problem scenarios, 354
single instancing, 172–173
SIPolicy tool, 43
SLAT (Second-Level Address 

Translation), 259
Sleep API, 467
SleepConditionVariableSRW API, 203
Slim Reader-Writer Locks (SRW Locks), 

183, 202–203
slow-link latency threshold, 641
smartcard authentication, 562
SMB 2 .0, 635–636
SMB 2 .1, 636, 651
SMB mini-redirector, 635, 636
SMB (Server Message Block), 635–636

backward compatibility, 636
BranchCache application retrieval 

sequence, 651–653
BranchCache integration, 651
BranchCache use, 645

SMB WNet provider, 628
Smith, Guy, 32
SMP (symmetric multiprocessing), 

38–40
Smss (session manager), 72–74

initialization steps, 72–73
session startup instance, 73–74
subsystem startup, 49

SMT sets, 458
sockets

categories, 605
client connections to, 598
extension interfaces, 605
listen operations, 598
Windows support, 597

software. See also applications
exceptions and interrupts, 80
interrupt request levels, 86–91
interrupts, 81, 104–276
licensing, 43–44
in OSI reference model, 592–594

Software Restriction Policies (SRP). 
See SRP (Software Restriction 
Policies)

special boot menu, 324

 special boot menu
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spinlocks, 179–180
global, 181
implementation, 179
instack queued, 182
for interlocked functions, 182
kernel-mode, 179–180
queued, 181
restrictions on, 183
viewing, 181

Spinstall .exe, auto-elevation, 579
SPI (service provider interface), 600
spoofing prevention, 516
SPTs (shadow page tables), 258
SQOS (security quality of service), 515
squatting attacks, 171
SRM (security reference monitor), 55, 490

audit policy, passing, 548
LSASS connection, 493
security model equation, 497

SRP (Software Restriction Policies), 384, 
583, 586–590

enforcement, 589–590
SRW Locks, 202–203
SSPs (security support providers), 608
SSTP (Secure Socket Transmission 

Protocol), 686
stack frames, exception handlers, 125
stack, thread, 400
stack traces, 167
standard user rights, 566

application execution with, 566–573
elevation, 574–576
running as administrative rights, 574

standard user tokens, 507
standby/resume performance diagnostics, 

356
standby threads, 416, 457, 469
start-of-thread function, 127
Start parameter, 307
StartServiceCtrlDispatcher function, 309
StartService function, 305
start-stop problem scenarios, 354
startup. See also boot process

errors, 327–328, 328
repair tool, 356
services, 323–327

Startup Programs Viewer, 25
stations, 592

point-to-point communications 
between, 593

Streamlined Advanced Programmable 
Interrupt Controllers (SAPICs), 84–85

stride value, 467
Strings, dumping API Set table with, 247
structured exception handling, 123
stub procedures, 606

generating, 607
SUA (Subsystem for UNIX-based 

Applications), 53
sub-DLLs, 245–247

subkeys, registry, 279. See also keys, 
registry

transacted deletion, 288
subsystem DLLs, 36, 48

user-mode debugging APIs, 229
Subsystem for UNIX-based Applications 

(SUA), 53
executive objects, 143

subsystem processes, creation, 73
subsystems

GDI, 396
internal support functions, 53
POSIX, 53
RPC, 609
startup, 49–50
Subsystem for UNIX-based Applications, 

53
Windows, 50–52

SunRPC, 605
Superfetch, 55
surrogate providers, 630, 632–633
SvcCtrlMain function, 321
Svchost .exe, 11
SwitchBack, 244–245

invoking, 245
SwitchBranch mechanism, 233
SwitchToFiber function, 13
SwitchToThread() call, 467
symbol files, 27
symbolic link objects, 173
symbolic links, 173

registry, 295
SMB support, 636

symbol server
configuring, 11
loading symbols from, 27

symmetric multiprocessing (SMP), 38–40
mutual exclusion, 177

Sync Center control panel interface, 639
synchronization, 176–205

condition variables, 202–203
critical sections, 201
data structures, 188–191
deadlocks, 201
of dispatcher database, 422
dispatcher objects, 184
executive resources, 184, 198–199
high-IRQL, 178–182
interlocked operations, 178
kernel mechanisms, 183–184
low-IRQL, 183–205
mutexes, 196–198
object support of, 153
pushlocks, 199–201
run once initialization, 204–205
scalable, pointer-size, 203
user-mode objects, 201–202

synchronization interrupt level, 91
synchronization objects

executive resources, 184
keyed events, 194–196

rules of behavior, 185–186
state, 184–185

synchronous event exceptions, 80
synchronous execution, 204
synthetic devices, 255–257
sysenter instruction, 133
Sysinternals Site Blog, 32
Sysinternals tools, 32
system. See also operating systems; 

system mechanisms; Windows 
operating system

affinity mask, 466
architecture. See system architecture
configuration, 283–284
connecting live, 28
crashes, 95
global flags, 207–276
health policies, 689
idle, 290
initialization. See system initialization
license policy file, 40
lockdown, 583–590
registry settings, 279
responsiveness performance 

diagnostics, 356
security policies, 286
service calls, 80
support processes, 36

System account security settings, 286
system address space

data structures in, 359
ETHREAD and other structures in, 391

system architecture, 33–78
client vs . server versions, 41–44
device drivers, 63–67
diagram, 47
environment subsystem, 48–53
hardware abstraction layer, 60–62
kernel, 57–60
key system components, 46–78
Ntdll .dll, 53–54
overview, 35–46
portability features, 37–38
requirements and design goals, 33–34
scalability features, 40–41
symmetric multiprocessing capabilities, 

38–40
system processes, 68–78
Windows executive, 54–57

system calls
from 32-bit systems, 134
from 64-bit systems, 135
defined, 4
exported, 136
functions and arguments, mapping 

to, 139
from kernel-mode code, 136
in Wow64, 225

System Calls/Sec performance counter, 
140

spinlocks
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system call table, 135, 139–140
compaction, 135

system clock. See also clock cycles; clock 
intervals

interval timer, 112
maintenance of, 112
restoring default value, 113
updating, 83

system code and data protection, 17
system events, thread state changes, 186
system files, restoring, 356
System Health Agent (SHA), 690
System Health Validator (SHV), 692
system idle process, 69, 455
system images, undocumented interfaces, 

66–67
system initialization

parent processes, 376
Smss functions, 72–73
system worker threads, 205
Wininit .exe functions, 74
Winlogon initialization, 556–558

System .log, parsing and repairing, 303
system mechanisms

Advanced Local Procedure Call, 
209–219

code integrity, 274–276
global flags, 207–209
hotpatch support, 270–272
Hypervisor, 248–268
image loader, 232–247
kernel event tracing, 220–223
Kernel Patch Protection, 272–274
Kernel Transaction Manager, 268–270
object manager, 140–176
synchronization, 176–205
system worker threads, 205–207
trap dispatching, 79–140
user-mode debugging, 229–232
Wow64, 224–228

system objects, integrity protection, 22
system physical address space (SPA 

space), 258
System process, 69–70, 455

handles, 160
protected mode, 368
system worker threads, 205

system processes, 68–78
Local Session Manager, 76–77
priority level, 412
Service Control Manager, 74–75
Session Manager, 72–74
system idle process, 69
System process. See System process
tree, viewing, 68
Windows logon process, 77
Wininit .exe process, 74

system profile, 282
system resources. See also resources

handles to, 155

System Service Descriptor Table (SSDT), 
273

system service dispatcher, 132–133
locating, 133–134
system service tables, locating, 137

system services, 54
activity, viewing, 140
dispatching, 132–276
dispatch stubs, 53
dispatch table, 135
numbers, 135

system service tables, 137
System software interrupts, 81
system-start drivers, 321–322
system threads, 69–72. See also threads

balance set manager, 439–441
device drivers, mapping to, 70–71
execution, mapping, 70
mode usage, 20
priority levels, 412

system time. See also clock cycles; system 
clock

keeping track of, 115
updating, 107

system timers, 119–121
system traps, 80
system unresponsiveness. See 

also performance
DPCs and, 107

systemwide cookies, 386
systemwide thread startup stub, 386–387
system worker threads, 205–207. See 

also system threads; threads
dynamic, 206
listing, 207
number of, 206
types, 205–206

T
tagged TLB, 259
Tag parameter, 307
take ownership privilege, 546
targeted DPCs, 105
Taskeng .exe, 11
TaskHost, 341
Task Manager, 25

access rights, 368
Applications tab, 8–9
kernel mode vs . user mode counter, 20
priority levels, changing, 414–415
process activity, viewing, 7–9
Processes tab, 8
virtualization status, viewing, 567–568

task offloading, 674
Task (Process) List, 25
TCB (thread control block), 393

CPU numbers, 466–467
TCP/IP, 595

activity, tracing, 222–223

device objects, viewing, 665–666
Next Generation TCP/IP Stack, 663
offloading, 674
receive window auto tuning, 663
WAN-friendly charactersitics, 663
well-known addresses, 600
WFP integration, 667

TCP/IP port (port 88), 559
TCP/IP protocol stack, 594
TDI Extension (TDX) Driver, 595
TDI (Transport Driver Interface), 603, 633

transports, 595
TDI (Transport Driver Interface) clients, 

594–595
TEB (thread environment block), 391, 

394–395
dumping, 395
fields, 395
service tags, 335

temporary objects, 165–168
terminal server sessions

detecting, 21
management, 76–77

terminal-services environments, 20
processor share-based scheduling, 470
window stations, 318

terminated threads, 417, 453
terms, definitions of, 4–5
Testlimit tool, 159
third-party device drivers, verification, 17
thread context, 12

32-bit and 64-bit, 13
thread data structures, 360

dumping, 394
thread dispatcher, activating, 104
threaded DPCs, 107

disabling, 107
thread environment block (TEB). See TEB 

(thread environment block)
thread IDs, 12
Thread Information Block (TIB), 394
thread-local storage (TLS), 12
thread objects, 143

KeyedWaitSemaphore, 196
thread parameter, 382
thread pools, 403–407

shutting down, 403
viewing, 405–407

threads
access tokens, 14, 547
activation context stack, 237
activity, examining, 398–402
affinity mask, 463
alertable wait state, 112
APC queue, 110
artificially waiting, 478
clock cycle count, 399
clock cycles charged to, 472–474
components, 12
contention count, 199
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threads (continued)
context switching, 448. See also context 

switches
CPU consumption, 399
CPU numbers, 466–467
CreateThread function, 398
creation, 398
creation time, 396
data structures, 391–397
debug objects associated with, 230
deferred ready state, 416–418
defined, 12
dispatching, 409
distribution of, 470
execution, 387, 398
execution states, 416–421
execution state transitions, 417–418
execution state transitions, viewing, 

419–421
executive resources, waiting on, 434
fibers, converting, 13
housekeeping, 466
idle thread, 453–456
impersonation, 495
impersonation tokens, 514
information, displaying, 394
information fields, 392–393
initialized state, 417–418
integrity levels, 529
internal start functions code, 128–129
internal structures, 391–398
killing, 399
mutual exclusion, 176–177
objects, waiting for, 184–185
passive interrupt level, 413
preempted, 409, 449–450
previous mode, 136
priority boosts, 411
priority levels, 410–416. See 

also priority levels
processor affinity, 408. See also affinity 

masks; processor affinity
quantum, 83, 409, 422–429
quantum expiration, 107
quorums, 379
ready state, 408–409, 416–418
reaper function, 206
running state, 417–418
run-time accounting, 399, 423
scheduling, 94, 408–470
scheduling on multiprocessor systems, 

458–467
scheduling priorities, 87
security access validation, 496
security contexts, 506
security descriptors, 399
selection, 456–458
selection on multiprocessor systems, 

467–468
shared and exclusive access, 198–199, 

202

shared memory sections, 13
SIDs, 497–517
stack, 400
standby state, 416–418
start address, 394, 399–400
start address, viewing, 127–128
startup in common routine, 387
startup wrapper function, 400
suspension, 111, 399
synchronization, 153, 184
system worker, 205–207
terminated state, 417–418
termination, 111, 386
transition state, 417–418
trap frame, 81
virtual address space, 13
wait blocks list, 188
waiting state, 417–418
wait queues, viewing, 191–194

thread scheduling, 408–470
context switches, 448
DFSS scheduling and, 476
dispatcher database, 421–422
fibers, 13
idle scheduling, 458
idle threads, 453–456
limitations, 470
on multiprocessor systems, 458–467
preemption, 449–450
priority boosts, 430–448
priority-driven, preemptive, 408–412
priority levels, 410–416
processor selection, 468–470
quantum, 422–429
quantum end, 450–452
thread execution states, 416–421
thread selection, 456–458
thread selection on multiprocessor 

systems, 467–468
threads in real-time range, 430
thread termination, 453
time slicing, 451–452
UMS, 13
voluntary switching, 449
work-stealing loop, 468

thread stack, 400–401
32-bit and 64-bit, 401

throttling. See CPU throttling
thunking, 225, 386
TIB (Thread Information Block), 394
time-keeping processor

CPU 0, 118–119
designating, 121

timer coalescing, 122–123
timer expirations, 115–117

minimizing, 122
timer object type, 144
timer processing, 112–123

intelligent timer tick distribution, 
121–122

listing timers, 119–121

timer coalescing, 122–123
timer expiration, 115–117

timers
coalescable, 122
high-frequency, 113–115
intelligent timer tick distribution, 

121–122
listing, 119–121
processing KPRCB fields, 117
processor selection, 118–120
queuing behaviors, 118–119
shifting, 123
tolerance, 122–123
types, 115

timer table, 115–116
Tlist .exe tool, 6

services running in processes, viewing, 
335

thread information, displaying, 394
TLNPI (Transport Layer Network Provider 

Interface), 595
AFD client, 602

TLS initializers, 244
TLS (thread-local storage), 12
TmEn objects, 144
TmRm objects, 144
TmTm objects, 144
TM (Transaction Manager), 269
TmTx objects, 144
TOKEN_MANDATORY_NEW_PROCESS_

MIN policy, 509
TOKEN_MANDATORY_NO_WRITE_UP 

policy, 509
token object type, 143
tokens, 506–513

AppLocker attributes, 509
authentication ID, 510
contents of, 507–508
expiration time, 510
filtered admin, 507, 566
generating, 507
impersonation, 514
informational fields, 509–510
LUID, 509
mandatory policies, 509
privilege arrays, 509
restricted, 507, 516
security information in, 509
types, 509
viewing, 510–513
write-restricted, 316–317

topology, network
discovery and mapping, 658–662
Link-Layer Topology Discovery, 662

TpWorkerFactory, 144, 403
trace data, kernel, 220–276
transaction handles, 288
transaction managers, 270
Transaction Manager (TM), 269
transaction objects, 269

threads
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transactions, 288
isolation level, 288

transfer jobs, 621
priority, 621
security context, 621

transition threads, 417
TransmitFile function, 599
TransmitPackets API, 599
Transport Driver Interface (TDI) clients, 

594–595
transport layer in OSI reference model, 

593
Transport Layer Network Provider 

Interface (TLNPI), 595
transport provider interfaces, 607
transports, 595
transport service providers, 600
transport, the, 596
trap, defined, 79
trap dispatching, 79–140

exception dispatching, 123–132
interrupt dispatching, 81–112
system service dispatchng, 132–142
timer processing, 112–123

trap frames, 81
trap handlers, 80, 81, 125
trigger consumers, registration, 339–340
trigger information, 339

viewing, 340–341
trigger providers, registration, 338–339
triggers, WDI, 354
Trojan horse prevention, 488
troubleshooting

modules, 355
registry-related problems, 291–292

Trusted Computer System Evaluation 
Criteria (TCSEC), 487–489

rating levels, 488
trusted facility management, 489
trusted path functionality, 488
tunneling, 663, 686
TxF, 269
TxR, 269, 287

common logging file system support, 
288

type initializers, information in, 152
type objects, 145, 149–153

Process, 360
viewing, 150–152

Type parameter, 307, 309

U
UAC File Virtualization Filter Driver, 

569–570
UAC (User Account Control), 77, 566–581

access tokens, 77
administrative rights requests, 576–578
administrative rights, running with, 

574–576

auto-elevation, 578–579
elevation, 566, 573–590
modifying behavior of, 579–581
standard user rights, 566
storage location of settings, 580–581
turning off, 580
virtualization, file system and registry, 

567–573
virtualized registry root, 283

UBPM (Unified Background Process 
Manager), 336–342

architecture, 336
consumer registration, 339–341
consumer thread creation, 337
ETW consumer initialization, 337
event manager setup, 337
event processing, 337
initialization, 337
internal tracing support, 337
provider registration, 338
service control programs, 341–342
TaskHost, 337, 341
UBPM API, 338

UIPI (User Interface Privilege Isolation), 
529–530

UMDF (User-Mode Driver Framework), 64
UMPD (User Mode Print Driver) 

framework, 396
UMS (user-mode scheduling), 13
unauthorized access

preventing, 487. See also security 
mechanisms

Software Restriction Policies for, 590
unauthorized operations, 546–547
UNC names, 612

redirector support, 633
unconnected communication ports, 210
UNC paths, accessing, 627
undocumented interfaces, viewing, 66–67
unhandled exception filter calls, 129
unhandled exceptions, 127–129

debugging, 129
unicast packets, 669–670
Unicode, 24
Unified Background Process Manager 

(UBPM). See UBPM (Unified 
Background Process Manager)

Universal Naming Convention (UNC), 
612, 627

Universal Plug and Play, 626–627
UNIX-based applications

networking, 597
subsystem for, 53

unrestricted service SIDs, 316
unwait boosts, 431–432
uploads, 622
USB network devices, 680–696
User32 .dll, 37
user access restrictions, 23. See 

also access rights

User Account Control Settings dialog 
box, 579

User Account Control (UAC). See UAC 
(User Account Control)

user address space, 17
User APC reserve object, 162–163
user applications, 36

user mode vs . kernel mode, 18
user authentication, 23, 555–556

biometric framework, 563–568
user callbacks, 226
user environment initialization, 78
USER functions, 51
user identification, 555
Userinit .exe, 77–78, 562
User Interface Privilege Isolation (UIPI), 

529–530
User Interface Services, 2
user logon, 558–562. See also logon

active sessions, listing, 560–562
Assured Authentication, 562–563
authentication, 558
via fingerprint scan, 565
management, 77

user mode, 17–20, 34, 35
context switches, 13
transitioing to kernel mode, 18

user-mode address space, 364
user-mode APCs, 110–111
user-mode applications

timer use, 117
vectored exception handling, 125

user-mode code
locking primitives, 183
passive interrupt level, 413
SRW Locks for, 203

user-mode debugger
CSR_PROCESS, dumping, 366
CSR_THREAD, dumping, 396
thread stack, displaying, 400

user-mode debugging, 56, 229–232
kernel support, 229–230
native support, 230
WinDbg for, 231
Windows subsystem support, 232

User-Mode Driver Framework (UMDF), 64
user-mode dump processes, 28
User Mode Print Driver framework 

(UMPD), 396
user-mode processes

debugging, 27
services, 74
session manager, 72–74
types, 36

user-mode scheduling (UMS), 13
user-mode synchronization objects, 

201–202
critical sections, 194, 201

user-mode thread pools, 403
user-mode threads, preempting, 107

 user mode threads, preempting
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user profiles
HKU subkeys, 282
loading, 562
per-user settings, 566–567
storage location, 282

User Profiles management dialog box, 282
user rights, 566

adding, removing, enumerating, 540
users

CPU priority, 470
CPU rate limits, 478
group membership, 506, 508
identity validation, 494–495, 555
intra-user isolation, 495
local logon SID, 558
privileges, 507
security context, 23
security credentials, 23
service UI notifications, 320
of the transport, 596

V
VADs (virtual address descriptors), 14
values, registry, 279

missing, 291–292
types, 279–280

variable quantums, 427
variables

condition, 202–203
signaling change to, 202

VDevs (virtual devices), 254
vectored exception handling, 125
VerifyVersionInfo function, 43
version numbers, 2
video display support, 51
VID (VM infrastructure driver), 251
view blobs, 216
virtual address descriptors (VADs), 14
virtual address space, 15
virtual directory, uploading to, 622
virtual DLL files, 246
virtualization, 248

application, 385
application-compatibility shims, 568
architecture, 248
disallowed, 567
enlightenments, 253–254
exceptions list, 568–569
file, 568–571
file system, 567–573
guests, 248
host-based, 248
hosts, 248
hypervisor-based, 248. See 

also hypervisor (Hyper-V)
memory, 258
registry, 567–573, 578

virtualization service clients (VSCs), 253, 
255–256

virtualization service providers (VSPs), 
251, 255–256

virtual machine management service, 
250–251

virtual machines
Dynamic Memory, 260–263
migrating between nodes, 266–268

virtual machine worker processes 
(VMWPs), 250–251

virtual memory, 15–16
access mode tag, 17
executive implementation, 55
limits, 416

virtual processors (VPs), 257
virtual service accounts, 518–521

passwords, 518
permissions, granting, 521

VMBus, 255–257
VM infrastructure driver (VID), 251
VMWPs (virtual machine worker 

processes), 250–251
volatile hives, 293–294
VPN remote access, 686
VPNs, always-on, 695
VSCs (virtualization service clients), 253, 

255–256
VSPs (virtualization service providers), 

251, 255–256
VT Extended/Nested Page Table (NPT) 

technology, 259

W
W32PROCESS, 360, 367

allocation, 385
dumping, 367

W32THREAD, 392, 396–397
dumping, 397
fields, 397

wait blocks, 188–189
for pushlocks, 199–200
state information, 188–189
wait information in, 188

wait calls, 449
worker factory management, 403

wait chain address ordering, 189
WaitForMultipleObjects function, 184
WaitForSingleObject function, 184
waiting threads, 417

boosting, 432
voluntary switching, 449

wait operations. See also synchronization
data structures for, 188–191

wait queues
reordering, 112
viewing, 191–194

waits
committed state, 190
on keyed events, 195
resolution, 112

satisfied, 190
timed-out, 190

wait state
aborted, 190
alertable, 112
entering, 189

wait status register, 190
Wake-on-LAN, 674
wake operations, 195
WANs

content caching, 645
datalink layer, 593
SMB 2 .0 for, 635

WbemTest, viewing WMI class definition, 
347

WBEM (Web-Based Enterprise 
Management), 342

WDF (Windows Driver Foundation), 64–65
WDI (Windows Diagnostic Infrastructure), 

56, 354–357
diagnostic functionality, 356–357
Diagnostic Policy Service, 354–355
Group Policy settings, 355
instrumentation, 354

WDM (Windows Driver Model), 64
Web access APIs, 610
Web-Based Enterprise Management 

(WBEM), 342
WebDAV mini-redirector, 635
web servers. See servers
Web Services, 3
well-known addresses, 600
WerFault .exe process, 129
WER (Windows Error Reporting), 129–132

configuring, 129
dialog box, 130
protected mode, 368
registry  configuration options, 130–132

WFP (Windows Filtering Platform), 
667–672

callout drivers, 595
components, 667–668
IPsec WFP callout driver, 671

wide area networks (WANs). See WANs
Win16 executables, 374–376
Win32 API, 2

history, 4
objects created through, 147

Win32 emulation on 64-bit Windows. 
See Wow64

Win32k .sys, 37
GUI thread priority boosts, 437–439
per-thread data structure, 392
routine definition, 153
W32PROCESS, 360

Win32PrioritySeparation registry value, 
428

Win32StartAddr, 394
Win32 subsystem process. See Csrss .exe 

(Client/Server Run-Time Subsystem)

user profiles
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WinDbg, 28, 399
debugger objects, viewing, 231
loaded modules database, dumping, 

239–241
windowing and graphics system, 37
window messages, integrity level and, 

529–530
Windows 7, 1–2

AppLocker, 583–588
client versions, 41
context, 245
security rating, 489
small-footprint versions, 100
vs . Windows Server 2008 R2, 41–43

Windows API, 2–4
description, 2
thread priority assignment, 410–411
user-mode APCs, 112

Windows API functions, defined, 4
Windows authentication, 77
Windows Biometric API, 564
Windows Biometric Driver Interface, 564
Windows Biometric Framework, 563–566
Windows Biometric Service, 564
Windows Boot Loader, 303
Windows Clustering, 267
Windows device drivers, 5. See 

also device drivers; drivers
Windows Diagnostic Infrastructure (WDI). 

See WDI (Windows Diagnostic 
Infrastructure)

Windows DLLs, 395
Windows Driver Foundation (WDF), 

64–65
Windows Driver Kit (WDK), 31

boost value recommendations, 433
Offreg .dll, 278

Windows Driver Model (WDM), 64
Windows Driver Model Windows 

Management Instrumentation 
routines, 55

Windows Embedded Standard 7, 100
Windows Error Reporting (WER). See WER 

(Windows Error Reporting)
Windows executables, 578
Windows executive. See executive, 

Windows
Windows File Protection, 356
Windows Filtering Platform (WFP), 

667–672
Windows Firewall

IPsec security and policy configuration, 
671

Windows Filtering Platform use, 669
Windows Firewall with Advanced Security 

snap-in, 672
Windows functions, narrow and wide 

versions, 24
Windows GDI services, 137–138
Windows global flags, 207–209
Windows image, opening, 373–485

Windows Initialization Process, 74
Windows installation image, 285
Windows internals

exploring, 25
exposing, 24–32
kernel debugging, 26–31
Performance Monitor, 25
tools for viewing, 25

Windows logon process, 77. See 
also logon

Windows Management Instrumentation 
(WMI). See WMI (Windows 
Management Instrumentation)

Windows Media Center Extender sessions, 
21

Windows Media Center interactive 
sessions, 21

Windows Media Certificate, 368
Windows Networking (WNet) API, 627
Windows NT, 4

driver model, 64
requirements of, 33

Windows operating system
checked build version, 45–46
client editions, 21
client vs . server versions, 41–44
Common Criteria certification, 489
core system files, 37
crash dump files, 28
debug version, 45–46
edition running, determining, 43
enlightenments, 248
hardware error architecture, 57
impersonation model, 217
integrity mechanism, 495
logon interface, 555
management mechansims, 277–358
MinWin version, 246
model, 34–35
networking support, 591–696
object-oriented design, 35
portability, 37–38
post-initialization operations, 383–385
priority levels, 410–416
processor share-based scheduling, 

470–478
registry, 23
releases, 1
requirements and design goals, 33–34
routine naming conventions, 67
scalability, 40–41
scheduling system, 408–410
security, 22, 536
security mechanisms, 487–590
SIDs, issuing, 498
system architecture, 33–78
TCSEC rating levels, 488
thread-based scheduling, 408–470
thread priority boosts, 411
Unicode, 24
versions, 1–2

version-specific GUID, 244
Windows API, 2
worldwide application binaries, 24

Windows PowerShell AppLocker 
commands, 584–585

Windows Server 2008 R2, 1–2
AppLocker, 583–588
security rating, 489
versions, 41
vs . Windows 7, 41–43

Windows service control manager, 4
Windows services, 305–336. See 

also services
defined, 4–5
DFS-R, 638
DNS server, 655
startup code, debugging, 374
virtual service accounts, 518–521

Windows Services MMC snap-in, 313
Windows Sockets, 597–603
Windows Software Development Kit (SDK)

contents, 31
Debugging Tools for Windows, 27
Windows API description, 2

Windows subsystem, 50–52
applications, 392
executive objects, 143
GDI/User objects, 142
object-based security, 23
process communication functions, 54
processes, creation, 369–485
process initialization, 383–412
thread setup, 398

Windows support images, 374
Windows Sysinternals Administrator’s 

Reference (Russinovich and 
Margosis), 32

Windows System Resource Manager 
(WSRM), 416

WindowStation objects, 144
okay-to-close routine, 155
open method, 154

window stations, 318
creating and opening, 556
Service-0x0-3e7$, 318
WinSta0, 318

Windows Transport Driver Interface 
standard, 594

Windows USER services, 137–138
Windows via C/C++ (Richter and Nasarre), 

2, 123, 188
windows, visible, 8
Windows XP, 583
WinHTTP, 610
WinInet, 557, 610

HTTP API, 610
instance of, 73

Winload startup tasks, 295
Winlogon, 78, 491

Ctrl+Alt+Delete key combination 
notification, 557
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Winlogon (continued)
desktop, 556, 557–558
initialization, 556–558
instance of, 73
logon coordination, 555
logon failure messages, 559
LsaAuthenticationPort connection, 557
RPC message server registration, 557
user logon steps, 558–562

WinObj, 140
ALPC port objects, viewing, 212–213
base names objects, viewing, 171–172
object ACLs, displaying, 163–164

Winsider Seminars & Solutions, 43
Winsock, 597–603

AcceptEx function, 599
client operation, 598
connection-oriented operation, 599
extending, 600
features, 597–598
Helper libraries, 602
implementation, 602–603
layered service providers, 600
namespace providers, viewing, 600–602
network communication authentication 

and encryption, 608
server operation, 598–599
service provider interface, 600
TransmitFile function, 599
transport providers, viewing, 600–602

Winsock 2 .2, 597
Winsock Kernel (WSK). See WSK (Winsock 

Kernel)
WinSta0, 173

opening, 326
WMI Administrative Tools, 346
Wmic .exe, 352–353
WMI CIM Studio, 346

namespaces, viewing, 348
WMI COM API, 344
WMI Object Browser, 350
Wmiprvse process, 351

creation, viewing, 352
WMI (Windows Management 

Instrumentation), 342–353
ActiveX controls, 344

architecture, 342–344
CIMOM Object Repository, 343
class association, 349–351
class definitions, 348
Common Information Model, 345–349
Control application, 353
implementation, 351–353
namespace, 348–349
provider classifications, 344–345
providers, 344–345
scripting API, 344
scripting language support, 351
security, 353
System Control commands, 352

WNetAddConnection2 and 
WNetAddConnection3 functions, 
628

WNetAddConnection function, 629
WNet provider, 628
worker factories, 403–407

thread creation, 403–404
thread termination, 404
viewing, 405–407

worker threads
allocation, 403
viewing, 406–407

work items, 205
Workstation service, 627
work-stealing loop, 468
world SIDs, 317
worldwide application binaries, 24
Wow64, 224–228

16-bit application support, 228
32-bit and 64-bit thread stacks, 401
address space for processes, 224–225
APC delivery, 225
architecture, 224
console support, 225
DLL versioning check, 237
exception dispatching, 225
file system redirection, 226
I/O control functions, 227–228
printer driver porting, 228
registry redirection, 227
restrictions, 228
system calls, 225

user callbacks, 226
user-mode DLLs, 224

Wow64Cpu .dll, 224
Wow64 .dll, 224
Wow64GetThreadContext function, 13
Wow64Win .dll, 224
Wow6432Node key, 227
Wowia32x .dll, 224
write-restricted SIDs, 317
write-restricted tokens, 316–317
WSK (Winsock Kernel), 595–597, 603–605

implementation, 604–605
WSRM (Windows System Resource 

Manager), 416

X
x64 architecture

interrupt controllers, 85
interrupt dispatch, 95–96
interrupt request levels, 87
system service dispatching, 133

x64 processors, 37
HAL image, 61
system code and data protection, 17

x86 architecture
exceptions and interrupt numbers, 124
HALs, 60
interrupt controllers, 84
interrupt request levels, 86
system code and data protection, 17
system service dispatching, 132–133

x86 interfaces, 60
Xperf Viewer, viewing DPC and ISR 

activity with, 110

Z
zero-copy file transmission, 599
zero page thread, 456
Zw versions of system calls, 136

Winlogon
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advanced troubleshooting tools to 
solve system and application problems 
and understand performance issues 
more effectively.  Attend a public class 
or schedule a private on site seminar 
at your location. For dates, course de-
tails, pricing, and registration informa-
tion, see www.solsem.com.

“The information given 
in this class should be 
required for all Windows 
engineers/administrators.”

“This course holds the 
key to understanding 
Windows.”

“Should be required train-
ing for anyone responsible 
for Windows software 
development, administra-
tion, or design.”

To view video samples or for a detailed outline,
 visit www.solsem.com or email videos@solsem.com

INTERACTIVE DVD TUTORIAL 
Sit down with the experts who 
literally wrote the book on Win-
dows internals.  Windows Internals 
COMPLETE consists of 12 hours of 
interactive training taking you under 
the hood of the operating system to 
learn how the kernel components 
work.  As the ultimate compliment,  
Microsoft Corporation licensed these 
videos for their corporate training 
worldwide.  
The Sysinternals Video Library (also 
12 hours) covers essential Windows 
troubleshooting topics such as crash 
dump analysis and memory trouble-
shooting as well as how to leverage key 
Sysinternals tools.
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this book?
We want to hear from you! 
To participate in a brief online survey, please visit: 

Tell us how well this book meets your needs —what works effectively, and what we can  
do better. Your feedback will help us continually improve our books and learning  
resources for you.   

Thank you in advance for your input!

microsoft.com/learning/booksurvey 
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